(完整版)(整理)正余弦定理综合应用

合集下载

正余弦定理公式大全

正余弦定理公式大全

正余弦定理公式大全正弦定理和余弦定理是解三角形的两个重要定理,它们在三角形的边和角之间建立了重要的关系,对于解决三角形的边和角问题有着重要的作用。

下面将详细介绍正弦定理和余弦定理的公式以及它们的应用。

1. 正弦定理公式。

在△ABC中,a、b、c分别为三角形的边长,A、B、C分别为三角形的内角,则正弦定理公式可以表示为:a/sinA = b/sinB = c/sinC = 2R。

其中,R为三角形外接圆半径。

正弦定理的应用非常广泛,可以用来求解三角形的边长或者角度。

通过正弦定理,我们可以很容易地求解出三角形的各个边长或者角度大小,是解决三角形问题的重要工具之一。

2. 余弦定理公式。

在△ABC中,a、b、c分别为三角形的边长,A、B、C分别为三角形的内角,则余弦定理公式可以表示为:a² = b² + c² 2bccosA。

b² = a² + c² 2accosB。

c² = a² + b² 2abcosC。

余弦定理的应用也非常广泛,可以用来求解三角形的边长或者角度。

与正弦定理相比,余弦定理在某些情况下更加方便和实用,尤其是当我们已知三角形的三边长时,可以直接使用余弦定理来求解三角形的各个角度大小。

3. 正余弦定理的综合应用。

正弦定理和余弦定理是解决三角形问题的重要工具,它们可以相互结合,应用于各种不同的三角形问题中。

通过灵活运用正弦定理和余弦定理,我们可以解决各种不同类型的三角形问题,包括求解三角形的边长、角度大小,以及判断三角形的形状等。

在实际问题中,正弦定理和余弦定理常常需要结合其他几何知识和技巧来解决问题,因此在运用正弦定理和余弦定理时,需要灵活运用,结合具体问题来选择合适的方法和步骤,以便更加高效地解决问题。

总结。

正弦定理和余弦定理是解决三角形问题的重要工具,它们建立了三角形的边和角之间的重要关系,可以帮助我们求解各种不同类型的三角形问题。

正、余弦定理及应用举例

正、余弦定理及应用举例

02
余弦定理
定义与性质
定义
余弦定理是三角形中的重要定理,它 描述了三角形三边与其对应角的余弦 值之间的关系。
性质
余弦定理具有对称性,即交换任意两 边及其对应的角,定理仍然成立。此 外,余弦定理还可以用来判断三角形 的形状。
证明方法
证明方法一
利用向量的数量积和向量模长的性质来 证明余弦定理。
VS
定理应用举例
总结词
正弦定理在解决三角形问题中具有广泛的应用,例如求三角形边长、角度等。
详细描述
利用正弦定理,我们可以解决许多三角形问题,例如求三角形的边长、角度等。例如,已知三角形的 两边及其夹角,我们可以利用正弦定理求出第三边的长度。此外,正弦定理还可以用于判断三角形的 解的个数和类型,以及解决一些几何作图问题。
正、余弦定理及应用 举例
目录
• 正弦定理 • 余弦定理 • 正、余弦定理的综合应用 • 正、余弦定理的扩展与推广 • 正、余弦定理在数学竞赛中的应用
01
正弦定理
定义与性质
总结词
正弦定理是三角形中一个基本的定理 ,它描述了三角形边长和对应角的正 弦值之间的关系。
详细描述
正弦定理是指在一个三角形中,任意 一边与其对应的角的正弦值的比等于 三角形外接圆的直径,也等于其他两 边与它们的对应角的正弦值的比。
证明方法二
通过作高线,将三角形转化为直角三角形 ,再利用勾股定理来证明余弦定理。
定理应用举例
应用一
已知三角形的两边及其夹角,求第三边。
应用二
判断三角形的形状。例如,如果一个三角形中存在两个角相等,则 这个三角形是等腰三角形。
应用三
解决一些实际问题,如测量、工程设计等。例如,在测量中,可以 利用余弦定理来计算两点之间的距离。

