1.5.1 单位斜变信号与单位阶跃信号
单位斜变信号与单位阶跃信号
O
t
宗量>0,函数值为1; 宗量<0,函数值为0。
(2)有延迟的单位阶跃信号
u(t
t0
)
0 1
t t
t t
0 0
,
t
0
0
由宗量 (t-t0)=0,可知 t=t0 时,即时 间为 t0 时,函数有断点、跳变点
u(t t0 ) 1
O
t0
t
5
3. 单位阶跃信号
(3) 用单位阶跃信号描述其他信号 门函数(Gate):也称矩形窗函数
第一章 信号与系统分析导论
1.5 阶跃信号与冲激信号
1
主要内容
奇异信号
l 单位斜变信号 l 单位阶跃信号 l 单位冲激信号 l 冲激偶信号
2
1. 奇异信号
函数本身有不连续点(跳变点)或其导数与积分 有不连续点的一类函数统称为奇异信号或奇异 函数。
单位斜变 信号
单位冲激 信号
单位阶跃 信号
冲激偶 信号
4
2. 单位斜变信号
(1) 定义
R(t )
R(t
)
0 t
t0 t0
1
O1
t
(2)有延迟的单位斜变信号
R(t
t0
)
t
0 t0
t t0 t t0
R(t t0 ) 1
O t0 t0 1 t
由宗量t t0 0可知起始点为t0
4
3. 单位阶跃信号
(1)定义
u(t )
u(t )
0
1
t0
1
t 0 0点无定义或1/2
G
t
u
t
2
u
t
2
信号与系统§1-2 常用信号介绍
x(t)(t) x(0)(t)
x(t)
t
(1) (1)
0
t0
t
x(t)(t t0 ) x(t0 )(t t0 )
(x(t0 )) (x(0))
0
t0
t
x(t)(t)dt x(0) (t)dt x(0)
x(t)(t t0)dt x(t0 ) (t t0 )dt x(t0 )
t
2
2
u(t ) u(t )
2
2
2、单位斜变信号:R(t)
R(t)
函数式:
R(t)
t 0
t 0 t 0
波形图:
1 01
t
tu(t)
平移: R(t t0 ) (t t0 )u(t t0 )
R(t t0 )
1
0 t0 1 t0
t
•与单位阶跃信号的关系:
⑵ 偶函数:
(t) (t)
(t t0 ) [(t t0 )] (t0 t)
•单位冲激信号的导数(微分):
单位冲激信号的各阶导数(微分)表示为:
(t) d(t) dt
(t) d(t) dt
(t)
d(t) dt
•由阶跃信号表示的典型信号:
⑴ 符号函数信号: sgn(t)
sgn(t
)
1 1
t 0 t0
u(t) u(t)
2u(t) 1
sgn(t)
1
0
t
1
⑵ 矩形脉冲信号: G (t)--门函数信号
控制工程基础实验指导书(答案) 2讲解
实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。
2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单位阶跃响应。
3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调整时间ts。
4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。
5、学会使用Matlab软件来仿真二阶系统,并观察结果。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。
图2-1 二阶系统原理框图图2-1 二阶系统的模拟电路由图2-2求得二阶系统的闭环传递函1222122112/() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为(1)(2), 对比式和式得n ωξ==12 T 0.2 , T 0.5 , n S S ωξ====若令则。
调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。
(1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:图2-3 0 < ξ < 1时的阶跃响应曲线(2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:如图2-4为二阶系统工作临界阻尼时的单位响应曲线。
(2) +2+=222nn nS S )S (G ωξωω1()1sin( 2-3n to d d u t t tgξωωωω--=+=式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线etn o n t t u ωω-+-=)1(1)(图2-4 ξ=1时的阶跃响应曲线(3)当K < 0.625时,ξ> 1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。
控制工程基础实验指导书(答案)-2
实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。
