Hessian矩阵

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引用海赛(Hesse)矩阵
Hessian矩阵是多维变量函数的二阶偏导数矩阵,H(i,j)=d^2(f)/(d(xi)d(xj))
它是对称的。

如果是正定的的可用导数=0的变量组确定它的极小值,负定的确定它的极大值,否则无法确定极值。

1.极值(极大值或极小值)的定义
设有定义在区域D Rn上的函数 y=f(x)=f(x1,...,xn) . 对于区域D的一内点x0=(x10,...,xn0),若存在x0的一个邻域UD,使得
f(x)≤f(x0) x∈U
则称x0是f(x)的极大点,f(x0)称为f(x)的极大值.
相反,如
f(x)≥f(x0) x∈U
则称x0是f(x)的极小点,f(x0)称为f(x)的极小值.
2.海赛(Hessian)矩阵
设函数y=f(x)=f(x1,...,xn)在点x0=(x10,...,xn0)的一个邻域内所有二阶偏导数连续,则称下列矩阵H为f(x)在x0点的海赛矩阵.
显然海赛矩阵是对称的,从而它的所有特征根均为实数.
3.极值存在的必要条件
若x0是f(x)的极值点,如果存在,则
进一步设在一个邻域内所有二阶导数连续,H为在点x0的海赛矩阵.则
(1)x0是f(x)的极小点H≥0,即H 的特征根均为非负.
(2)x0是f(x)的极大点H≤0,即H的特征根为非正.
若在x0点有,则称x0是f(x)的临界点,f(x0)为临界值.
4.极值存在的充分条件
设f(x)在x0的一个邻域内所有二阶偏导数连续,且x0是f(x)的临界点(即),H为f(x)在x0点的海赛矩阵,则
(1)H>0,即H为正定矩阵x0是f(x)的极小点.
(2)H<0,即H为负定矩阵x0是f(x)的极大点.
(3)H的特征根有正有负x0不是f(x)的极值点.
(4)其余情况,则不能判定x0是或者不是f(x)的极值点.
5.二元函数极值存在的充分条件
作为4的特例。

观察二元函数极值存在的充分条件.
设z=f(x,y)在(x0,y0)的一个邻域内所有二阶偏导数连续,且,
记 .
那么,海赛矩阵.
(1)若A>0,detH=AC-B2>0,则H正定,从而(x0,y0)是f(x,y)的极小点.(2)若A<0,detH=AC-B2>0,则H负定,从而(x0,y0)是f(x,y)的极大点.
(3)若detH=AC-B2<0,则H的特征根有正有负,从而(x0,y0)不是f(x,y)的极值点.
(4)若detH=AC-B2=0,则不能判定(x0,y0)是否为f(x,y)的极值点.
6.条件极值
求函数 y=f(x)=f(x1,...,xn) x∈DRn (1),
在约束条件:qk(x)=qk(x1,...,xn)=0,k=1,...,m,m<n (2),下的极值,称为条件极值问题.
此处,假设雅可比矩阵的秩在D内处处为m,即保证m个约束条件是独立的.
直接代入法
从约束条件(2)中直接解出m个变量,代入到(1)中,将问题化为求n-m 个变量函数的直接极值问题.
拉格朗日(Lagrange)乘数法
引入拉格朗日函数:
(3)
其中λ1,...,λm称为拉格朗日乘子,是待定常数.
条件极值问题(1)和(2)可化为求拉格朗日函数(3)的直接极值问题.
(1) 若x0为(1)和(2)的条件极值点,则x0满足方程组
满足上述方程组的点称为条件极值问题的临界点.显然极值点为临界点,而临界点未必一定是极值点.
(2)若x0是临界点, HL为拉格朗日函数L在x0点的海赛矩阵, 则可按4中给出的极值存在的充分条件,由HL的正定、负定或不定,判断x0是极小点、极大点或不是极值点.。

相关文档
最新文档