第4章第7节正弦定理余弦定理的综合应用课件共60张PPT

第4章第7节正弦定理余弦定理的综合应用课件共60张PPT

1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之
间的位置关系.( )
(4)方位角大小的范围是[0,2π),方向角大小的范围一般是0,π2.
[答案] (1)√ (2)× (3)√ (4)√
()
第七节 正弦定理、余弦定理的综合应用
二、教材习题衍生
C [如图所示,依题意可知∠ADC=
45°,∠ACD=180°-60°-15°=105°,
∴∠DAC=180°-45°-105°=30°, 由正弦定理可知sin∠CDDAC=sin∠ACCDA,
∴AC=CDsi·ns∠in∠DACCDA=25 2米. ∴在Rt△ABC中,
AB=AC·sin∠ACB=25 2× 23=252 6≈31米. ∴旗杆的高度约为31米,故选C.]
第七节 正弦定理、余弦定理的综合应用
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
一、易错易误辨析(正确的打“√”,错误的打“×”) (1)东北方向就是北偏东45°的方向.( ) (2)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关 系为α+β=180°.( )
第七节 正弦定理、余弦定理的综合应用
第七节 正弦定理、余弦定理的综合应用
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
(1)10 6 (2) 1241[(1)∵△ABC中,由题意可得:
∠CAB=120°,∠BCA=30°,AB=60×13=
20, ∴由正弦定理sin∠BCCAB=sin∠ABBCA,
∴BC=ABsi·nsi∠n∠BCCAAB=20×1

正余弦定理及应用

正余弦定理及应用
由余弦定理:cosB=(a^2+c^2-b^2)/(2ac), cosA=(b^2+c^2-a^2)/(2bc)
所以所给条件化为:
a^3*(a^2+c^2-b^2)/(2ac)=b^3*(b^2+c^2-a^2)/(2bc)
两边约分并化简可得:a^2(a^2+c^2-b^2)=b^2(b^2+c^2-a^2)
a^2=a+2b+c
又a+2b=2c-3
∴a^2=2c-3+c
=3c-3
sinA:sinC=a:c=4:√13
a^2:c^2=16:13
3(c-1)/c^2=16/13
16c^2=39c-39
16c^2-39c+39=0
解c 取正值!
然后求a
再求b
再根据大边对大角 就知道啦!
注:a^2;b^2;c^2就是a的2次方、b的2次方、c的2次方;a*b、a*c就是a乘b、a乘c 。
1、在△ABC中,角ABC所对的边分别是abc,若b平方+c平方-bc=a平方,且a/b=根号3,则∠C的值为?
根据余弦定理得:
cosA=(b^2+c^2-a^2)/2bc......................1
联立得:BC=2,x=3^(1/2)
于是得到CosA=13*2^(1/2)/24,然后计算SinA即可
10、在△ABC中,角A,B,C所对的边是a,b,c,已知a^2-a=2(b+c),a+2b=2c-3
(1)若sinA:sinC=4:√13,求a,b,c
(2)求△ABC的最大角
a^2-a=2b+c

正、余弦定理及三角函数的综合应用

正、余弦定理及三角函数的综合应用
2.解斜三角形的类型
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角,进而求得其他边、角;
(3)已知三边,求三个角;
(4)已知两边和它们的夹角,求第三边和其他两个角.
在△ABC中,已知a、b和A时,解的情况如下:
考点一:利用正、余弦定理解三角形
8.(2010?宝鸡质检一)如右图,为了计算渭河岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两个测量点,现测得AD⊥CD,AD=100 m,AB=140 m,∠BDA=60°,∠BCD=135°,求两景点B与C之间的距离(假设A,B,C,D在同一平面内,测量结果保留整数;参数数据:2=1.414,3=1.732,5=2.236).
针对性练习:
已知△ABC中,sinC=sinA+sinBcosA+cosB,试判断△ABC的形状.考点三:三角形面积公式的应用
典型例题
已知△ABC中,cosA=63,a,b,c分别是角A、B、C的对边.
(1)求tan2A; (2)若sin(π2+B)=223,c=22,求△ABC的面积.知识概括、方法总结与易错点分析
(1)正弦定理和余弦定理并不是孤立的,解题时要根据具体题目合理运用,有时还需要交替使用.
(2)条件中出现平方关系多考虑余弦定理,出现一次式,一般要考虑正弦定理.
针对性练习:
1、在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cosA2=255,AB→?AC→=3.
(1)求△ABC的面积; (2)若b+c=6,求a的值.
(2)若sinB+sinC=1,试判断△BC中,角A,B,C所对的边分别为a,b,c,已知cos2C=-14.

