symmetry of the stress tensor:应力张量的对称性

合集下载

VASP参数设置详解

VASP参数设置详解

VASP参数设置详解计算材料2010-11-30 20:11:32 阅读197 评论0 字号:大中小订阅转自小木虫,略有增减软件主要功能:采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型l 计算材料的状态方程和力学性质(体弹性模量和弹性常数)l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF)l 计算材料的光学性质l 计算材料的磁学性质l 计算材料的晶格动力学性质(声子谱等)l 表面体系的模拟(重构、表面态和STM模拟)l 从头分子动力学模拟l 计算材料的激发态(GW准粒子修正)计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册INCAR文件:该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类:对所计算的体系进行注释:SYSTEM●定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWAV●定义电子的优化–平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG–电子部分优化的方法:ALGO,IALGO,LDIAG–电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX–自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF●定义离子或原子的优化–原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW –分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS–离子弛豫收敛标准:EDIFFG●定义态密度积分的方法和参数–smearing方法和参数:ISMEAR,SIGMA–计算态密度时能量范围和点数:EMIN,EMAX,NEDOS–计算分波态密度的参数:RWIGS,LORBIT●其它–计算精度控制:PREC–磁性计算:ISPIN,MAGMOM,NUPDOWN–交换关联函数:GGA,VOSKOWN–计算ELF和总的局域势:LELF,LVTOT–结构优化参数:ISIF–等等。

cauchy应力张量

cauchy应力张量

cauchy应力张量(实用版)目录1.介绍 Cauchy 应力张量2.Cauchy 应力张量的计算公式3.Cauchy 应力张量的特性4.Cauchy 应力张量的应用正文【1.介绍 Cauchy 应力张量】Cauchy 应力张量,又称为 Cauchy 主应力张量,是由法国数学家Cauchy 提出的一种描述物质内部应力的方法。

它是一种二阶张量,由三个应力分量(σx, σy, σz)组成,可以表示物质在三个正交方向上的应力。

Cauchy 应力张量广泛应用于固体力学、流体力学等领域,是研究材料力学行为的重要工具。

【2.Cauchy 应力张量的计算公式】Cauchy 应力张量的计算公式为:σ =begin{bmatrix}σx & σy & σzσy & σx & σzσz & σz & σxend{bmatrix}其中,σx、σy、σz 分别为物质在 x、y、z 方向上的应力。

根据应力平衡条件,Cauchy 应力张量的主对角线元素之和等于物质的体积应力,即σx + σy + σz = 0。

【3.Cauchy 应力张量的特性】Cauchy 应力张量具有以下特性:(1)对称性:Cauchy 应力张量是对称的,即σij = σji。

(2)正定性:Cauchy 应力张量的主对角线元素均为正,且主对角线元素之和等于 0。

(3)非负性:Cauchy 应力张量的所有元素均为非负。

【4.Cauchy 应力张量的应用】Cauchy 应力张量在材料力学中有广泛的应用,例如:(1)分析材料的应力状态:通过计算 Cauchy 应力张量,可以了解材料在不同方向上的应力分布,从而分析材料的应力状态。

(2)计算材料的应力强度:Cauchy 应力张量的主对角线元素表示了材料在各个方向上的应力强度,可以用于计算材料的应力强度。

固体地球物理学概论Snell定律课件

固体地球物理学概论Snell定律课件
In three dimension orthogonal coordinate system, we can define stress p as (pxx pxy pxz pyx pyy pyz pzx pzy pzz).
固体地球物理学概论
第七章
弹性概念——应力 (续)
The stresses are symmetrical(对称的), i.e. only six components of the stress tensor p are independent because
P = - (pxx+ pyy+ pzz)/3 This is a general definition of the “pressure”. In the special case of a liquid at rest, pxx= pyy= pzz = - P, this is the hydrostatic pressure. In geology, lithostatic pressure is often estimated by using
When the material in the mantle is heated, it expands and becomes lighter. In spite of its high viscosity(粘性), it rises more or less vertically in some places, especially under the oceanic ridges. With its losing pressure and heat during traveling upward, the material is forced to travel horizontally. They drag the lithosphere motion.

