初中数学分类讨论方法篇

合集下载

中考数学中的分类讨论技巧

中考数学中的分类讨论技巧

中考数学中的分类讨论技巧分类讨论在数学题中经常出现,也是满分率比较低的一种题,同学们在做题的时候经常会犯错误,小题经常忘记分类讨论,大题经常讨论不全,讨论全了结果还不一定对。

所以,这种题很容易不小心丢分。

下面一起来看看中考数学中的分类讨论技巧,希望对广大考生有帮助!跟老师合学生们交流之后发现,就算是学习成绩很好的同学在这种题上都会多多少少的出现问题,因此我们在考试当中一定要养成以下几个好习惯。

首先我们要有分类讨论的意识。

很多知识点是分类讨论的常客,对于这些知识点,同学们在考试时要保持高度的敏感,时刻紧绷分类讨论的弦,以免掉进出题老师的陷阱。

其次,分类讨论是要有一定原则,不要东一榔头西一棒子的的试,要具备一定的条理。

分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级有序进行。

以探寻直角坐标系中等腰直角三角形存在的问题来说,如果给定两个点A、B,需要在X轴上找第三个点C使得这个三角形ABC是等腰直角三角形,这个时候同学们可以线段来分类讨论:AB为斜边时,AC为斜边或时BC为斜边时点C的坐标。

这样讨论保证不会丢掉任何一种可能性,并且效率较高。

当然也可以按照角来讨论,但是注意不要两种分类方法穿插进行。

有些时候有可能会进行二次讨论,这个时候对于同学们的条理性要求就更大了,例如探讨含有30°角的直角三角形时,要先讨论那个角是直角,在讨论哪个角是30°或60°。

第三,在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的,最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。

同样有些时候也需要注意是否有些讨论结果重复,需要进行合并。

例如直角坐标系中求能够成等腰三角形的点坐标,如果按照一定的原则分类讨论后,有可能会出现同一个点上可以构成两个等腰三角形的情况,这种情况下就要进行合并。

初一数学分类讨论题

初一数学分类讨论题

初一数学分类讨论题(原创版)目录1.初一数学分类讨论题的概述2.分类讨论题的解题技巧3.举分类讨论题的实例进行解析4.如何提高初一数学分类讨论题的解题能力正文一、初一数学分类讨论题的概述初一数学分类讨论题是一种要求学生根据题目所给条件进行分类讨论的题型,它能够有效检验学生对知识点的掌握程度以及逻辑思维能力。

分类讨论题在初一数学中占有较大比重,掌握这类题目的解题方法对于提高初一数学成绩具有重要意义。

二、分类讨论题的解题技巧1.仔细审题,明确题目要求在解答分类讨论题时,首先要仔细阅读题目,明确题目所求,将题目中的已知条件进行梳理,为分类讨论做好准备。

2.合理分类,避免重复和遗漏分类讨论的关键在于将题目中的条件进行合理分类。

分类时,要遵循不重复、不遗漏的原则,确保每种情况都得到了讨论。

3.逐步推导,注意逻辑严谨在分类讨论过程中,需要根据已知条件逐步推导出结论。

在推导过程中,要注意保持逻辑严谨,确保每一步都符合数学原理。

三、举分类讨论题的实例进行解析例题:一个正方形的对角线长是 10√2 厘米,求这个正方形的面积。

解:首先,根据正方形的性质,知道正方形的对角线长度等于边长的√2 倍。

因此,这个正方形的边长为 10 厘米。

然后,根据正方形的面积公式,计算出正方形的面积为 100 平方厘米。

所以,这个正方形的面积是 100 平方厘米。

四、如何提高初一数学分类讨论题的解题能力1.加强基础知识的学习,提高解题速度和准确率分类讨论题的解答离不开对基础知识的掌握,只有熟练掌握基础知识,才能在解题过程中迅速找到解题思路。

2.多做练习,总结解题经验通过不断地做题,可以积累丰富的解题经验,提高分类讨论题的解题能力。

在解题过程中,要注重总结经验,形成自己的解题方法。

3.学会灵活运用解题技巧在解答分类讨论题时,要善于运用解题技巧,如合理分类、逻辑推导等,以提高解题效率。

人教版七年级数学(上)常见的分类讨论

人教版七年级数学(上)常见的分类讨论

2014-03教学研究《义务教育数学课程标准》明确提出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。

把数学思想、方法作为基础知识的重要组成部分,在《义务教育数学课程标准》中明确提出来,这不仅是课标体现义务教育性质的重要表现,也是对学生实施创新教育、培训创新思维的重要保证。