(最新整理)正弦定理与余弦定理的应用(优秀课件)

(最新整理)正弦定理与余弦定理的应用(优秀课件)

2021/7/26
31
【训练 2】 如图所示,测量河对岸的塔高 AB 时,可以选与塔 底 B 在同一水平面内的两个测点 C 与 D,现测得∠BCD=α, ∠BDC=β,CD=s,并在点 C 测得塔顶 A 的仰角为 θ,求塔高 AB.
2021/7/26
32
解 在△BCD 中,∠CBD=π-α-β, 由正弦定理得sin∠BCBDC=sin∠CDCBD, 所以 BC=CDsinsi∠n∠CBBDDC=sisn·sαin+ββ 在 Rt△ABC 中,AB=BCtan∠ACB=sstiannαθ+sinββ.
D
C
15
解三角形应用题的一般步骤:
(1)准确地理解题意; (2)正确地作出图形; (3)把已知和要求的量尽量集中在有关三
角形中,利用正弦定理和余弦定理有顺 序地解这些三角形; (4)再根据实际意义和精确度的要求给出
答案.
2021/7/26
16
二、关于测量高度的问题
测量距离的方法:

角把

形距

的离
37
练习
1.如图,货轮在海上以40n mile/h的速度由 B向C航行,航行的方位角140 ° ,在B处 测得A处有灯塔,其方位角110 ° ,在C处 观察灯塔A的方位角35 ° ,由B到C需0.5h 航行,求C到灯塔A的距离。
2021/7/26
38
练习2
如图,甲船以每小时30 2海里的速度向正北方向航行, 乙船按固定方向向匀速直线航行。当甲船位于A1处时, 乙船位于甲船的北偏西1050方向的B1处,此时两船相距 20海里,当甲船航行20分钟到达A2处时,乙船航行到 甲船的北偏西1200方向的B2处,此时两船相距10 2海里, 问乙船每小时航行多少海里?

正余弦定理的综合应用

正余弦定理的综合应用

题型三 正、余弦定理在平面几何中的综合应用 例 3 如图所示,在梯形 ABCD 中,
AD∥BC,AB=5,AC=9, ∠BCA=30°,∠ADB=45°, 求 BD 的长. 思维启迪 由于 AB=5,∠ADB=45°,因此要求 BD, 可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB=5,AC=9,∠ACB=30°, 因此可用正弦定理求出 sin∠ABC,再依据∠ABC 与 ∠BAD 互补确定 sin∠BAD 即可.
又 AD⊥CD,∴∠CDB=30°, ∴BC=sin161035°·sin 30°=80 2≈113 (m). 即两景点 B 与 C 之间的距离约为 113 m.
题型二 测量高度问题 例 2 某人在塔的正东沿着南偏西 60°的方向前进 40 米后,望
见塔在东北方向,若沿途测得塔顶的最大仰角为 30°,求 塔高. 思维启迪 依题意画图,某人在 C 处, AB 为塔高,他沿 CD 前进,CD=40 米, 此时∠DBF=45°,从 C 到 D 沿途测塔的 仰角,只有 B 到测试点的距离最短时,仰 角才最大,这是因为 tan∠AEB=ABBE,AB 为定值,BE 最小时,仰角最大.要求出 塔高 AB,必须先求 BE,而要求 BE,需 先求 BD(或 BC).
解 在△ADC 中,AD=10,AC=14,DC=6, 由余弦定理得 cos∠ADC=AD2+2ADDC·D2-C AC2 =1002+ ×3160- ×1696=-12,∴∠ADC=120°,
∴∠ADB=60°.在△ABD 中,AD=10,∠B=45°,∠ADB=60°,
由正弦定理得sin∠ABADB=sAinDB,
解 在△ABC 中,AB=5,AC=9,∠BCA=30°. 由正弦定理,得sin∠ABBCA=sin∠ACABC, sin∠ABC=AC·sinA∠B BCA=9sin530°=190.

正余弦定理的应用

正余弦定理的应用
对于给定的边长,正余弦定理可以判 断三角形是否有解,以及解的个数。
利用正余弦定理,可以求出三角形的 角度,特别是当已知两边及其夹角时。
在三角形边长问题中的应用
计算边长
已知三角形的两边及夹角,正余弦定理可以用来计算第三边的长度。
验证边长条件
在解决三角形问题时,可以使用正余弦定理验证给定的边长是否满足三角形的性质。
在三角函数问题中的应用
计算三角函数值
利用正余弦定理,可以求出三角函数值 ,例如sin、cos或tan。
VS
验证三角函数关系
在解决三角函数问题时,可以使用正余弦 定理验证给定的三角函数关系是否成立。
04
CHAPTER
实际应用举例
பைடு நூலகம்
测量问题中的应用
确定不可达物体的高度
通过测量物体在太阳下形成的阴影长度,结 合正弦定理,可以计算出物体的高度。
正余弦定理的应用
目录
CONTENTS
• 正弦定理的应用 • 余弦定理的应用 • 正余弦定理的综合应用 • 实际应用举例
01
CHAPTER
正弦定理的应用
在三角形边长问题中的应用
确定已知两边及一边对角时,利用正弦定理求第 三边。
已知三角形的两边及其中一边的对角,可以使用 正弦定理求出第三边。
在三角形中已知两边及夹角,可以使用正弦定理 求出第三边。
解决三角函数方程
通过余弦定理,我们可以解决一些三角函数方程,例如求解sin(x) = 1/2在[0,2π]内的 解。
03
CHAPTER
正余弦定理的综合应用
在解三角形问题中的应用
确定三角形形状
通过正余弦定理,可以判断三角形的 形状,例如是否为直角三角形、等腰 三角形或等边三角形。

正弦定理和余弦定理综合应用

正弦定理和余弦定理综合应用

BC
a sin
a sin
sin 180o ( ) sin( )
α
δ
β
γ
D
C
计算出AC和BC后,再在ABC中,应用余弦定理计
算出AB两点间的距离
AB AC2 BC2 2AC BC cos
测量垂直高度
1、底部可以到达的
测量出角C和BC的长度,解直 角三角形即可求出AB的长。
借助于余弦定理可以计算出A、B两点间的距离。
C
解:测量者可以在河岸边选定两点C、D,测得CD=a, 并且在C、D两点分别测得∠BCA=α, ∠ACD=β, ∠CDB=γ, ∠BDA=δ.
在 ∆ADC和∆ BDC中,应用正弦定理得
B
a sin( )
a sin( ) A
AC
sin 180o ( ) sin( )
故sin B AC sin A 5 3 B 38o
BC 14
故我舰航行的方向为北偏东 50o 38o 12o
变式训练1:若在河岸选取相距40米的C、D两
点,测得 BCA= 60, ACD=30,CDB= 45, BDA= 60 求A、B两点间距离 .
注:阅读教材P12,了解基线的概念
1.2.1 应用举例
公式、定理
正弦定理:a b c 2R sin A sinB sinC
余弦定理:
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B
c2 a2 b2 2abcosC
三角形边与角的关系:
cos A b2 c2 a2 , 2bc
cos B c2 a2 b2 , 2ca
即sin9A0C°-α=sinBαC-β,∴AC=sBinCαco-s βα=sihncαo-s αβ. 在Rt△ACD中,CD=ACsin∠CAD=ACsin β=hscionsαα-sinββ.

中考数学考点解析正弦定理与余弦定理的运用

中考数学考点解析正弦定理与余弦定理的运用

中考数学考点解析正弦定理与余弦定理的运用中考数学考点解析:正弦定理与余弦定理的运用正弦定理和余弦定理是中学数学中重要的几何定理,广泛应用于解决与三角形相关的各类问题。

本文将针对中考数学中关于正弦定理和余弦定理的考点进行解析,并讨论其运用方法。

一、正弦定理的概念与应用正弦定理是指在任意三角形ABC中,设a、b、c分别为三边AB、BC、AC的边长,A、B、C分别为对应的内角,则有下述关系式成立:sinA/a = sinB/b = sinC/c正弦定理常用于解决三角形边长或角度未知的问题。

根据正弦定理,我们可以通过已知角度和边长的比例关系,求解未知边长或角度的值。

例如,已知在三角形ABC中,角A的度数为30°,边AC的长度为10cm,边BC的长度为8cm,求边AB的长度。

解析:根据正弦定理,我们有sin30°/10 = sinB/8,通过计算可以得到sinB的值为1/2。

根据反三角函数的定义,我们可以求得角B的度数为30°。

然后再利用三角函数的性质,我们可以得到sinC的值为sqrt(3)/2,进而求解出边AB的长度为12cm。

二、余弦定理的概念与应用余弦定理是指在任意三角形ABC中,设a、b、c分别为三边AB、BC、AC的边长,A、B、C分别为对应的内角,则有下述关系式成立:c^2 = a^2 + b^2 - 2ab * cosC余弦定理常用于解决三角形边长或角度未知的问题。

