中储式制粉系统优化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中储式制粉系统优化
火力发电厂都普遍存在着锅炉制粉单耗偏高的问题,但综合考虑中间储仓式制粉系统单耗过高的原因基本相同:制粉系统的运行参数(磨煤机出入口风温、进出口差压、钢球装载量、系统通风量等)偏离最佳值运行,导致系统通风量过大、磨煤机出力不足、运行时间延长等。
1 锅炉制粉单耗偏高的原因分析
钢球磨煤机制粉系统运行的经济性,取决于设备的型式、磨内的钢球装载量、系统通风量、磨煤机内的存煤量以及系统漏风、分离器的效率等因素。影响锅炉制粉单耗的因素有以下几个方面:
1.1 运行参数偏离最佳值运行
1.1.1 钢球装载量
磨煤机钢球装载量G直接影响磨煤出力和电能消耗:G偏大,并不意味磨煤机出力增大、电耗降低。从磨煤机内部工作情况来分析,磨煤机出力并不随钢球量G正比增加,而是与G0.6成正比,而磨煤机所耗的电功率则与G0.9成正比,基本上呈直线关系。所以钢球装载量超过最佳值后其磨煤机出力的增加要小于磨煤机功率消耗的增加,磨煤机电耗反而升高。因此,运行中当磨煤出力能满足需要时,维持钢球装载量在最佳值附近可以提高磨煤机的经济性。
1.1.2 钢球级配
磨煤机内钢球大小(级配)的变化会导致磨煤机出口各种煤粉颗粒直径份额发生改变,找出一种钢球级配,使它能够达到所需煤粉粒径所占份额最大的钢球级配方案,实现磨煤机钢球装载量下降、制粉量提高的目的。将传统的φ40~φ60磨球装机级配改进为φ20~φ80的装机级配。由于级配的规格增加,自然分级更趋合理,有效的提高了磨机研磨效率;有效的减少磨球的装机量,比传统装机量下降30%以上,并降低了设备的作业负荷及噪音,改善了工作环境,同时延长了设备的使用寿命,节约了生产成本。一般无烟煤煤粉细度R90控制在7%左右,烟煤在15%~20%左右。
1.1.3 钢球在筒内分布
原有磨煤机钢球在磨内由入口至出口,呈由大到小分布。由于原煤在磨制过程中,越往后的煤粉其破碎难度越大,而钢球分布却是越往后越小,这样就限制了磨煤机的出力,导致磨煤机电流偏高。通过钢球各种规格所占比例及钢球磨损速率的控制,实现磨煤机内钢球由入口向出口呈大—小—大的状况,即实现原煤在磨机内破碎—碾磨—破碎的合理分布。
1.1.4 系统通风量
磨煤机筒体内的通风工况直接影响燃料沿筒体长度方向的分布和磨煤出力。当通风量很小时,燃料大部分集中在筒体的进口端,由于钢球沿筒体长度是近似均匀分布的,因而在筒体的出口端钢球的能量没有充分被利用,很大一部分能量消耗在金属的磨损和发热上。同时因为筒内风速不高,出口端部分合格煤粉不能被气流带走,带出的仅仅是少量的细煤粉,使得磨煤出力降低。随着通风量的增加,改善了沿筒体长度方向燃料对钢球的利用情况,使磨煤出力增加,磨煤电耗相对降低。然而通风电耗是随着风量的增加而增加的,当过量地增加筒体通风时,粗粉分离器的回粉增加,将在系统内造成无益的循环,使输粉消耗也增加。综上所述,在一定的筒体通风量下可以改善沿筒体长度方向煤对钢球的充满情况,使磨煤出力增加,磨煤电耗降低。当筒体内通风量合适时,可以达到磨煤和通风总电耗最小,其值为磨煤机的最佳通风量。
最佳通风量相应于制粉系统的最经济工况,磨煤机应在最佳通风量下运行。
1.1.5 磨煤机差压