由于初一学生刚升入初中,受小学数学思维定式的影响,往往对分类讨论的问题容易出错,得出的答案不全,这就需要我们教师逐步渗透分类讨论思想。

所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结果,最后综合各类结果得到整个问题的解答。

实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。

分类讨论思想,贯穿于整个中学数学的全部内容中。

应用分类讨论,往往能使复杂的问题简单化。

分类的过程,可培养学生思考的周密性和条理性,而分类讨论,又促进学生研究问题、探索规律的能力。

分类讨论一般应遵循同一性原则、相称性原则、互斥性原则、层次性原则。

下面就七年级数学上册中引起分类讨论的一些常见情况作一归纳。

一、在定义中渗透分类思想有些数学概念是分类定义的,例如,对有理数进行分类。

将有理数按性质分为正有理数、零、负有理数,将有理数按定义分为整数、分数,让学生辨别不同分类的依据,初步体会分类要不重复,不遗漏,标准不同则分类不同的基本原则,所以应用这些概念解题时,就需进行分类讨论。

再如,“-a一定是负数吗?”启发学生分a>0,a=0,a<0三种情况考虑。

在学习绝对值的定义时,要有意识地启发学生从有理数分类进行认知的迁移,帮助学生概括a>0,a=0,a<0时应如何表示,并要求学生能做一些简单的化简题。

化简式子|4x-4|,就要考虑x>14、x=14、x<14三种情况来讨论。

初中数学思想方法之分类讨论

初中数学思想方法之分类讨论

初中数学思想方法之分类讨论数学是一门既抽象又具体的学科,它需要学生具备一定的思维方法和思想能力。

在初中数学中,分类讨论是一种常用的思想方法,它可以帮助学生分析问题、归纳规律并解决问题。

本文将详细介绍初中数学中分类讨论的基本思想和具体步骤,并通过例题来说明如何运用这种方法。

一、分类讨论的基本思想分类讨论是指将问题进行细化,将其分解成几个易于分析和解决的小问题,并分别进行讨论和解决。

通过这种方法可以更好地理解问题的本质,找到解题的关键点,并最终得到问题的解决办法。

分类讨论的基本思想包括以下几点:1.具体问题具体分析。

将问题进行细化后,每个小问题都有其独特的特点和解决思路,需要根据具体情况展开分析。

2.归纳总结。

在分析过程中,要总结出各个小问题之间的共同点和规律,以便更好地理解问题,并找到解决办法。

3.统一思考。

将各个小问题的解决办法进行归纳和整合,形成对大问题的解决思路。

二、分类讨论的具体步骤分类讨论的具体步骤可以简单概括为以下几点:1.理解问题。

仔细阅读题目,了解问题的背景和要求,确定需要解决的具体问题。

2.分析问题。

将大问题分解成几个小问题,每个小问题都有明确的目标和限制条件。

在分析过程中,可以通过画图、列举数据等方式进行辅助分析。

3.解决小问题。

按照特定的思路和方法,分别解决各个小问题。

在解决过程中,可以运用已经学过的数学知识、规律和公式。

4.总结归纳。

在解决小问题的过程中,要总结各个小问题之间的共同点和规律,归纳出解决大问题的关键思路和方法。

5.整合答案。

将各个小问题的解答整合成对大问题的解答。

在整合过程中,要仔细检查各个小问题的解答是否符合大问题的要求,并进行必要的修正和调整。

三、分类讨论的具体例题下面以一些常见的初中数学题目为例,说明如何运用分类讨论的方法解决问题。

例题1:现有一些白球和红球,共18个。

白球的个数不超过红球的个数。

问,最少有多少个红球?解题思路:根据题目要求和条件,可以将问题进行分类讨论。

初中数学中的分类讨论解题法

初中数学中的分类讨论解题法

初中数学中的分类讨论解题法数学思想是人们在长期的实践经验和社会生活中得出的有关现实世界的数量关系、空间结构等科学意识的反应,是人类思维活动的结晶。

数学思想在漫长的历史演变中逐渐发展,帮助人类掌握学习知识的技巧,提供最优质的解决方案,常见的数学思想包括数形结合、分类讨论、换元思想、函数与方程、等效思想等等。

本文就以分类讨论思想为例,探讨其在初中数学中的具体运用。

一、分类讨论思想的意义分类讨论思想其最主要本质就是“化整为零,积零为整”的解题策略。

当我们在解决数学问题时,当所面对的问题不能进行整体统一的研究时,根据数学的本质属性需进行分类讨论和研究,这种逻辑思维解决方法就是“分类讨论思想”。

而分类讨论思想在中学数学中,历年是考试的侧重点,主要是考查学生对于知识面的分析能力和解题思路技巧,分类讨论思想不仅有利于提高学生在学习数学中的广泛兴趣,还有利于培养思维能力的条理性和缜密性。

学生可以通过分类讨论思想掌握数学当中分类方法、一题多解和对知识结构认知的能力。

在教学中,教师可以利用小组合作充分发挥分类讨论的作用,为学生营造一种合作交流积极应变的氛围。

因此,分类讨论思想可以有效地培养学生的思维灵活性和解题思路的能力,在初中数学解题应用中具有非常重要的作用和意义。

二、分类讨论思想具体解题步骤探讨在学生能够基本掌握分类讨论思想的情况下,教师要引导学生运用正确的解题思路,大体可以从以下几个方面去引导,一是要认真仔细阅读题目,明白题目要考查的知识点;二是要明确分类讨论的对象,列举所有可能的结果,不可以遗漏,不可以重复;三是要讨论出所有列举问题的结论;四是要认真总结归纳,对于做过的题目要能够总结出规律和解题思路。

对于数学问题的研究要有效针对各种属性的对象,研究的结果也自然会因为研究对象的不同而产生差异,因此对于不同的研究对象就需要采用不同的研究思想,又或者说在研究过程中出现了不同的状况,就需要采用不同的分类研究的思想。

中考数学专题分类讨论的思想方法

中考数学专题分类讨论的思想方法
专题
分类讨论的思想方法
在数学中,当被研究的问题存在多种情况,不能一概 而论时,就需要按照可能出现的各种情况分类讨论,从而 得出各种情况下的结论,这种处理问题的思维方法叫分类 讨论思想。 它不仅是一种重要的数学思想,同时也是一种重要的 解题策略.在研究问题时,要认真审题,思考全面,根据 其数量差异或位置差异进行分类,注意分类应不重不漏, 从而得到完美答案.
3 .如图2 - 6 ,点 A 、 B、P 在⊙ O上,且∠ APB= 50 °, 若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有 符合条件的点M有 ( D )
A.1个
B.2个 C.3个 D.4个
4.关于x的一元一次不等式(2m+3)x>2m+3的解是___
x>1或x<1 .
5.若直角三角形ABC的三边长分别为4,2,m,则m的 取值为 - 5或1 . ______
思路分析:只知道两弦平行,却没有给画出图形,AB、
CD这两条弦在圆中的位置有两种情况,可能在圆心同侧或
异侧,如图2-3所示,再根据垂径定理向弦AB、CD作垂线 构造出直角三角形求出OM、ON的距离,由MN=OM+ON 或MN=ON-OM可得MN有两个结果.
答案:D
在一些综合性计算、证明题中,由于条件可能发生一
分子分母的正负性,以此建立不等式或不等式组求解.
4-x 【例 5】已知分式 的值为负数,则 x 的取值范围 2x-3 是________.
思路分析:欲求 x 的取值范围,需要建立关于 x 的不等 式(组),由“两数相除,异号得负”知 4-x 与 2x-3 异号,
4-x>0 因此得 2x-3<0 4-x<0 ; 2x-3>0
在直角三角形中,如果没有指明哪条边是直角边、斜 边,这需要根据实际情况讨论;当然,在不知哪个角是直 角时,有关角的问题也需要先讨论后求解.在等腰三角形

初中数学 分类讨论

初中数学 分类讨论

在初中数学中,分类讨论是一种重要的解题方法。

它主要应用于一些涉及多种可能性的问题,需要将问题拆分成几个子问题进行单独讨论。

下面我将以具体的数学问题为例,说明如何进行分类讨论。

题目:已知一次函数y = kx + b (k ≠ 0) 经过点(1, 2) 和(0, 1),求该函数的解析式。

解析:题目给出了两个点(1, 2) 和(0, 1),这两个点都在函数图像上。

因此,我们可以根据这两个点的坐标来求解k 和b 的值。

根据题意,我们可以列出以下方程组:
$\begin{cases}k + b = 2 \quad (1) \\ b = 1 \quad (2)\end{cases}$
由方程(2) 可得$b = 1$。

将$b = 1$ 代入方程(1),解得$k = 1$。

所以,该一次函数的解析式为$y = x + 1$。

在这个问题中,我们没有使用分类讨论的方法,因为题目只涉及一个函数和一个方程组,没有多种可能性需要单独讨论。

但在一些复
杂的问题中,分类讨论可能会非常有用。

例如,在求解一元二次方程时,可能需要考虑判别式$\Delta$ 的正负情况;在求解绝对值方程时,可能需要考虑绝对值内表达式的正负情况等等。

在这些情况下,我们可以通过分类讨论来简化问题,提高解题效率。

例析初一数学中的分类讨论问题

例析初一数学中的分类讨论问题

例析初一数学中的分类讨论问题
分类讨论作为一种教学方式,是初中阶段数学教学中最重要的教学形式之一,其教学内容涉及几何、基本运算、有理数与无理数等。

分类讨论能让学生们深入地探究数学知识,例如,以几何中关于根据两个点之间的距离来推断出一条直线上的其他点,它其实是在分类讨论中被提出并进行更深入分析来加深学习的一个重点问题。

在初一数学中,分类讨论是学生将学习到的数学知识联系起来、思考回答问题的一种非常重要的教学方式。

通过分类讨论的方式,学生们可以将之前学习过的内容,按照类别联系起来,例如:初一数学中,物体绕着图形旋转时发生的变化情况,这种现象其实是多类问题的总称,包括椭圆、圆形、抛物线等,分类讨论是通过将其进行分类分析,再根据每类的特点来提出正确的结论的一个重点。

另外,也可以将初一数学学习的数与比联系起来,即“分式”,这一概念也是分类讨论的重点,学生们可以将概念分为一元分式、二元分式以及分式运算等几大类,根据不同类别的情况,来推断出正确的结果。

因此,分类讨论是学习初一数学最重要的教学设计之一,它涉及到从数学概念到数学应用的多个方面,有利于学生提升数学素养以及科学思维能力。

同时,分类讨论还可以激发学生们学习数学的兴趣,增强学生们对数学学科的钟爱之情,从而拥有一个深刻而系统的数学知识体系。

初中数学思想方法篇——分类讨论

初中数学思想方法篇——分类讨论

新梦想教育中高考名校冲刺教育中心【老师寄语:每天进步一点点,做最好的自己】解题思想之分类讨论一、注解:分类讨论思想又称为逻辑划分,是中学数学最常用的数学思想方法之一,也是中考数学中经常出现的数学思想。

分类讨论就是依据一定的标准,对问题进行分类,求解,然后综合出问题的答案。

当被研究的问题包含多种可能情况,不能一概而论时,必须按照可能出现的情况进行分类,分别讨论,得出各种不同情况下的相应结论。

分类原则:分类的对象是明确的;标准是统一的,不遗漏、不重复、分层次;不越级讨论。

分类方法:明确讨论的对象,确定对象的全体,然后确立分类标准,正确进行分类;逐步进行讨论,获取阶段性结果;归纳总结,综合得出结论。

二、实例运用:1.在实数中的运用【例1】若1a =,4b =且a b <0,则a+b= 【例2】若2m-4与3m-1是同一个数的平方根,求m 。

2. 在代数式中的运用 【例3】若实数x 满足22110x x x x +++=,求1x x+的值。

【例4】分式22943x x x --+的值为0,则x= ( )A 3B 3或-3C -3D 03. 在方程(组)中的运用【例5】已知关于x 的方程ax 2+2x-1=0有实根,求a 的取值范围。

【例6】黄金周期间,某商场购物有如下优惠方案:(1)一次性购物在100元内(不含100元)时,不享受优惠;(2)100元到300元(不含300元)时,一律享受9折优惠;(3)300元以上时,享受8折优惠。

张伟在本商场分两次购物,分别付款80元和252元。

如果改为在该商场一次性购买,需要支付多少钱?4.在不等式中的运用【例7】国家规定个人发表文章,出版图书获得稿费的纳税计算办法是:(1)稿费不高于800元的,不纳税;(2)稿费高于800元,不高于4000元的,缴纳超过800那部分的14%;(3)稿费高于4000元的,应缴纳全部稿费的12%。

已知某作家获得一笔稿费,并交纳个人所得税a元(a>0),求这笔稿费有多少元。

初一数学分类讨论题

初一数学分类讨论题

初一数学分类讨论题
(实用版)
目录
1.初一数学分类讨论题的概念和重要性
2.初一数学分类讨论题的解题技巧
3.初一数学分类讨论题的典型例题分析
正文
初一数学分类讨论题的概念和重要性:
初一数学分类讨论题是指在解决数学问题时,需要根据不同情况进行分类讨论的题目。

这种题目能够锻炼学生的逻辑思维能力和分类讨论的技巧,是初中数学中非常重要的一类题目。

分类讨论题在初一数学教材中占有很大的比重,也是各类考试中的常考点。

因此,掌握好分类讨论题的解题方法对于初一学生来说至关重要。

初一数学分类讨论题的解题技巧:
1.仔细阅读题目,明确题目要求,确定需要分类讨论的条件。

2.分类讨论时,要根据题目条件进行合理分类,避免分类过多或过少。

3.对于每个分类,要按照题目要求,分别进行讨论,避免遗漏。

4.在讨论过程中,要善于运用数学公式、定理和性质,进行严密的推导和论证。

5.在得出结论后,要对各个分类的结论进行整合,得出最终答案。

初一数学分类讨论题的典型例题分析:
例题:一个正方形的对角线长是 10√2 厘米,求这个正方形的面积。

分析:此题需要根据正方形对角线的长度进行分类讨论。

当对角线长度为 10√2 厘米时,正方形的面积为 (10√2)/2=50 平方厘米;当对角
线长度不为 10√2 厘米时,正方形的面积为 (a+b)/2,其中 a、b 分别为正方形的两条边长。

因此,需要分别讨论这两种情况,得出最终答案。

初中数学——分类讨论思想(初二)

初中数学——分类讨论思想(初二)

分类讨论分类讨论问题是创新性问题之一,此类题综合性强,难题较大,在历年中考试题中多以压轴题出现,对考生的能力要求较高,具有很强的选拔性。

综合中考的复习规律,分类讨论的知识点有三大类:1.代数类:代数有绝对值、方程及根的定义,函数的定义以及点(坐标未给定)所在象限等。

2.几何类:几何有各种图形的位置关系,未明确对应关系的全等或相似的可能对应情况等.3.综合类:代数与几何类分类情况的综合运用.在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级有序进行.(4)以性质、公式、定理的使用条件为标准分类的题型.题型1。

考查数学概念及定义的分类规律提示:熟练掌握数学中的概念及定义,其中以绝对值、方程及根的定义,函数的定义尤为重要,必须明确讨论对象及原因,进而确定其存在的条件和标准。

例题1.方程560x x x ⋅-+=的最大根与最小根的积为______.例题2.解关于x 的方程:ax — 1= x例题3.试解关于x 的方程111=--x )x (例题4.=+=-+-a 349332无解,求x x ax x例题5.已知四个数:10、10、x 、8,它们的中位数和平均数相等,则x=___________题型2:考查字母的取值情况或范围的分类。

规律提示:此类问题通常在函数中体现颇多,考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。

例题1.已知2225,7x y x y +=+=,则x y -的值等于_______.例题2.如图所示,在平行四边形ABCD 中, 4AD cm =,∠A =60°,BD ⊥AD,一动点P 从A 出发,以每秒1cm的速度沿A B C →→的路线匀速运动,过点P 作直线PM,使PM ⊥AD.(1)当点P 运动2秒时,设直线PM 与AD 相交于点E ,求△APE 的面积;(2)当点P 运动2秒时,另一动点Q 也从A 出发沿A B C →→的路线运动,且在AB 上以每秒1cm 的速度匀速运动,在BC 上以每秒2cm 的速度匀速运动.过Q 作直线QN ,使QN//PM 。

初中数学解题方法分类讨论PPT精选文档

初中数学解题方法分类讨论PPT精选文档
13
例题3
14
15
分类讨论贯穿在整个初中数学教材内容之中,为此我 们利用分类讨论解题时,需要认真审题,全面考虑,才能 获得完整的解答.
2
第一节 三角函数中的分类讨论
3
例题 1
4
例题 2
5
例题 3
6
第二节 几何中的分类讨论
7
例题1
8
例题 2
9
例题 3
10
第三节 方程与函数中的分类讨论
11
例题1
12
例题2
初中数学解题方法
第六章 ห้องสมุดไป่ตู้类讨论
1
数学中的许多问题由于题设交代笼统,需要进行讨论, 另外由于题意复杂,包含情况多,也要进行讨论.分类是 按照数学对象的相同点和差异点,将数学对象分为不同种 类的思想方法,其目的是复杂问题简单化.
分类时要注意分类标准要统一,且不重不漏;要掌握 分类原则、方法与技巧,做到“确定对象的全体,明确分 类标准”在具体的求解过程中,整体问题转化为部分问题 后,事实上增加了题设条件.

七年级数学分类讨论知识点

七年级数学分类讨论知识点

七年级数学分类讨论知识点在七年级数学中,分类讨论是一个非常重要的知识点。

它可以帮助学生更好地理解数学概念和方法,并能够应用到各种问题中。

本文将介绍分类讨论的概念、分类的方法、分类讨论在不同数学领域的应用。

一、概念分类讨论是将复杂的问题分成几个简单的情况来讨论,以便更好地解决问题。

例如,在解决一个数学问题时,我们可以将问题分解成几个小问题,逐个解决,然后将它们的答案组合在一起,得到最终的答案。

二、分类的方法分类的方法有很多,下面列举常用的几种分类方法:1.按照某个条件进行分类。

例如,在解决一个几何问题时,我们可以按照角度大小将问题分类,例如直角三角形、锐角三角形和钝角三角形。

2.按照具体数值进行分类。

例如,在解决一个代数问题时,我们可以将问题分成几个不同的情况,例如x=1,x=2,x=3等等,然后逐个解决。

3.按照问题的性质进行分类。

例如,在解决一个统计问题时,我们可以按照变量的种类将问题分类,例如定量变量和定性变量。

三、分类讨论在不同数学领域的应用1.初中数学在初中数学中,分类讨论是一个非常重要的方法。

例如,在解决一个代数问题时,我们可以将问题分成几个不同的情况,例如x=1,x=2,x=3等等,然后逐个解决。

这样的方法可以帮助学生更好地理解代数概念,提高解题能力。

2.高中数学在高中数学中,分类讨论也是非常重要的。

例如,在解决一个几何问题时,我们可以按照角度大小将问题分类,例如直角三角形、锐角三角形和钝角三角形。

这样的方法可以帮助学生更好地理解几何概念,提高解题能力。

3.大学数学在大学数学中,分类讨论也是一种非常重要的方法。

例如,在解决一个微积分问题时,我们可以按照函数的性质将问题分类,例如连续函数、可微函数和可导函数。

这样的方法可以帮助学生更好地理解微积分概念,提高解题能力。

总的来说,分类讨论是一个非常重要的数学方法,可以帮助学生更好地理解数学概念和方法,并能够应用到各种问题中。

学生们应该掌握这种方法,并在解题过程中加以运用。

中考数学常见六种分类讨论思想,你都掌握了吗?

中考数学常见六种分类讨论思想,你都掌握了吗?

中考数学常见六种分类讨论思想,你都掌握了吗?分类讨论思想是指当被研究的问题存在一些不确定的因素,无法用统一的方法或结论给出统一的表述时,按可能出现的所有情况来分别讨论,得出各种情况下相应的结论,分类讨论思想有利于学会完整地考虑问题,化整为零地解决问题。

分类讨论思想常见的六种类型:1、方程:若含有字母系数的方程有实数根时,要考虑二次项系数是否等于0,进行分类讨论。

2、等腰三角形:如果等腰三角形给出两条边求第三条边或给出一角求另外两角时,要考虑所给的边是腰还是底边,所给出的角是顶角还是底角分类解决。

典型例题1:解题反思:(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了平行四边形的性质和应用,以及待定系数法求函数解析式的方法,要熟练掌握.(3)此题还考查了直角三角形的性质和应用,以及勾股定理的应用,要熟练掌握.3、直角三角形:在直角三角形中给出两边的长度,确定第三边时,若没有指明直角边和斜边,要注意分情况进行讨论(分类讨论),然后利用勾股定理即可求解。

4、相似三角形:如果题目中出现两个三角形相似,需要讨论各边的对应关系;若出现位似,则考虑两个图形在位似中心的同旁或两旁两种情况讨论。

典型例题2:解题反思:本题主要考查了勾股定理、相似三角形的判定和性质、列函数解析式、求二次函数的最值,综合性强,能根据已知条件把所需线段用含t的代数式表示来,灵活用用三角形的性质和判定是解决问题的关键,要注意分类思想、方程思想的应用.5、一次函数:已知一次函数与坐标轴围成的三角形的面积,求k的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函数与一次函数交点个数,常分一、三象限或二、四象限两种情况讨论。