相比正弦定理,余弦定理在求解角度时更为常用,尤其适用于已知三边长度求解对应角度的情况。

例如,已知三角形ABC,边AB的长度为5cm,边AC的长度为8cm,角A的度数为45°,求对边BC的长度。

解析:根据余弦定理,我们有BC^2 = 5^2 + 8^2 - 2 * 5 * 8 * cos45°。

通过计算可以得到BC^2的值为25,再开方可以得到BC的长度为5cm。

三、正弦定理与余弦定理的综合应用正弦定理和余弦定理在解决实际问题中常常需要综合运用。

正弦定理与余弦定理在解三角形中的运用

正弦定理与余弦定理在解三角形中的运用

正弦定理与余弦定理在解三角形中的运用正弦定理和余弦定理是解三角形中非常常用的定理。

它们可以帮助我们在已知一些边长或角度的情况下,求解出其他未知边长或角度。

在本文中,我们将详细介绍正弦定理和余弦定理的概念,并阐述它们在解三角形中的运用。

一、正弦定理正弦定理是解三角形中最为基础和常用的定理之一、它可以用来求解三角形的任意一个角度或边长。

正弦定理的表达形式如下:a / sinA =b / sinB =c / sinC其中,a,b,c表示三角形的三条边,A,B,C表示三个对应的角度。

在应用正弦定理求解问题时,需要注意以下几个方面:1.已知两边和它们对应的夹角,求第三边:根据正弦定理,我们可以将等式重写为 a = b * sinA / sinB 或 a = c * sinA / sinC。

2.已知两边和它们对应的夹角,求第三个角度:根据正弦定理,我们可以将等式重写为 sinA = a * sinC / c 或 sinA = b * sinC / c,然后通过求反函数 sin^-1 求解出 A 的值。

3.已知两个角度和一个对边,求第三边:根据正弦定理,我们可以将等式重写为 b = a * sinB / sinA 或 b = c * sinB / sinC。

4.已知两个角度和一个对边,求第三个角度:根据正弦定理,我们可以将等式重写为 sinB = b * sinA / a 或 sinB = b * sinC / c,然后通过求反函数 sin^-1 求解出 B 的值。

由于正弦定理可以用来求解任意一个角度或边长,因此它非常灵活和实用。

二、余弦定理余弦定理是解三角形中另一个重要的定理。

它可以用来求解三角形的边长或角度。

余弦定理的表达形式如下:a^2 = b^2 + c^2 - 2bc * cosAb^2 = c^2 + a^2 - 2ac * cosBc^2 = a^2 + b^2 - 2ab * cosC其中,a,b,c表示三角形的三条边,A,B,C表示三个对应的角度。

正弦定理、余弦定理应用

正弦定理、余弦定理应用

余弦定理的定义
总结词
余弦定理是三角形中另一个重要的定 理,它描述了三角形各边与其对应角 的余弦值之间的关系。
详细描述
余弦定理指出,在任何三角形ABC中,边 长a、b、c与对应的角A、B、C的余弦值 之比都相等,即:a/cosA = b/cosB = c/cosC。这个定理可以通过三角形的相似 性质和直角三角形的勾股定理来证明。
计算三角函数值
已知三角形的两边和夹角,可以利用正弦定理求出其他角的正弦值。
在物理问题中的应用
计算振动频率
在振动问题中,可以利用正弦定理求 出振动的频率。
解决波动问题
在波动问题中,可以利用正弦定理分 析波的传播规律。
03
余弦定理的应用
在几何问题中的应用
确定三角形形状
01
通过余弦定理可以判断三角形是否为直角三角形、等腰三角形
物理问题中的综合应用
1 2
振动和波动问题
利用正弦定理和余弦定理,可以解决一些与振动 和波动相关的物理问题,如简谐振动、波动传播 等。
交流电问题
通过正弦定理和余弦定理,可以解决一些与交流 电相关的物理问题,如电流、电压、功率等。
3
光学问题
利用正弦定理和余弦定理,可以解决一些与光学 相关的物理问题,如光的反射、折射等。
02
正弦定理的应用
在几何问题中的应用
确定三角形形状
通过正弦定理可以判断三角形是直角三角形、等 腰三角形还是一般三角形。
计算角度
利用正弦定理可以求出三角形中未知的角度。
计算边长
已知三角形的两边和夹角,可以利用正弦定理求 出第三边的长度。
在三角函数问题中的应用
求解三角函数方程
利用正弦定理可以将三角函数方程转化为代数方程,从而求解。

正弦定理、余弦定理的综合应用

正弦定理、余弦定理的综合应用

解题小结:
判断三角形形状时,一般考虑两种变形方向: 一个是化角为边,再进行代数恒等变换求出三条 边之间的关系式。另一个方向是化边为角,再进 行三角恒等变换求出三个角之间的关系式。 两种转化主要应用正弦定理和余弦定理。
练习一
A B C ,则 ABC 是( D ) cos cos cos 2 2 2 A.等腰三角形 B.等腰直角三角形 C.直角三角形 D.等边三角形 2R sin A 2R sin B 2R sin C 略解:由正弦定理得: A B C cos cos cos 2 2 2 A A B B C C 2 sin cos 2 sin cos 2 sin cos 2 2 2 2 2 2 A B C cos cos cos 2 2 2

a 2 R sin A, b 2 R sin B, c 2 R sin C ,
余 弦 定 理 的 变 式


a sin A , 2R b sin B , 2R c sin C . 2R
2 2 2
b c a cos A , 2bc a2 c2 b2 cos B , 2ac a2 b2 c2 cosC . 2ab
2R sin(B C )
2R sin( A) a sin A a2 sin A
射影定理: a= bcosC+ccosB,
b=ccosA+acosC,
c=acosB+bcosA
a、b、c, 例3:ABC中,A、B、C所对的边分别为
cos B b 且 , 求B的大小。 cos C 2a c
a、b、c, 练习二 ABC中,A、B、C所对的边分别为 c 1 2 2 2 若b c bc a , 且 3, 求A和 tan B的大小。 b 2 2 b c2 a2 1 解:由余弦定理知:cos A , ( 化 2bc 2 0 A 180, A 60, 边 c 1 为 3 且由正弦定理知 c sin C , b 2 角 b sin B sin C 1 3 又C 180 ( A B) 120 B, ) sin B 2

(完整版)正弦定理和余弦定理典型例题(最新整理)

(完整版)正弦定理和余弦定理典型例题(最新整理)

【答案】根据余弦定理可得:
cos A b2 c2 a2 8 8 4 3 4 3
2bc
22 2 6 2 2
∵ 0 A 180 , ∴ A 30 ;
∴由正弦定理得: sin C c sin A
6 2 sin 30
6 2
.
a
2
4
【变式 2】在 ABC 中,已知 B 750 , C 600 , c 5 ,求 a 、 A .
【答案】 A 1800 (B C) 1800 (750 600 ) 450 ,
根据正弦定理
a
5
,∴ a 5
6
.
sin 45o sin 60o
3
【变式 3】在 ABC 中,已知 sin A : sin B : sin C 1: 2 : 3 ,求 a : b : c 【答案】根据正弦定理 a b c ,得 a : b : c sin A : sin B : sin C 1: 2 : 3 .
【答案】根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ;
根据正弦定理,
b
asin B sin A
42.9sin81.80 sin32.00
80.1(cm)

根据正弦定理,
c
asinC sin A
42.9sin 66.20 sin32.00
74.1(cm).
sin A sin B sin C
例 2.在 ABC中,b 3, B 60, c 1,求: a 和 A , C .
思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角 C ,然后用三角形 内角和求出角 A ,最后用正弦定理求出边 a .