磨煤机进出口差压反映了磨煤机内存煤量的多少。在钢球磨煤机中减少给煤量时将减少磨煤机出力,但是制粉电耗并不按比例减少,从而增加了电耗。增加给煤量可以增加磨煤机中的存煤量,这时磨煤机出力也相应增加,当达到一定极限时,如果继续增加磨煤机中的存煤量,就会出现减少磨煤机出力的现象。其中必然有一个最佳存煤量,最佳存煤量的差压就是当制粉系统电耗最小时的差压。确定磨煤机进出口差压还需遵循下列原则:①保证磨煤机出口温度不变(下降);
②排粉机出口风压不变(下降);③磨煤机出入口不向外跑粉。
磨煤机出力不足是制粉单耗高的另一个重要原因。
1.1.6 磨煤机出口温度
由于磨煤机出口控制温度一般是按有关规程的“磨煤机出口气粉混合物温度”为依据制定的,而这—规定的实质是为了制粉系统安全(防爆),按技术管理规程要求粉仓温度低于该温度即可。另一方面,磨煤机出口控制温度还应依据在任何情况下,制粉系统中都应避免水汽结露。由于制粉系统末端含湿量最大,而温度又最低,所以结露的可能性最大。因此只要保证系统末端不结露,整个系统就不会结露。同时还要综合考虑到在实际控制过程中,煤的干湿等各种参数均不断变化,以及系统保温、漏风等多种因素影响,为保证制粉系统的安全,同时避免粉仓煤粉结块,保证磨煤机的干燥出力,经试验计算,控制磨煤机出口温度在80℃~100℃范围内。磨煤机的干燥出力不足,必然导致磨煤单耗增加。同时,还会使粉仓温度偏低,粉仓煤粉结块,导致给粉机下粉不畅,影响锅炉的燃烧。
磨煤机入口温度直接影响干燥出力。实际上为防止磨煤机爆燃应控制磨煤机出口温度,与磨煤机入口温度并没有直接关系,因此提高入口温度、控制出口温度是提高磨煤机运行安全性、经济性的关键。
典型控制方式 1 的特点是热风首先经过隔绝门,理论上讲可以将制粉系统与热风系统完全隔绝开 ,这样在制粉系统 (包括热风/冷风调节门) 有故障时有利于检修。但是,该控制方式存在以下缺陷: (1)由于热风调节门位于冷风进口之后,所以热风调节门的开度不但影响热风量而且还影响冷风量 ,并且影响的作用是一致的( 即同增同减)。因此,这种控制方式不利于出口温度控制。(2)该控制方式的热风调节门对进入制粉系统的热风总量影响也很大,会造成制粉系统负压控制系统不稳定,反过来负压控制系统不稳定又影响温度控制系统。总的讲加
大了 2 个控制系统之间的耦合程度 ,降低了2个控制系统的控制品质。(3)更为严重的是,当由于下煤不畅等因素造成磨煤机出口温度过高时,控制系统会大幅度关小热风调节门来维持出口温度的正常;但此时由于热风调节门的阻力过大,可能会造成冷风进口处的压力P3成为正压(见图 3) ,从而会形和进入制粉系统的成不是冷风进入制粉系统,而是热风从冷风取风口处外冒。由于冷风取风口附近一般都布置有电缆通道,所以200 ℃以上的热风外冒会严重损坏附近的电缆,很不安全。
典型控制方式2的特点是热风首先经过热风调节门然后再经过隔绝门,并且热风调节门位于冷风进口之前。这种控制方式可以克服典型控制方式1的诸多缺陷:由于热风调节门开度太小而造成热风从冷风取风口外冒的问题;改变热风调节门开度时同样影响冷风量而不利于控制的问题;热风总量变化造成温度控制系统和负压控制系统耦合加重的问题。新的问题:(1)由于隔绝门在热风调节门和冷风调节门之后,所以它只能隔绝制粉系统而不能隔绝热风调节门和冷风调节门;而这2个调节门一般是比较容易出故障,所以这种控制方式不利于对上述调节门的检修。(2)由于调节门一般不容易关闭很严,所以在机组运行期间时制粉系统停运过长,有可能会由于热风正压的作用而造成热风从冷风取风口外冒;当然由于有两道调节门关闭,这种可能性不大。(3)制粉系统停运过程中,由于隔绝门的关闭不利于制粉系统的通风。
控制方式3不但克服了上述2种控制方式的缺陷,而且又保留了它们的优点: