江西师范大学附属中学数学全等三角形(篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西师范大学附属中学数学全等三角形(篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)
1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=1
2
BC,则△ABC的顶角的度数为
_____.
【答案】30°或150°或90°
【解析】
试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.
解:①BC为腰,
∵AD⊥BC于点D,AD=1
2 BC,
∴∠ACD=30°,
如图1,AD在△ABC内部时,顶角∠C=30°,
如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,
②BC为底,如图3,
∵AD⊥BC于点D,AD=1
2 BC,
∴AD=BD=CD,
∴∠B=∠BAD,∠C=∠CAD,
∴∠BAD+∠CAD=1
2
×180°=90°,
∴顶角∠BAC=90°,
综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.
故答案为30°或150°或90°.
点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.
2.如图所示,ABC为等边三角形,P是ABC内任一点,PD AB,PE BC
∥,PF AC
∥,若ABC的周长为12cm,则PD PE PF
++=____cm.
【答案】4
【解析】
【分析】
先说明四边形HBDP是平行四边形,△AHE和△AHE是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.
【详解】
解:∵PD AB,PE BC
∥
∴四边形HBDP是平行四边形
∴PD=HB
∵ABC为等边三角形,周长为12cm
∴∠B=∠A=60°,AB=4
∵PE BC
∥
∴∠AHE=∠B=60°
∴∠AHE=∠A=60°
∴△AHE是等边三角形
∴HE=AH
∵∠HFP=∠A=60°
∴∠HFP=∠AHE=60°
∴△AHE是等边三角形,
∴FP=PH
∴PD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm
故答案为4cm.
【点睛】
本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.
3.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为
___________.
【答案】4
【解析】
【分析】
延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED,
∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案.
【详解】
延长AC至E,使CE=BM,连接DE.
∵BD=CD,且∠BDC=140°,
∴∠DBC=∠DCB=20°,
∵∠A=40°,AB=AC=2,
∴∠ABC=∠ACB=70°,
∴∠MBD=∠ABC+∠DBC=90°,
同理可得∠NCD=90°,
∴∠ECD=∠NCD=∠MBD=90°,
在△BDM 和△CDE 中,
BM CE MBD ECD BD CD ⎧⎪∠∠⎨⎪⎩==,
=
∴△BDM ≌△CDE (SAS ),
∴MD=ED ,∠MDB=∠EDC ,
∴∠MDE=∠BDC=140°,
∵∠MDN=70°,
∴∠EDN=70°=∠MDN ,
在△MDN 和△EDN 中,MD ED MDN EDN DN DN ⎧⎪∠∠⎨⎪⎩
==,=
∴△MDN ≌△EDN (SAS ),
∴MN=EN=CN+CE ,
∴△AMN 的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;
故答案为:4.
【点睛】
本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.
4.如图,已知等边ABC ∆的边长为8,E 是中线AD 上一点,以CE 为一边在CE 下方作等边CEF ∆,连接BF 并延长至点,N M 为BN 上一点,且5CM CN ==,则MN 的长为_________.
【答案】6
【解析】
【分析】
作CG ⊥MN 于G ,证△ACE ≌△BCF ,求出∠CBF=∠CAE=30°,则可以得出12
4CG BC =
=,在Rt △CMG 中,由勾股定理求出MG ,即可得到MN 的长.
【详解】
解:如图示:作CG ⊥MN 于G ,
∵△ABC和△CEF是等边三角形,
∴AC=BC,CE=CF,∠ACB=∠ECF=60°,
∴∠ACB-∠BCE=∠ECF-∠BCE,
即∠ACE=∠BCF,
在△ACE与△BCF中
AC BC
ACE BCF
CE CF
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△ACE≌△BCF(SAS),
又∵AD是三角形△ABC的中线
∴∠CBF=∠CAE=30°,
∴
1
2
4
CG BC
==,
在Rt△CMG中,2222
543
MG CM CG
=-=-=,
∴MN=2MG=6,
故答案为:6.
【点睛】
本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF≌△BCF.
5.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.
【答案】40°
【解析】