VUMAT用户子程序翻译ABAQUS帮助手册

VUMAT用户子程序翻译ABAQUS帮助手册

25.3.4 VUMATUser subroutine to define material behavior.定义材料本构用户子程序Product: ABAQUS/ExplicitWarning: The use of this user subroutine generally requires considerable expertise. You are cautioned that the implementation of any realistic constitutive model requires extensivedevelopment and testing. Initial testing on a single-element model with prescribed traction loading is strongly recommended.注意:用户子程序的使用通常需要一定的专长。

用户需要知道执行任何实际的本构模型需要大量的试验数据。

强烈建议用户对用户子程序进行在指定拉力作用下单个单元的验证测试。

The component ordering of the symmetric and nonsymmetric tensors for the three-dimensional case using C3D8R elements is different from the ordering specified in “Three-dimensional solid element library,” Section 14.1.4, and the ordering used in ABAQUS/Standard.C3D8R单元三维轴对称及非轴对称张量成分顺序与“Three-dimensional solid elementlibrary,” Section 14.1.4及ABAQUS/Standard中指定的顺序不同。

VUMAT基本知识

VUMAT基本知识

VUMAT基本知识编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(VUMAT基本知识)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为VUMAT基本知识的全部内容。

NBLOCK: 在调用Vumat时需要用到的材料点的数量Ndir:对称张量中直接应力的数量(sigma11,sigma22,sigma33)Nshr:对称张量中间接应力的数量(sigma12, sigma13, sigma23)Nstatev:与材料类型相关联的用户定义的状态变量的数目Nfieldv:用户定义的外场变量的个数Nprops:用户自定义材料属性的个数Lanneal:指示是否在退火过程中被调用例程的标志.Lanneal=0,指示在常规力学性能增量,例程被调用。

Lanneal=1表示,这是退火过程,你应该重新初始化内部状态变量,stepTime:步骤开始后的数值totalTime:总时间Dt:时间增量值Cmname:用户自定义的材料名称,左对齐。

它是通过字符串传递的。

一些内部材料模型是以“ABQ_”字符串开头给定的名称.为了避免冲突,你不应该在“cmname”中使用“ABQ_”作为领先字符串。

coordMp(nblock,*):材料点的坐标值。

它是壳单元的中层面材料点,梁和管(pipe)单元的质心.charLength(nblock):特征元素长度,是基于几何平均数的默认值或用户子程序VUCHARLENGTH中定义的用户特征元长度.props(nprops):用户使用的材料属性density(nblock):中层结构的物质点的当前密度strainInc (nblock, ndir+nshr):每个物质点处的应变增量张量relSpinInc (nblock, nshr):在随转系统中定义的每个物质点处增加的相对旋转矢量tempOld(nblock):物质点开始增加时的温度。

ELASTICITY 弹性力学 常用专业名词中英文对照 修改

ELASTICITY 弹性力学 常用专业名词中英文对照 修改

中文英文英文中文艾利应力函数Airy stress function Airy stress function艾利应力函数板plate anti-sysmetric tensor反对称张量板边bounday of plate applied elasticity应用弹性力学板的抗弯强度flexural rigidity of plate axisymmetry轴对称板的内力internal force of plate base vector基矢量板的中面middle plane of plate basic assumptions ofelasticity弹性力学基本假定贝尔特拉米-米歇尔方程Beltrami-Michellequationbasic equation for thebending of thin plate薄板弯曲的基本方程贝蒂互换定理Betti reciprocal theorem Beltrami consistencyequation贝尔特拉米相容方程变温temperature change Beltrami-Michellequation 贝尔特拉米-米歇尔方程表层波surface wave Betti reciprocal theorem贝蒂互换定理半逆解法semi-inverse method body force体力薄板thin plate boundary condition边界条件薄板弯曲的基本方程basic equation for thebending of thin platebounday of plate板边薄膜比拟membrage analogy Boussinesq problem布西内斯克问题布西内斯克问题Boussinesq problem Boussinesq solution布西内斯克解答布西内斯克解答Boussinesq solution Boussinesq solution布西内斯克解答布西内斯克-伽辽金通解Boussinesq-Galerkingeneral solutionBoussinesq-Galerkingeneral solution布西内斯克-伽辽金通解半空间体semi-infinite body bulk modulus体积模量半平面体semi-infinite plane Castigliano formula卡斯蒂利亚诺公式贝尔特拉米相容方程Beltrami consistencyequationCauchy equation柯西方程边界条件boundary condition Cerruti problem塞路蒂问题变分法(能量法)variationalmethod,energy method characteristic equationof stress state应力状态特征方程薄板内力internal forces of thinplate coefficient of lateralpressure侧压力系数薄板弹性曲面elatic surface of thinplate complex potential复位势薄板弹性曲面微分方程differential equation ofelastic surface of thinplatecondition of single-value displacement位移单值条件薄板弯曲刚度flexural rigidity of thinplateconsistency equation相容方程布西内斯克解答Boussinesq solution contact problem接触问题产熵entropy prodction continuity连续性沉陷settlement continuous hypothesis连续性假设侧压力系数coefficient of lateralpressure coordinate curves坐标曲线ELASTICITY(弹性力学)常用专业名词中英文对照差分法finite-differencemethord coordinate surface坐标曲面差分公式finite-differencefromulate coupling耦合重三角级数double triangle series curvilinear coordinates曲线坐标大挠度问题large deflection problem deflection挠度单位张量unit tensor deformation形变单元分析element analysis density of comlementarystrain energy应变余能密度单元刚度矩阵element stiffness matrix density of internalenergy 内能密度等容波equivoluminal wave diaplacement位移等容的位移场equivoluminaldisplacement field diaplacementcomponents位移分量叠加原理superposition principle diaplacement method位移解法度量张量metric tensor diaplacement method位移法对称张量symmetric tensor diaplacement shapefunction位移的形函数单连体simply connected body diaplacement variationalequation位移变分方程单三角级数解single triangle series differential equation ofelastic surface弹性曲面的微分方程单元节点载荷列阵elemental nodal loadmatrix differential equation ofelastic surface of thinplate薄板弹性曲面微分方程单元劲度矩阵elemental stiffnessmatrix differential equation ofequilibrium平衡微分方程多连体multiply connected body differential equation ofequilibrium in terms ofdisplacement 以位移表示的平衡微分方程二阶张量second order tensor dilatation wave膨胀波反对称张量anti-sysmetric tensor discretization离散化符拉芒解答Flamant soluton discretization structure离散化结构反射reflection displacement boundarycondition位移边界条件傅里叶变换Fourier transform displacement model位移模式傅里叶积分Fourier integral distrotion wave畸变波复位势complex potential double triangle series重三角级数格林公式Green formula dummy index哑指标各向同性假设isotropic hypothesis elastic body弹性体供熵entropy supply elastic constants弹性常数广义变分原理generanized variatianalprincipleelastic matrix弹性矩阵广义胡克定律generanized Hooke law elastic principledirection 弹性主方向刚体位移rigid body displacement elastic symmetric plane弹性对称面各向同性isotropy elastic wave弹性波哈密顿变分原理Hamiton varitionalprincipleelasticity弹性哈密顿作用量Hamiton action elasticity弹性力学赫林格-赖斯纳变分原理Hellinger-Reissnervariational principleelatic surface of thinplate薄板弹性曲面亥姆霍兹定理Helmholtz theorem element analysis单元分析横观各向同性弹性体transverse isotropicelastic bodyelement stiffness matrix单元刚度矩阵横波transverse wave elemental nodal loadmatrix单元节点载荷列阵厚板thick plate elemental stiffnessmatrix 单元劲度矩阵胡海昌-鹫津久一郎变分原理Hu Haichang-Washizuvariational principleenergy method能量法混合边值问题mixed boundary-valueproblementropy prodction产熵胡克定律Hooke law entropy supply供熵混合边界条件mixed boundarycondition equation of stresscompatibility应力协调方程畸变波distrotion wave equivalent shear forcetorsional moment扭矩等效剪力基尔霍夫假设Kirchhoff hypothesis equivoluminaldisplacement field等容的位移场基矢量base vector equivoluminal wave等容波几何方程geometrical equation Euler method欧拉法几何可能的位移geometrically possibledisplacementEuler strain components欧拉应变分量几何可能的应变geometrically possiblestriainexternal force外力几何线性的假设geometrically linearhypothesisfinite element有限元伽辽金法Galerkin method finite element method有限单元法伽辽金矢量Galerkin vector finite-differencefromulate 差分公式结点node finite-differencemethord 差分法结点荷载nodal load first