6、圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种情况讨论。

【附2套中考卷】中考数学中的分类讨论技巧

【附2套中考卷】中考数学中的分类讨论技巧
A.1个B.2个
C.3个D.4个
8.下列几何体是由4个正方体搭成的,其中主视图和俯视图相同的是( )
A. B. C. D.
9.若一次函数 ( 为常数且 )满足如表,则方程 的解是( )
A. B. C.生参加了训练,他们成绩的平均数 及其方差s2如表所示:
第三,在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的,最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。同样有些时候也需要注意是否有些讨论结果重复,需要进行合并。例如直角坐标系中求能够成等腰三角形的点坐标,如果按照一定的原则分类讨论后,有可能会出现同一个点上可以构成两个等腰三角形的情况,这种情况下就要进行合并。也就是说找到的三角形的个数和点的个数是不一样的。
6.如图,在平面直角坐标系中,点A(0,6),点B在x轴的负半轴上,将线段AB绕点A逆时针旋转90°至AB',点M是线段AB'的中点,若反比例函数 (k≠0)的图象恰好经过点B',M,则k=( )
A.4B.6C.9D.12
7.如图,抛物线y=ax2+bx+c经过点(–1,0),抛物线的对称轴为直线x=1,那么下列结论中:①b<0;②方程ax2+bx+c=0的解为–1和3;③2a+b=0;④m(ma+b)<a+b(常数m≠0),正确的有( )
A. B. C. D.
2.太阳的直径约为1 390 000千米,这个数用科学记数法表示为( )
A.0.139×107千米B.1.39×106千米
C.13.9×105千米D.139×104千米
3.如图,直线y= x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A2019的坐标为( )

初中数学中考数学中考复习分类讨论法(图文详解)

初中数学中考数学中考复习分类讨论法(图文详解)
(1)当t为何值时,△QAP为等腰直角三角形?
解:对于任何时刻t,AP=2t,DQ=t, QA=6-t,当QA=AP时, △QAP为等腰直 角三角形, 即6-t=2t, 解得t=2(秒) A P B D Q C
初中数学中考数学
三.与相似三角形有关的分类
9.在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A出发向B以 2cm秒的速度移动;点Q沿DA边从点D开始向A以1cm/秒的速度移动。如果P、 Q同时出发,用t秒表示移动的时间(0<x<6)那么:
C
B
O Q P
A
初中数学中考数学
3. 如图,直线AB经过圆O的圆心,与圆O交于A、B两点,点C在O上, 且∠AOC=300,点P是直线AB上的一个动点(与点O不重合),直线 PC与圆O相交于点Q,问点P在直线AB的什么位置时,QP=QO?这 样的点P有几个?并相应地求出∠OCP的度数。
C B O Q A
C
初中数学中考数学
10。已知二次函数y=2x2-2的图像与x轴交于A、B两点(点 A在点B的左边),与y轴交于点C,直线x=m(m> 1)与x轴 交于点D。 (1)求A、B、C三点的坐标; (2)在直线x=m(m > 1)上有一点P(点P在第一象限), 使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相 似,求点P的坐标。 y
B
初中数学中考数学
解:对于任何时刻t,AP=2t,DQ=t, QA=6-t,当QA=AP时,△QAP为等腰直 角三角形,即6-t=2t,解得t=2(秒) (2)在△QAC中,S= 1 QA· DC=1( 6-t)· 12=36-6t 2 2 在△APC中,S= 1 AP· BC=1·2t· 6=6t D 2 2 QAPC的面积S=(36-6t)+6t=36(cm2) Q 由计算结果发现:在P、Q两点移动的过程中, 四边形QAPC的面积始终保持不变。 P (3)根据题意,可分为两种情况来研究 QA AP 6 t 2t 在矩形ABCD中:①当 AB =BC 时,△QAP∽△ABC,则12 = 6 , 6 解得t= 5 =1.2秒。所以当t=1.2秒时,△QAP∽△ABC。 QA AP 6 t 2t ②当 = AB 时,△PAQ∽△ABC,则 6 = 12 , BC 解得t=3(秒)。所以当t=3秒时,△PAQ∽△ABC。 A B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P
有P(m, 2m-2);

O B C D

分类讨论思想解决问题的一般步骤:
1、先明确需讨论的对象; 2、选择分类的标准,合理分类;
统一标准,不重不漏 (统一标准,不重不漏)
3、逐类讨论; 4、归纳作出结论。
讲一象限),使得
以P、D、B为顶点的三角形与以B、 C、O为顶点的三角形相似,求点P 的坐标。
A C O B X

解(1)A(-1,0),B(1,0),C(0,-2)
PD (2) 当 △ PDB ∽ △ BOC时, BO = m 1 有P(m, 2 - 2 ) BD CO
当 △ PDB ∽ △ COB时,
90° P1 O P2 M
2、在下图三角形的边上找出一点,使得该点与
三角形的两顶点构成等腰三角形!
C
110° 20° 50°
A
B
C
(分类讨论)
1、对∠A进行讨论 A C
20° 20°
110°
20° 50°
B
A C
20° 20°
B 2、对∠B进行讨论 C
65°
3、对∠C进行讨论
C
110° 35° 50°
y
(-1,2)
(3,2)
(7,2)
o
(0,0) (1,-2)
(4,0)
x
3、如图,在 △ABC中,AB=12, AC=15,点 D在AB上,且AD=8,在 AC上取一点E,使得以A、 D、E为顶点的三角形与△ABC相似,求AE的长. A A D
B (1)
E
E
D
C B (2) C
△ADE∽△ABC 或 △ADE∽△ACB AD AE AD AE AB AC AC AB
注意
分类的原则是既不重复,也不遗漏!
一张矩形纸片有四个角,剪掉一个 角后,还剩几个角?
(1)
(2)
(3)
分类讨论是一种重要的数学思想,当研究对象的元素或其 关系不明确时,常需要对研究对象元素或各元素之间关系 的各种可能进行分类讨论。
1、如图,线段OD的一个端点O在直线OM上,∠DOM=30°,以OD为 一边画等腰三角形,并且使另一个顶点P在直线OM上,这样的等 D 腰三角形能画多少个? 首先要找到合适的分 类标准!
解:①如图(1),过D作DE∥BC交AC于E, 则∠ADE=∠B, ∠AED=∠C, ∴△ADE∽△ABC.
A

D B (1) E C
AD AE AB AC
,
A E D B (2)
又∵AB=12,AC=15,AD=8, ∴AE=10. ②如图(2),作∠ADE=∠C交AC于 E, 又∵∠A=∠A, ∴△ADE ∽△ACB.
讲师:李#
数学思想方法的三个层次:
数学一般方法
配方法、换元法、 待定系数法、判别 式法、割补法等
分析法、综合法、 归纳法、反证法等 函数和方程思想、分 类讨论思想、数形结 合思想、化归思想等
数学思想 和方法
逻辑学中的方 法(或思维方法)
数学思想方法
分类讨论思想(方法)介绍
在解答某些数学问题时,因为存在一些不确定的因素,解答无 法用统一的方法或结论不能给出统一的表述,对这类问题依情况加以 分类,并逐类求解,然后综合求解,这种解题的方法叫分类讨论法. 分类讨论涉及初中数学的所有知识点,其关键是弄清引起分类 的原因,明确分类讨论的对象和标准,分情况加以讨论求解,再将不 同结论综合归纳,得出正确答案。
4、已知一次函数y=kx+b,当-3≤x≤1时,对应y的值 为1≤y≤9.则k· b的值( ) (A)14 (B)-6 (C) -6或21 (D) -6或14
1 3k b k 2 解:k>0时, k b 14 9 k b b 7 1 k b k 2 k<0时, k b 6 9 3k b b 3 选D
1、A为数轴上表示-1的点,将点A沿数轴平移3个单位到B, 则点B所表示的实数为( D ) A、2 B、2 C、-4 D、2或-4
2、在平面直角坐标系中,三点坐标分别是(0,0)(4,0) (3,2),以三点为顶点画平行四边形,则第四个顶点不可能 在( C ) A 、第一象限 C 、第三象限 B 、第二象限 D 、第四象限

C
AD AE AC AB
,
又∵AB=12,AC=15,AD=8,∴AE=6.4. 由①、②得: AE长为10或6.4.
已知二次函数y=2x2-2的图像与x轴交于A、B两点(点 A在点B的左边),与y轴交于点C,直线x=m(m> 1) y 与x轴交于点D。 (1)求A、B、C三点的坐标; (2)在直线x=m(m
A C
80° 20° 80°
B
65°
35°
A
50°
C
BA
B
50°
A
BA
B
3、已知 x 3, y 2, 且x y 0,则x y ?
解: x 3 x 3 y 2 y 2 xy 0 x 3 x 3 或 y 2 y 2 x y 1或x y 1
30°

P2
分类:

⑴以OD为底边 ⑵以OD为腰
P1
P3
P4 M
P是OD的中垂线与OM的交点。 P是分别以O,D为圆心,OD为半径的圆 与直线OM的交点。
思考:当∠DOM=60 °,符合条件的 点P有几个,当∠ DOM=90 °呢? D
30° P1 D P3

P2

P4
M
60° ⌒ P1 O D P2 M
相关文档
最新文档