人教版统编教材高中数学必修1《3.3 幂函数》说课课件

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、教学内容的分析
2 学情分析
对数学学习有一定的畏难情绪
有自主探究、合作学习的意识 没有形成科学有效的学习方法
我校学生特点
几何画板应用熟练 敢于表达自己的想法
一、教学内容的分析
教材分析
学情分析 教学重点 难点分析 教学手段 与方式
一、教学内容的分析
3 教学重点、难点
重点
难点
画出五个具体幂函 数图象、探究幂函 数的性质.

教学效果
二、教学目标的确定
•了解幂函数的概念,结合 y 、x y x2
1
y 、x3 y、 x 2 五y个具x体1 幂函数图
象,了解它们的变化情况及性质,并掌握 研究函数的一般思想方法;
二、教学目标的确定
•通过观察生活实例,抽象概括出幂函数的 概念,提高学生归纳与概括的能力; •通过自主探究、合作交流归纳性质,提高 学生动手操作能力,发展有条理的思考及 表达能力 ;
明知 确识 方回 法顾
形实 成例 概引 念出
自观 主察 探归 究纳
建回 构顾 体反 系思
巩布 固置 提作 高业
三、教学过程的设计
回 顾 反 思 , 建 构 体 系
三、教学过程的设计
明知 确识 方回 法顾
形实 成例 概引 念出
自观 主察 探归 究纳
建回 构顾 体反 系思
巩布 固置 提作 高业
三、教学过程的设计
地位和作用
幂函数是学生系统学习了 函数、指数函数、对数函数 的概念、性质之后,研究的 又一基本初等函数。
一、教学内容的分析
1 教材分析
地位和作用
通过本节课的学习,学生将 建立幂函数这一函数模型,并 对研究函数的一般思想方法有 进一步的认识.
一、教学内容的分析
教材分析
学情分析 教学重点 难点分析 教学手段 与方式
-3
-2
-1
0
1
2
3
4
5
-0.5
-1
4.系数为1.
-1.5
-2
1.图象过(1,1)点; 2. 在第一象限都有图象; 3.图象在第一象限性质.
2
已能应用幂函数图象、性质解决简单问题;
3
数学思维能力,自主探究能力都有一定的提高.
一、幂函数定义: 二、幂函数图象 三、幂函数及性质
共同点: 1.幂的形式; 2.幂的底数是变量;
3 hx = x3 gx = x2
2.5
fx = x
2
1
1.5
qx = x2
1
0.5
rx = x-1
3.幂的指数是常数; -4
三、教学过程的设计




, 1.明确定义 抽象概括 明 回顾:研究指数函数、对数函数的过程与方法 确 2.绘制图象 描点法作图
方 法
3.探究性质
数形结合
4.应用提升 应用指数函数、对数函数定义及性质
三、教学过程的设计
明知 确识 方回 法顾
形实 成例 概引 念出
自观 主察 探归 究纳
建回 构顾 体反 系思
三、教学过程的设计
1
2
3



























三、教学过程的设计
1
问题3:上述五个幂函数的图象是什么 样的?,他们的性质又如何呢?
自 主
1
解析式 y x y x 2 y x 3 y x 2 y x 1

定义域

图象


值域

定点

奇偶性

单调性
三、教学过程的设计

照,看是否一致.


升 培养学生严谨的数学思维习惯
三、教学过程的设计
应 用 练 习 ,
查 例学2生.归根纳据由幂幂函函数数性性质质绘作制出图函象数的y一般x步的2骤图象
漏 补 缺 设计意图:让学生体会既可以通过图象归纳
性质,又可以结合性质画图象,并让学生明 白掌握函数性质越多,作出的图象越准.
三、教学过程的设计
(3) y
x31
概 念
(4)
y
x2
(5) y x1
问题2:你能观察出 这五个解析式有何共 同特征吗?
抽 象 概 括
幂函数的定义
三、教学过程的设计
共 同 举 例 , 辨 析 概 念
三、教学过程的设计
明知 确识 方回 法顾
形实 成例 概引 念出
自观 主察 探归 究纳
建回 构顾 体反 系思
巩布 固置 提作 高业
升 (3)α<0时,在(0,+∞)是减函数,并以x轴、
y轴作为渐近线.
三、教学过程的设计 3 深 质疑:通过五个具体幂函数归纳的

探 性质具有一般性吗?是不是所有幂

, 函数图象都具有这样的规律呢?
归 纳 提 升
三、教学过程的设计 3


学生自主验证:利用几何画板绘
探 究 ,
验证 制电结出脑论一 动 :些 画 由不 演 五同 示 个的 : 特幂 殊演函 幂示数函幂图数函象猜数,想的观出指的 结论 察数一图α般的象 幂改读 函变出 数对性 的幂质 图函与 象数归 性图纳质象的是的结正影论确响对的..
1
hx = x2
0.5
1
1.5
2
2.5
3
3.5
4
三、教学过程的设计
3 幂函数在第一象限的性质
(1)图象都过点(1,1)
深 入
(2)当α>0,图象都过点(0,0),在(0,+∞)是
探 增函数,
究 ,
①α>1时,图象下凸(立着增);
归 ② 0<α<1时,图象上凸(趴着增);
纳 提
③α=1,图象为第一象限角平分线.
7
hx = x3
6
5
4
3
2
1
gx = x2 fx = x
1
qx = x2
-8
-6
-4
-2
-1
-2
-3
-4
2
4
rx6 = x-18
10
一 教学内容的分析
二 教学目标的确定
三 教学过程的设计

教学效果
一、教学内容的分析
教材分析
学情分析 教学重点 难点分析 教学手段 与方式
一、教学内容的分析
1 教材分析
的单调性,能否得出一般幂函数图象在第 深 一象限的单调性呢? 入 探 究 , 归 纳 提 升
3
深 入 探 究 , 归 纳 提 升
三、教学过程的设计
2.6 2.4 2.2
2 1.8 1.6 1.4 1.2
1 0.8 0.6 0.4 0.2
-1.5
-1
-0.5
-0.2
-0.4
-0.6
fx = x2
gx = x
二、教学目标的确定
•运用探究函数的一般思想方法,获得从 特殊到一般再到特殊的思维方法;养成 科学严谨的学习习惯.
一 教学内容的分析
二 教学目标的确定
三 教学过程的设计

教学效果
三、教学过程的设计
明知 确识 方回 法顾
形实 成例 概引 念出
自观 主察 探归 究纳
建回 构顾 体反 系思
巩布 固置 提作 高业

层 作
作业:P110习题3-3A
1、2

P110习题3-3B 2

巩 固
习题:已知幂函数 y (m2 4m 4)x m2
提 高
在 (0,上)是单调递增函数,求
的m值.
一 教学内容的分析
二 教学目标的确定
三 教学过程的设计

教学效果
四、教学效果
教学效果
1
了解了幂函数的概念,归纳出了幂函数性质;
-0.5
-1
-1.5
-2
三、教学过程的设计
3
问题6:五个幂函数图象在坐标系内的分
深 入
布情况是怎样的?哪些性质决定了幂函数 图象的分布?(提示:先看五个幂函数总
探 体分布,再看具体幂函数分布)

, 归 纳 提
问题7:通过五个幂函数图象在第一象限 的单调性,能否得出一般幂函数图象在第 一象限的单调性呢?
出 概 念
(4)一个正方形场地面积为x,这个正方形的边长 为y,其中x与y的Baidu Nhomakorabea数关系是_____;
(5)某人xs内骑车行进了1km,他骑车的平均速

问题为1:y,你其能中找x与出y上的函述数五关个系函是数__关___系_;式吗?
三、教学过程的设计
分 (1) y x
析 特 征
(2) y
x2
, 概 括
巩布 固置 提作 高业
三、教学过程的设计
(1)购买了每千克1元的蔬菜x千克,需要支付
创 y元,其中x与y的函数关系______;
设 情 境
(2)正方形的边长为x,正方形的面积为y,其中 x与y的函数关系是______;
, (3)立方体的边长为x,立方体的体积为y,其中
引 x与y的函数关系是______;
2




, 共
问题4:你如何判断函数奇偶性呢?
同 交 问题5:判断函数单调性时要注意什么?

三、教学过程的设计
3
深 入 探 究 , 归 纳 提 升
3 hx = x3 gx = x2
2.5
fx = x
2
1
1.5
qx = x2
1
(1,1)
0.5
rx = x-1
-4
-3
-2
-1
0
1 (02,0)3
4
5
由具体幂函数图 象归纳幂函数性质.
一、教学内容的分析
教材分析
学情分析 教学重点 难点分析 教学手段 与方式
一、教学内容的分析
4 以“双课堂”理念为依
教托 学 借助几何画板、多 手 媒体等教学手段 段 和 方 式
教师问题引导
学生自主探究与 合作交流相结合
一 教学内容的分析
二 教学目标的确定
三 教学过程的设计

三、教学过程的设计
3 问题6:五个幂函数图象在坐标系内的分
布情况是怎样的?哪些性质决定了幂函
深 入 探
数图象的分布?(提示:先看五个幂函 数总体分布,再看具体幂函数分布)


幂函数在第一象限都有图象,其余
归 象限图象情况可根据函数定义域和奇偶
纳 提
性得到;

三、教学过程的设计
3 问题7:通过五个幂函数图象在第一象限
相关文档
最新文档