2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单位阶跃响应。
3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调整时间ts。
4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。
5、学会使用Matlab软件来仿真二阶系统,并观察结果。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。
图2-1 二阶系统原理框图图2-1 二阶系统的模拟电路由图2-2求得二阶系统的闭环传递函1222122112/() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为(1)(2), 对比式和式得12214n K TT T T K ωξ==12 T 0.2 , T 0.5 , 100.625n S S K K ωξ==若令则。
调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。
(1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:图2-3 0 < ξ < 1时的阶跃响应曲线(2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:如图2-4为二阶系统工作临界阻尼时的单位响应曲线。
(2) +2+=222nn n S S )S (G ωξωω2221 ()1sin(1 1 . 2-3n to d d u t t tgξωξωξωωξ---=-+-=-式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线etn o n t t u ωω-+-=)1(1)(图2-4 ξ=1时的阶跃响应曲线(3)当K < 0.625时,ξ> 1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。
单位阶跃信号表达式
单位阶跃信号表达式单位阶跃信号是信号与系统中的重要概念,也是一种特殊的信号形式。
在信号与系统分析中,单位阶跃信号通常用符号u(t)表示,它在t=0时跃变为1,在t<0时为0。
单位阶跃信号在实际生活中有着广泛的应用,例如在电路中的开关电路、控制系统中的反馈环节等都会涉及到单位阶跃信号的使用。
让我们来理解什么是单位阶跃信号。
单位阶跃信号是一种理想化的信号,它在t=0时突变为1,此前一直为0。
可以将单位阶跃信号看作是一个理想的开关,表示在某个时刻突然发生的事件。
单位阶跃信号在电路中有着重要的应用。
例如,在开关电路中,当开关关闭时,电路中的电流为0;当开关突然打开时,电路中的电流会突变为正值,这个过程可以用单位阶跃信号来描述。
在控制系统中,单位阶跃信号常用于测试系统的稳定性和响应特性。
通过给系统输入单位阶跃信号,可以观察系统的输出响应,并从中得到系统的特性参数。
单位阶跃信号还可以用于描述系统的冲击响应。
冲击响应是指系统对一个瞬时冲击信号的响应,可以用单位阶跃信号的导数来表示。
在信号与系统分析中,我们经常使用冲击响应函数来描述线性时不变系统的特性,而单位阶跃信号在其中起到了重要的作用。
除了在电路和控制系统中的应用,单位阶跃信号还可以用于信号处理领域。
在数字信号处理中,单位阶跃信号常用于测试系统的频率响应和滤波器的特性。
通过对单位阶跃信号进行傅里叶变换或者Z 变换,可以得到系统的频率响应函数,从而了解系统对不同频率信号的处理能力。
在实际应用中,单位阶跃信号常常与其他信号进行组合。
例如,可以将单位阶跃信号与正弦信号相乘,得到一种脉冲信号。
这种脉冲信号在通信系统中有着重要的应用,可以用于数据传输和调制解调等方面。
单位阶跃信号是信号与系统分析中的重要概念,具有广泛的应用。
它可以用于描述电路中的开关过程、控制系统的响应特性、系统的冲击响应和频率特性等。
在实际应用中,单位阶跃信号常常与其他信号进行组合,形成更加复杂的信号形式。
上海大学通信学院学科复习资料-信号
拉氏变换基本性质
一、线性(叠加)
若 ,则
二、微分
若 ,则 .[若积分从 开始,则 取 ].
三、积分
若 ,则
四、延时(时域平移)
五、 域平移
六、尺度变换
七、初值
八、终值
九、卷积
十、相乘
十一、对 微分
第五章傅利叶变换应用于通信系统
一、系统函数H(jw)
稳定系统,零状态响应
冲激响应与系统函数之间傅利叶变换关系
阶跃函数
3.7傅利叶变换的基本性质
(一)对称性
若
(二)线性叠加
若
则
(三)奇偶虚实性
(1)f(t)为实函数
(2)f(t)为虚函数
(四)、尺度变换特性
若 ,则 (a为非零实常数)
(五)、时移特性
若 ,则
(六)频移特性
若 ,则
(七)、微分特性
若 ,则 ,
频域微分特性 ,
(八)、积分特性
若 ,则
3.8卷积特性(卷积定理)
一个系统输出只取决于该时刻输入,该系统称为无记忆系统(即时系统)。
反之则为记忆系统)(动态系统)。
例:电容器: .
