基于Matlab的纯滞后控制系统设计

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 基于Matlab 的纯滞后控制系统设计

一、实验目的

1) 学习使用simulink 进行Smith 预估补偿控制的设计方法。 2) 学习使用simulink 实现Dahlin 算法的设计方法。

二、实验原理

1. Smith 预估补偿控制的设计 已知被控对象传递函数:

302

3()2s +60s+1

s

G s e -=

(1) 应用Smith 预估补偿算法设计控制系统,并采用PID 控制。原理图参见课本P127图4-21和P128图4-22。

表1衰减曲线法整定控制器参数经验公式

2. Dahlin 算法的设计 已知被控对象传递函数:

102

()100s+1

s G s e -=

(2)

采样周期为2s ,选择期望闭环传递函数中的时间常数分别为T τ=5s ,10s ,20s ,设计Dahlin 控制器。原理图参见课本P129 4.3.2小节。

三、实验内容

1)按式(1)建立系统的Simulink模型,应用Smith预估补偿算法设计控制系统,消除滞后时

间的影响,并整定好PID参数。与同一PID控制器对无滞后的被控对象控制结果相比较,记录实验曲线。

据Smith预估补偿算法建立滞后系统的Simulink模型原理图:

图1 系统的Simulink模型仿真图

图2 控制系统整定好PID参数的曲线图

b)与同一PID控制器对无滞后的被控对象控制结果相比较

图3 同一PID控制器对无滞后的被控对象控制Simulink仿真图

图4 同一PID控制器对无滞后系统的仿真曲线图

2)与同一被控对象不带Smith预估补偿器的PID控制系统相比较,观察仿真结果,记录实验曲线。

不带Smith预估补偿器的PID控制系统Simulink仿真图如下

仿真图如下:

图5 不带

Smith预估补

偿器的PID

控制系统曲

线图

当加入离散

控制器和零

阶保持器时,

观察和比较

实验图。

图6 有离散控制器和零阶保持器的Simulink仿真图

图7 离散控制器和零阶保持器的仿真曲线图

3)按式(2)建立系统的Simulink模型,设计Dahlin控制器。改变期望闭环传递函数中的时间常数,观察不同的仿真结果,记录实验曲线。

答:按式(2)建立系统的数字控制器函数,当Tτ=5s,根据计算公式可得此控制器如下:

D(z)=

当Tτ=10s,同理可得:

D(z)=

当Tτ=20s,同理可得:

D(z)=

根据控制系统原理框图可得Simulink模型图

图8 Dahlin控制系统的Simulink原理图

=5s,10s,20s的仿真曲线图:

根据图8,改变D(z)时间参数依次可得T

τ

图9 Dahlin控制系统的仿真曲线图

相关文档
最新文档