江西师范大学附属中学数学全等三角形(篇)(Word版 含解析)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西师范大学附属中学数学全等三角形(篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)

1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=1

2

BC,则△ABC的顶角的度数为

_____.

【答案】30°或150°或90°

【解析】

试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.

解:①BC为腰,

∵AD⊥BC于点D,AD=1

2 BC,

∴∠ACD=30°,

如图1,AD在△ABC内部时,顶角∠C=30°,

如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,

②BC为底,如图3,

∵AD⊥BC于点D,AD=1

2 BC,

∴AD=BD=CD,

∴∠B=∠BAD,∠C=∠CAD,

∴∠BAD+∠CAD=1

2

×180°=90°,

∴顶角∠BAC=90°,

综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.

故答案为30°或150°或90°.

点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.

2.如图所示,ABC为等边三角形,P是ABC内任一点,PD AB,PE BC

∥,PF AC

∥,若ABC的周长为12cm,则PD PE PF

++=____cm.

【答案】4

【解析】

【分析】

先说明四边形HBDP是平行四边形,△AHE和△AHE是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.

【详解】

解:∵PD AB,PE BC

∴四边形HBDP是平行四边形

∴PD=HB

∵ABC为等边三角形,周长为12cm

∴∠B=∠A=60°,AB=4

∵PE BC

∴∠AHE=∠B=60°

∴∠AHE=∠A=60°

∴△AHE是等边三角形

∴HE=AH

∵∠HFP=∠A=60°

∴∠HFP=∠AHE=60°

∴△AHE是等边三角形,

∴FP=PH

∴PD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm

故答案为4cm.

【点睛】

本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.

3.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为

___________.

【答案】4

【解析】

【分析】

延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED,

∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案.

【详解】

延长AC至E,使CE=BM,连接DE.

∵BD=CD,且∠BDC=140°,

∴∠DBC=∠DCB=20°,

∵∠A=40°,AB=AC=2,

∴∠ABC=∠ACB=70°,

∴∠MBD=∠ABC+∠DBC=90°,

同理可得∠NCD=90°,

∴∠ECD=∠NCD=∠MBD=90°,

在△BDM 和△CDE 中,

BM CE MBD ECD BD CD ⎧⎪∠∠⎨⎪⎩==,

∴△BDM ≌△CDE (SAS ),

∴MD=ED ,∠MDB=∠EDC ,

∴∠MDE=∠BDC=140°,

∵∠MDN=70°,

∴∠EDN=70°=∠MDN ,

在△MDN 和△EDN 中,MD ED MDN EDN DN DN ⎧⎪∠∠⎨⎪⎩

==,=

∴△MDN ≌△EDN (SAS ),

∴MN=EN=CN+CE ,

∴△AMN 的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;

故答案为:4.

【点睛】

本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.

4.如图,已知等边ABC ∆的边长为8,E 是中线AD 上一点,以CE 为一边在CE 下方作等边CEF ∆,连接BF 并延长至点,N M 为BN 上一点,且5CM CN ==,则MN 的长为_________.

【答案】6

【解析】

【分析】

作CG ⊥MN 于G ,证△ACE ≌△BCF ,求出∠CBF=∠CAE=30°,则可以得出12

4CG BC =

=,在Rt △CMG 中,由勾股定理求出MG ,即可得到MN 的长.

【详解】

解:如图示:作CG ⊥MN 于G ,

∵△ABC和△CEF是等边三角形,

∴AC=BC,CE=CF,∠ACB=∠ECF=60°,

∴∠ACB-∠BCE=∠ECF-∠BCE,

即∠ACE=∠BCF,

在△ACE与△BCF中

AC BC

ACE BCF

CE CF

=

∠=∠

⎪=

∴△ACE≌△BCF(SAS),

又∵AD是三角形△ABC的中线

∴∠CBF=∠CAE=30°,

1

2

4

CG BC

==,

在Rt△CMG中,2222

543

MG CM CG

=-=-=,

∴MN=2MG=6,

故答案为:6.

【点睛】

本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF≌△BCF.

5.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.

【答案】40°

【解析】

相关文档
最新文档