iii、集总参数系统与分布参数系统;
iv、线性系统与非线性系统。
令 是一个连续时间系统,对 响应, 是对应于 的输出,则1、 是 的响应;(叠加性)
2、 是 响应;( 为任意常数)(齐次性,均匀性,比例性)
(一)、时域卷积定理
若 , 则
(二)、频域卷积定理
若 , 则
3.9周期信号傅利叶变换
( 为单脉冲傅利叶变换)
第四章拉普拉斯变换、 域分析
单边拉氏变换
乘以衰减因子 后要满足绝对可积条件, 取值范围称为收敛域。
单位阶跃响应单位斜坡响应
r(t)
A
0
矩形 脉冲
令ε→0,即得脉冲信号的数学表达式为
t
,
r ( t )dt A
A=1时 单位脉冲函数,记作δ(t)
8
⑤
正弦信号
A sin( t ), r( t ) 0 , t 0 t0
A为振幅,ω 为角频率,φ为初始相角。
s sin cos R( s ) s2 2
其中 s1 ,2 n n 2 1
特点:有两个负实数极点,y (t)单调收敛 s1 , 2 收敛的快速性
1 时,y( t ) 1 e
n t
1 时,y( t ) 1 e t ( 1 n t ),响应曲线?
n
第2式对 1 也成立,对应的y( t ) ?
系统
13
3.3
控制系统的暂态响应特性
单位阶跃响应与性能指标 一阶系统的暂态响应特性 二阶规范型系统的暂态响应特性 零点对二阶系统暂态响应的影响 高阶系统的暂态响应
14
3.3.1 单位阶跃响应与性能指标
性能指标:优化类, 非优化类
如 e ( t )dt ,
2 0
t1
0
∴ K↑ u↑
u图
K与稳态误差 ess 的关系:
e图
10 K lim y( t ) K 0 , 其期望值 = 5 t 1 2K 10 K 5 e ss 5 即 K↑ ess↓ 1 2K 1 2K
24
抗扰性分析
10 1 , 设 D( s ) , 其余同前,即P ( s ) 2s 1 s F ( s ) 0.2 , C ( s ) K
信号与系统(郑君里)ppt
t
f(t)
t/2
f(t/2)
0
1
0
1
T
2
T
2
时间尺度压缩:t t 2 ,波形扩展
求新坐标
t
f(t/2)
0
1
2T
2
f(t)f(2t)
f t
2 1
O
Tt
宗量相同,函数值相同
t
f(t)
2t
f(2t)
0
1
0
1
T
2
T
2
求新坐标
t
f(2t)
0
1
T/2
2
t2t,时间尺度增加,波形压缩。
比较
f t
2 1
O
Tt
•三个波形相似,都是t 的一次 函数。 •但由于自变量t 的系数不同, 则达到同样函数值2的时间不同。 •时间变量乘以一个系数等于改 变观察时间的标度。
a 1 压缩,保持信号的时间缩短 f (t) f (at)0 a 1 扩展,保持信号的时间增长
4.一般情况
f t f at b f at b a 设a 0
f (t) K sin(t )
f
t
T
K
2π
O
2π
衰减正弦信号:
K et sint
f (t) 0
振幅:K 周期:T
2π
1
f
频率:f
角频率: 2 π f t 初相:
t0 0
t0
欧拉(Euler)公式
sin t 1 ejt ejt 2j
cos t 1 ejt ejt 2
t
间为,t0时函数有断点,跳变点
宗量>0 函数值为1 宗量<0 函数值为0
信号与系统
第一章一、信号的定义与分类 1.定义信号是带有信息(如语言、音乐、图像、数据等)的随时间(和空间)变化的物理量或物理现象,其随时间t 变化的图像称为信号的波形。
2.分类(1)连续信号和离散信号 (2)周期信号和非周期信号 (3)实信号和复信号(4)能量信号和功率信号 3.阶跃函数和冲击函数本身有不连续点或其导数与积分有不连续点的函数称为奇异函数或奇异信号。
(1)单位斜变信号 ⎩⎨⎧>=<=0,0,0)(t t t t f(2)单位阶跃信号⎪⎪⎩⎪⎪⎨⎧>=<=0,10,210,0)(t t t t ε在跳变点t=0处,函数值未定义,或在t=0处规定函数值2/1)(=t ε(3)单位冲激信号⎪⎩⎪⎨⎧≠=⎩⎨⎧=⎰∞∞-0,0)(1)(t t dt t δδ(4)如果系统的参数都是常数,它们不随时间变化,则称该系统为时不变(或非时变)系统或常参量系统,否则称为时变系统。
(5)系统的稳定性是指,对有界的激励)(⋅f ,系统的零状态相应)(⋅zs y 也有界的,这常称为有界输入有界输出稳定,简称稳定。
