服务器对大数据的作用和影响

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

服务器对大数据的作用和影响

方法/步骤

1.大数据引发三重挑战

具体到企业而言,其面临的最直接的挑战就是企业的基础架构是否适应大数据管理和分析的需要,尤其是一旦要从大数据中查找或

者分析出有价值的信息,那大数据的处理效率就成为了关键。而即

使是传统的结构化数据,其对处理速度的要求也越来越高。以银行

业为例,伴随着银行网点、ATM机的多点布局,再加上越来越多的

新兴业务转移到互联网上,使得银行不得不面对无时无刻无处不在

的数据处理响应需求。

影响数据处理速度的因素很多,归结起来主要有计算、存储和网络三大方面的因素。计算依靠服务器来实现,其CPU的主频、内存

的容量和I/O带宽,都会影响到运算速度。尤其是服务器整体表现

出来的性能,将会是影响大数据处理的关键因素。此外,有些企业

喜欢采用x86集群或者分布式计算来对大数据进行处理,但是各个

计算节点间的调用和处理器使用效率,亦成为影响数据处理快慢的

因素。

2.大型数据库开启效率之旅

这些数据库通常包含与其它数据库相重复的数据。一个数据库一般不会将另一个数据库作为数据源。这样就会消耗额外的磁盘存储,增加重复数据迁移所需要的网络带宽,也会因从多个数据存储获取

相同数据的需要而额外增加服务器CPU处理的负荷。

同时,假如企业拥有多个数据库的话,那么他们通常会将它们部署在不同的平台上,针对不同的硬件平台采用不同的维护方法。这

样需要维护不同品牌和模型的服务器数量越多,成本就越高。如果

是关键任务服务器,那么提供冗余性的硬件就会重复,这也会增加

额外的成本。

此外,企业还不得不面对运营效率低下的问题。假如在多个服务器上运行多个数据库系统,那么有一些运营成本需要考虑,包括培

训多个系统的人员、监控多个系统、修复多个平台的问问通故障、

修补和更新多个系统。而在统一的操作系统和硬件平台上运行一个

系统会更简单一些,成本也更低。另外,监控和故障修复也更加简单。

3.内存计算化繁为简

值得一提的是,近年来许多数据库厂商大力发展的内存计算技术,同样对数据处理速度的提升起到了很大的作用。

内存计算的主要用途之一是庞大的数据集的实时操作。在传统的数据库中,数据存在硬盘上。数据和服务器的CPU,通过有线连接,所以数据要到达的“桌面”是缓慢和遥远的,当需要十亿字节或者

艾字节的数据时,数据库性能缓慢的主要原因之一是数据存取的时

间过长,不能以足够快的速度到达所需要的地方。

在内存计算中,数据就存储在CPU的旁边,可以瞬间到达。这意味着数百GB的数据分析,报告和预测需要几秒钟内就可以完成,而

不是几小时。

4.行业掘金性能为王

大型数据库和内存计算分别在应用模式和技术上为提升大数据的处理效率作好了准备,但无论是大型数据库还是内存计算,都需要

服务器主机具有强大的计算能力、大容量的内存和足够的存储空间,并且将这三者集于一身。而归根结底,就是服务器主机必须具备强

大的性能,才能满足高效处理大数据的需要。

结合电信、金融等行业的应用发展,伴随着这些行业的数据向省级集中,更大容量的数据库和更高性能的服务器主机,成为应对大

规模用户集中访问数据的基础。

以电信行业为例,电信核心业务平台不仅包含了计费、网管、营业、财务以及外部CRM和其它系统的问问通,而且还需要在此基础

上完成数据的抽取、清洗和转换,从而在数据仓库的基础上建立商

业智能平台,为客户管理管理系统、决策支持系统等系统提供支撑。所有这一切要求核心业务平台必须有一个强大的基础设施平台作为

支撑,确保电信的所有业务系统都能够在一个安全、稳定、高效的

环境下顺畅运行。

在银行业,数据大集中早在多年前就已经开始实施了。然而,由于银行业利用IT基础设施服业务发展起步较早,这也造成了部分核

心业务系统版本多、需要不同开放和升级的弊端。中国银行作为领

先的大型商业银行,早就意识到了这些问题。2011年10月,中国

银行核心业务系统全辖上线,为2006年正式启动的IT蓝图实施工

程画上圆满句号。

相关文档
最新文档