(完整版)知识讲解_正余弦定理在解三角形中的应用_提高

(完整版)知识讲解_正余弦定理在解三角形中的应用_提高

正弦、余弦定理在三角形中的应用【学习目标】1.进一步巩固正弦定理和余弦定理,并能综合运用两个定理解决三角形的有关问题;2.学会用方程思想解决有关三角形的问题,提高综合运用知识的能力和解题的优化意识.【要点梳理】要点一:正弦定理和余弦定理的概念①正弦定理公式:2sin sin sin a b c R A B C===(其中R 表示三角形的外接圆半径) ②余弦定理公式:第一形式:2222222222cos 2cos 2cos a b c bc Ab ac ac Bc a b ab C=+-=+-=+-第二形式: 222222222cos 2cos 2cos 2b c a A bca cb B aca b c C ab+-=+-=+-= 要点二:三角形的面积公式① 111222ABC a b c S a h b h c h ∆=⋅=⋅=⋅; ② 111sin sin sin 222ABC S bc A ab C ac B ∆===; 要点三:利用正、余弦定理解三角形已知两边和一边的对角或已知两角及一边时,通常选择正弦定理来解三角形;已知两边及夹角或已知三边时,通常选择余弦定理来解三角形.特别是求角时尽量用余弦定理来求,尽量避免分类讨论.在ABC ∆中,已知,a b 和A 时,解的情况主要有以下几类:①若A 为锐角时:a bsin A a bsin A ()bsin A a b ()a b ()<⎧⎪=⎪⎨<<⎪⎪≥⎩无解一解直角二解一锐,一钝一解锐角A b a sin = b a ≥一解 一解b a A b <<sin sin a b A <两解 无解② 若A 为直角或钝角时:a b a b ()≤⎧⎨>⎩无解一解锐角 要点四:三角形的形状的判定特殊三角形的判定:(1)直角三角形勾股定理:222a b c +=,互余关系:090A B +=,cos 0C =,sin 1C =;(2)等腰三角形 a b =,A B =;用余弦定理判定三角形的形状(最大角A 的余弦值的符号)(1)在ABC ∆中,22200222090cos 02b c a A A b c a bc +-<<⇔=>⇔+>; (2)在ABC ∆中,22222290cos 02b c a A A b c a bc +-=⇔==⇔+=; (3)在ABC ∆中,22222290cos 02b c a A A b c a bc +-<⇔=<⇔+<; 要点五:解三角形时的常用结论在ABC ∆中,0180A B C ++=,0902A B C ++= (1)在ABC ∆中sin sin cos cos ;A B a b A B A B >⇔>⇔>⇔<(2)互补关系:0sin(A+B)=sin(180)sinC C -=, 0cos(A+B) cos (180)cosC C =-=-,0tan(A+B) tan(180)tan C C =-=-;(3)互余关系:0sin sin (90)cos 222A B C C +=-=, 0cos cos(90)sin 222A B C C +=-=, 0tan tan (90)cot 222A B C C +=-=. 【典型例题】类型一:利用正、余弦定理解三角形例1. △ABC 中,,6c =A=45°,a=2,求b 和B ,C.【思路点拨】本题已知边边角,用正弦定理比较简单,但要注意结合三角形中大边对大角定理以及有解、无解的图形来考虑。

正余弦定理综合应用

正余弦定理综合应用
原创力文档是网络服务平台方若您的权利被侵害侵权客服qq
正余弦定理的应用
题型一、证明三角恒等式问题 P18 例9
例1、在△ABC中,求证:
(1) a2 b2 sin2 A sin2 B ;
c2
sin2 C
(2)a2 b2 c2 2(bc cos A ca cos B ab cosC)
变式、在△ABC中,若a : b : c 1: 3: 5 则 2sin A sin B 的值为多少?
sin C
题型一、正、余弦定理综合应用问题
例2.已知 4sin2 A C cos 2B 7
2
2
(1)求角B的度数;
(2)若 b 3, a c 3 ,且a>c, 求a和c的值.
变式4、已知△ABC的三边长 a 3,b 5,c 6
求△ABC的面积
P16 例7、例8
结论:P20 A组 13 B组 1 2
题型五、范围问题
例8,a ,a+1,a+2 构成钝角三角形,求a 的取值范围。 变式:锐角三角形的三边长为2,x,3, 求x的取值范围。
练习:
三条线段长度为2,x,6 (1)求构成直角三角形时,x的取值范围 (2)求构成锐角三角形时,x的取值范围 (3)求构成钝角三角形时,x的取值范围
题型四、面积问题
变式1.△ABC的面积为 3 ,且b 2,c 3求A
变式2、在△ABC中,a
2 2,b

3,
cos
C

1
,
3
求△ABC的面积及外接圆半径
abc
?
sin A sin B sin C
变式3、已知△ABC的面积 S a2 b2 c2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档