二、主要公式(1)正弦信号 )sin()(θ+=wt K t f (2)复指数信号 jw s e K t f st +==σ,)( (3)抽样函数 t t t Sa /sin )(=(4)单斜信号 ⎩⎨⎧≥<=0,0,0)(t t t t f(5)单位阶跃信号 ⎩⎨⎧><=0,10,0)(t t t ε(6)门函数 ⎪⎩⎪⎨⎧>≤=2||,02||,1)(τττt t t g(7)⎰∞∞-=πdt t Sa )((8)符号函数⎩⎨⎧><-=0,10,1sgn t t t三、系统的定义、分类及特性1.系统的定义在电子与通信领域,系统通常是指由若干元件或大量相互联系的部件组成并具有特定功能的整体。
2.系统的分类从不同角度,可以将系统进行分类,如连续时间系统与离散时间系统,即时系统和动态系统,无源系统和有源系统,集中参数系统和分布参数系统,线性系统与非线性系统,时变系统与时不变系统等。
信号与系统第一章第二节
例子
0 (当t 2 ) 1 vc (t ) (t ) (当 t ) 2 2 2 1 (当t ) 2 电流ic(t)为
:
从物理方面理解函数的意义。电路图如下: 电压源vc(t)接向电容元件C,假定vc(t)是斜变信号。
vc (t )
ic (t )
c
vc (t )
ic (t )
dvc (t ) ic (t ) c dt c [u (t ) u (t )] 2 2
1
1 2
c
2
0 2
t
0 2
t 0 2
t
如果0的极限情况,则vc(t)成为阶跃信号,它的微分— —电流ic(t)是冲激函数其表达式为: vc (t ) u (t ) v (t )
信号与系统
孔艳岩
495239861
1.4 阶跃信号和冲激信号 1.单位斜变信号
斜变信号也称斜升信号。 它是从某一时刻开始随时间正比例增长的信号。 如果增长的变化率是1,就称为单位斜变信号。
(1)单位斜变信号
f (t )
如果将起始点移至t0,则可写成
0 t 0 f (t ) t t 0
1
0
1
t
与阶跃函数类似,对于符号函数在跳变点也可不予定义,或 规定sgn(0)=0. 显然,阶跃信号来表示符号函数
sgn( t ) 2u (t ) 1
2、阶跃函数的性质:
(1)可以方便地表示某些信号
f(t) = 2u(t)- 3u(t-1) +u(t-2)
(2)用阶跃函数表示信号的作用区间
郑君里《信号与系统》(第3版)【教材精讲+考研真题解析】讲义(1-6章)【圣才出品】
圣才电子书 十万种考研考证电子书、题库视频学习平台
f t f (t nT ) n 0 , 1, 2 ,
b.非周期信号:在时间上不具有周而复始的特性。 ③连续信号与离散信号 a.连续信号:时间轴为连续时间变量; b.离散信号:时间轴为离散时间变量。 ④模拟信号、抽样信号、数字信号 a.模拟信号:时间幅度均连续的信号; b.抽样信号:时间离散,幅度连续的信号; c.数字信号:时间幅度均离散的信号。 3.信号的几种典型示例 (1)指数信号: f (t) Keat , a R ; (2)正弦信号: f (t) K sin(t ) ; (3)复指数信号: f (t) Kest Ke( j)t ; (4)抽样信号: Sa(t) sin t ;
(2)积分
十万种考研考证电子书、题库视频学习平台
òt f t( )dt -¥
3.两信号相加或相乘
信号的相加、相乘与代数运算无异。
四、阶跃信号和冲激信号 奇异信号是指函数本身有不连续点(跳变点)或其导数与积分有不连续点的信号,包括 斜变、阶跃、冲激和冲激偶四种信号。 1.单位斜变信号
(2)反褶
f (t) f (t) ,把 f (t) 的波形以 t 0 为轴反褶过来。
(3)尺度变换
f (t) f (at) ( a 为正实系数),若 a 1 ,则 f (t) 的波形沿时间轴被压缩;反之,则
被扩展。
2.微分和积分
(1)微分
f ¢(t) = d f (t) dt
5 / 136
圣才电子书
t (5)钟形信号(高斯函数): f (t) Ee(t/ )2 。
4 / 136
圣才电子书 十万种考研考证电子书、题库视频学习平台
信号与系统概论第一章
2)冲激函数定义 (多种方式演变) ①单位冲激函数(狄拉克函数)
( ※ 0时刻取不定值,面积为1。为广义函数)
1.5 奇异信号及其基本特性(续)
◆ t=t0时刻的单位冲激函数:
②矩形脉冲定义的单位冲激函数
( ※ 面积为冲激强度,强度为1时为单位冲激)
1.5 奇异信号及其基本特性(续)
※ 对于冲激偶函数可继续二次求导。(如双边指数脉冲等)
冲激函数
冲激偶函数
强度无穷大
(单向面积:1/τ)
1.5 奇异信号及其基本特性(续)
2)冲激偶函数的性质 ①
推导:
0
性质
1.5 奇异信号及其基本特性(续)
②面积为零:
③冲激偶函数与普通函数乘积的性质: (证:两边取积分)
-f’(0)
0
-f’(0)
1.4 信号的基本运算及波形变换(续)
② 若以变量 at+b 代替 t,可得沿时间轴伸缩平移的 新信号 f(at+b)。 a>0时:信号沿时间轴伸缩、平移。
(a>1, a<1)
a<0时:信号沿时间轴伸缩、平移、反褶。(a>-1,a<-1) ◆特点:
所有运算都是自变量t的变换,且变换前后端点函数值不变。
③其他函数形式定义的单位冲激函数
1.5 奇异信号及其基本特性(续)
1.5 奇异信号及其基本特性(续)
3)冲激函数的性质 ①抽样性质(筛选特性)
1.5 奇异信号及其基本特性(续)
冲激函数与普通函数乘积的积分可将普通 函数在冲激出现时刻的函数值抽取出来!
1.5 奇异信号及其基本特性(续)
②偶函数性质: ③与阶跃函数的关系: ◆冲激函数的积分是阶跃函数: δ(t) = δ(-t)
信号与系统-基本典型信号
基本典型信号
l指数信号和正弦信号 l抽样信号和钟状信号 l奇异信号
–斜变信号 –单位阶跃信号和符号函数 –单位冲激和冲激偶信号
l正交信号
1
复指数信号和正弦信号
复指数信号
实指数信号 幅度和相位都是实数
一般复指数 指数增长正弦 指数衰减正弦 幅度和相位都是实数
周期复指数信号 纯虚数指数
取实部 正弦信号
2
复指数信号
l 连续时间复指数信号:
l C为复数 l a为复数
C = α + jβ
a = r + jω
3
实指数信号— C 和 a都是实数
l若
C = α + jβ 中的 β 为 0 , C实数
同时 l 若 a = r + jω 中的 ω 为 0 , a实数 则 为实指数函数
4
实指数信号—C和a都是实数
34
f2
f3
信号予处理
23
正负符号函数 定义 sgn(t)
1 sgn(t ) = − 1
可用阶跃表示
(t > 0) (t < 0)
1 0 -1
t
sgn( t ) = 2 u ( t ) − 1
24
单位冲激信号
l 连续时间单位冲激信号
持续时间无穷小,瞬间幅度无穷大,涵 盖面积恒为1的一种理想信号,记 δ ( t )
δ (τ ) d τ = u ( t )
d dt
u (t ) = δ (t )
∫
+∞ −∞
δ ( t − t 0 ) f ( t ) dt = f ( t 0 )δ ( t − t 0 ) dt = f ( t 0 )
阶跃信号与冲激信号
三.单位冲激信号
矩形脉冲的极限
(t
)
lim
0
1
u(t
2
)
u(t
2
)
三角形脉冲的极限
(t)
lim
0
1
(1
t
)u(t
)
u(t
)
双边指数脉冲的极限
(t)
lim
0
1
2
t
e
抽样函数的极限
(t)
lim
k
k
Sa(kt)
三.单位冲激信号
冲激信号的性质:
(1)冲激信号是偶函数 (t) (t)
δ(t
t0)dt
f
(t0 )
三.单位冲激信号
(3)尺度变换性质 (at) 1 (t)
a
(4)与阶跃信号的关系
t
δ(τ)dτ u(t)
d u(t) (t)
dt
函数不连续点处的求导:
f (t)
df (t)
dt
1
(1)
1
1 0 1 2
t
1 0 1
2t
(-2) (a) 1
三.单位冲激信号
0
t2
2 (t) sin(t) dt lim 2 sin(t) 2
t
t 0
t
三.单位冲激信号
例:化简函数 d 2 [sin(t )u(t)]
dt 2
4
解:
d2 dt 2
[sin(t
4
)u(t)]
d dt
[cos(t
4
)u(t)
sin(t
4
)
(t)]
d [cos(t )u t sin( ) (t)]
信号与系统 第四版 第一章 信号与系统
一阶微分方程组 -------状态方程
15
系统的分类(描述):
连续时间系统:微分方程 混合系统 离散时间系统:差分方程
即时系统(非记忆系统):代数方程 动态系统(记忆系统):微分方程或差分方程
微分方程 (t ) 集总参数系统 : 分布参数系统 : 偏微分方程 (t , x, y, z )
系统基本概念:系统模型;系统描述(分类)
系统线性(零输入、零状态响应)
系统时不变性、稳定性、因果性
系统(连续)的框图模型与微分方程模型
9
p23:
第一章作业
1.9 ; 1.10 (1) (3) (5)
1.2 (1) (5) (7) ; 1.29
?
1.32
-
4 sin d ( - 6 )d = 4sin d ( - 6 )d =
(1-2)
(1-1)与(1-2)是形式上完型可有多种不同的数学表现形式
高阶微分方程 --------------称为输入/输出方程 状态方程 ---------------适合于多输入多输出系统分析(一阶微分方程组)
例:
1.4 系统分析方法
+
u s (t )
Zk (S=s+ jw) (Z = rejq)
est
数学方法
系统模型
LT
H (S) 4
ZT
H (Z) 3
8
h (t)
h (k) H (jw) H (ejq ) <3 > (6+3)
3+2
第一章小结
信号分类:连续&离散(模拟、数字);能量、功率信号
典型连续信号(抽样信号)
信号与系统 第一章_绪论(青岛大学)小白发布
∫
∞
−∞ ∞
Sa (t )dt = π Sa 2 (t )dt = π
∫
−∞
另外一个类似的函数:
sin π t sinc( t ) = πt
§1.3 信号的运算
(一)对自变量进行的运算: 移位、反褶与尺度 对自变量进行的运算: 移位、 1. 移位: f (t ) → f (t ± t0 ) 移位:
t
t
t
sin (Ωt ) + sin (8 Ωt )
× sin ( Ωt ) sin (8 Ωt )
t
t
反相点
§1.4 阶跃信号与冲激信号 奇异信号: 奇异信号:
(一)单位斜变信号tu(t) (二)单位阶跃信号 u(t) (三)单位冲激信号δ (t) (四)冲激偶信号δ ' (t)
(一)单位斜变信号tu(t)
(3) cos(3n − )
当 当
2π
2π
π
ω0
为有理数时, 为周期序列; 为有理数时,sin(ω0n) 为周期序列; 为无理数时, 为非周期序列。 为无理数时,sin(ω0n) 为非周期序列。
2π 为无理数, 为无理数, 3
非周期序列
4
ω0
4.能量(有限)信号与功率(有限)信号 能量(有限)信号与功率(有限)
2.信号的传输、 2.信号的传输、交换和处理 信号的传输
信号传输(Transmission)
——古代烽火传送边疆警报 ——击鼓、信鸽、旗语等 击鼓、信鸽、 ——电信号传输(19世纪开始): 电信号传输( 世纪开始 世纪开始):
1837年莫尔斯发明了电报 年莫尔斯发明了电报 1876年贝尔发明了电话 年
信号与系统阶跃信号和冲激信号
( k ) t f t d t 1 f 0 k
② 平均面积
和连续函数的乘积 ④ f , t ( t ) f 0 ( t ) f ( 0 ) t
0 u ( t t ) 0 1
t
u( t t 0 )
1
O
1
t t 0 , t 0 0 t t 0
0
t0 u(t t0 )
t
由宗量 t O t t 0 可 t 知 t , 即 时 0 0 ,函数有断点,跳变点 间为 t0 时 宗量>0 函数值为1 宗量<0 函数值为0
无穷 t 0 ★ 幅度 0 t 0
物理意义:闪电, 瞬间放电
描述(公式或图形表达)
1 ( t ) lim p ( t ) lim u t u t 0 0 2 2
(t)
1 sgn( t) 1 t 0 t 0
O
2
2
sgn t
1
O
t
-1
1 sgn( t ) u ( t ) u ( t ) 2 u ( t ) 1 u ( t) [sgn( t) 1 ] 2
三.单位冲激δ(t)(难点)
概念引出 定义1 定义2 冲激函数的性质
§1.4 阶跃信号和冲激信号
集美大学信息工程学院 2010.4
本节介绍
信号(函数)本身有不连续点(跳变点)或其导 数与积分有不连续点的一类信号(函数)统称为 奇异信号或奇异函数。 主要内容: •单位斜变信号 •单位阶跃信号 •单位冲激信号 •冲激偶信号
§1-2 常用信号介绍
u(t )
c = 1F
uc(t)
uc(t)
1
t
1 R
t 1 −R e i(t ) = R 0
t >0 t <0
uc(t)
i(t)
1
t
t
i (t )
i(t)
(1)
c = 1F
当电阻R→0时 当电阻R→0时 R→0
u(t)
uc(t)
t
11
i (t )
uc (t ) = u(t )
uc(t)
δ(t − t0 ) = δ[−(t − t0 )] = δ(t0 − t )
•单位冲激信号的导数(微分): 单位冲激信号的导数(微分): 单位冲激信号的导数 单位冲激信号的各阶导数(微分)表示为: 单位冲激信号的各阶导数(微分)表示为:
dδ(t ) δ′(t ) = dt dδ′′(t ) δ′′′(t ) = = dt
x(t )
•单位冲激信号的性质: 单位冲激信号的性质: 单位冲激信号的性质 抽样性(筛选性): ⑴ 抽样性(筛选性): t=0与 处连续, 设x(t)在t=0与t0处连续,
(1) (1)
t0
t
x(t )δ(t ) = x(0)δ(t )
0
t
x(t )δ(t − t0 ) = x(t0 )δ(t − t0 )
(x(0))
∞
( x(t0 ))
0
−∞ ∞
∫ x(t )δ(t )dt = x(0) ∫ δ(t )dt = x(0)
−∞ ∞ 0 0 0 −∞
∞
t0
t
−∞
∫ x(t )δ(t − t )dt = x(t ) ∫ δ(t − t )dt = x(t )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)有延迟的单位阶跃信号
u(t
t0
)
0 1
t t
t0 , t t0 0
0
由宗量 (t-t0)=0,可知 t=t0 时,即时 间为 t0 时,函数有断点、跳变点
u(t t0) 1
O
t0
t
5
3. 单位阶跃信号
(3) 用单位阶跃信号描述其他信号 门函数(Gate):也称矩形窗函数
G
t
u
t
2
u
第一章 信号与系统分析导论
1.5 阶跃信号与冲激信号
1
主要内容
奇异信号
单位斜变信号 单位阶跃信号 单位冲激信号 冲激偶信号
2
1. 奇异信号
函数本身有不连续点(跳变点)或其导数与积分 有不连续点的一类函数统称为奇异信号或奇异 函数。
单位斜变 信号
单位冲激 信号
单位阶跃 信号
冲激偶 信号
4
2. 单位斜变信号
f (t) K
O
t
f
(t
)
K
t
ut
u
t
8
学好信号与系统 低通高通路路通
北京邮电大学信号与系统 智慧教学研究组
9
t
2
其它函数只要用门函数处理(乘以 门函数),就只剩下门内的部分。
6
3. 单位阶跃信号
(3) 用单位阶跃信号描述其他信号,
0 t 0
sgn(t) u(t ) u(t)
2u(t) 1
7
3. 单位阶跃信号
(3) 用单位阶跃信号描述其他信号
(1) 定义
R(t )
R(t)
0 t
t0 t0
1
O1
t
(2)有延迟的单位斜变信号
R(t
t0
)
t
0 t0
t t0 t t0
R(t t0) 1
O t0 t0 1 t
由宗量t t0 0可知起始点为t0
4
3. 单位阶跃信号
(1)定义
u(t )
u(t)
0
1
t0
1
0点无定义或1/2
t0
O
t
宗量>0,函数值为1; 宗量<0,函数值为0。