law ofthermodynamics热力学第一定律结点力nodal force first(second,third)kindboundary-value problemof elasticity 弹性力学的第一(第二、第三)类边值条件结点位移nodal displacement Flamant soluton符拉芒解答解的唯一性定理theorem of uniquenesssolutionflexural rigidity of plate板的抗弯强度静力可能的应力statically possible stress flexural rigidity of thinplate薄板弯曲刚度均匀性假设homogeneoushypothesis Fourier integral傅里叶积分局部编码local coding Fourier transform傅里叶变换基尔斯解答Kirsch solution free energy density自由能密度极小势能原理princile of minimumpotential energyfree index自由指标接触问题contact problem Galerkin method伽辽金法均匀性homogeneity Galerkin vector伽辽金矢量卡斯蒂利亚诺公式Castigliano formula generanized Hooke law广义胡克定律开尔文问题Kelvin problem generanized variatianalprinciple广义变分原理扭转刚度torsional rigidity geometrical equation几何方程柯西方程Cauchy equation geometrically linearhypothesis几何线性的假设克罗内克δ符号Kroneckerdelta symbol geometrically possibledisplacement几何可能的位移空间轴对称问题spatial axisymmetryproblem geometrically possiblestriain几何可能的应变孔口应力集中stress concentration ofholesglobal analysis整体分析拉梅解答Lame slution global analysis整体分析离散化结构discretization structure global coding总体编码理想弹性体perfect elastic body global equivalent nodalload vector整体等效结点荷载列阵连续性continuity global nodaldisplacement vector整体结点位移列阵拉格朗日法Lagrange method global stiffness matrix总刚度矩阵拉格朗日函数Lagrange function global stiffness matrix整体劲度矩阵拉格朗日应变函数Lagrange straincomponentsGreen formula格林公式拉梅常数Lamé constants Hamiton action哈密顿作用量拉梅系数Lamé coefficient Hamiton varitionalprinciple哈密顿变分原理拉梅方程Lamé equation heat-conductionequation 热传导方程拉梅应变势Lamé strain potential Hellinger-Reissnervariational principle 赫林格-赖斯纳变分原理莱维方程Lévy equation Helmholtz theorem亥姆霍兹定理勒夫应变函数Love strain function homogeneity均匀性离散化discretization homogeneoushypothesis 均匀性假设连续性假设continuous hypothesis Hooke law胡克定律梁的纯弯曲pure bending of beam Hooke's law of volume体应变胡克定律莱维解Lévy solution Hu Haichang-Washizuvariational principle 胡海昌-鹫津久一郎变分原理面力surface force infinitesimaldeformation hypothesis小变形假设膜板membrane plate internal force内力米歇尔相容方程Michell consistencyequationinternal force of plate板的内力挠度deflection internal forces of thinplate 薄板内力内力internal force inverse method逆解法能量法energy method irrotationaldisplacement field无旋的位移场逆解法inverse method irrotational wave无旋波扭矩等效剪力equivalent shear forcetorsional momentisotropic hypothesis各向同性假设扭转torsion isotropy各向同性纳维解Navier solution Kelvin problem开尔文问题内能密度density of internalenergy Kirchhoff hypothesis基尔霍夫假设纽勃-巴博考维奇通解Neuber-Papkovichgeneral solutionKirsch solution基尔斯解答欧拉法Euler method Kroneckerdelta symbol克罗内克δ符号欧拉应变分量Euler strain components Lagrange function拉格朗日函数耦合coupling Lagrange method拉格朗日法膨胀波dilatation wave Lagrange straincomponents拉格朗日应变函数平衡微分方程differential equation ofequilibriumLamé coefficient拉梅系数平面波plane wave Lamé constants拉梅常数平面应力问题plane stress problem Lamé equation拉梅方程平面应变问题plane strain problem Lame slution拉梅解答泊松比Poisson ratio Lamé strain potential拉梅应变势普朗特比拟Prandtl analogy large deflection problem大挠度问题普朗特应力函数Prandtl stress function Lévy equation莱维方程切变模量shear modulus Lévy solution莱维解切应变shear strain linear elasticity线性弹性力学切应力shear stress linear expansioncoefficient线膨胀系数切应力互等定理reciprocal theorem ofshear stresslinear thermal elasticity线性热弹性力学切应力线shear stress lines local coding局部编码求和约定summation convention longitudinal wave纵波球面波spherical wave Love strain function勒夫应变函数曲线坐标curvilinear coordinates mathematical elasticity数学弹性力学热力学第一定律first law ofthermodynamicsmembrage analogy薄膜比拟热力学第二定律second law ofthermodynamicsmembrane plate膜板热弹性应变势thermal elastic strainpotentialmetric tensor度量张量热应力thermal stress Michell consistencyequation米歇尔相容方程热传导方程heat-conductionequation middle plane of plate板的中面瑞利波Rayleigh wave mixed boundarycondition 混合边界条件瑞利-里茨法Rayleigh-Ritz method mixed boundary-valueproblem混合边值问题三阶张量third order tensor multiply connected body多连体塞路蒂问题Cerruti problem Navier solution纳维解圣维南扭转函数Saint-Venant torsionfunction Neuber-Papkovichgeneral solution纽勃-巴博考维奇通解圣维南方程Saint-Venant equation no initial stresshypothesis 无初始应力的假设圣维南原理Saint-Venant principle nodal displacement结点位移数学弹性力学mathematical elasticity nodal force结点力弹性elasticity nodal load结点荷载弹性波elastic wave node结点弹性常数elastic constants normal strain线应变弹性对称面elastic symmetric plane normal strain正应变弹性力学的平面问题plane problem ofelasticitynormal stress正应力弹性力学的第一(第二、第三)类边值条件first(second,third)kindboundary-value problemof elasticityorthotropic elastic body正交各向异性弹性体弹性曲面的微分方程differential equation ofelastic surfaceperfect elastic body理想弹性体弹性体elastic body perfect elasticity完全弹性弹性体的虚功原理principle of virtual workfor elastic solidperfectly elastic body完全弹性体弹性主方向elastic principledirection perfectly elastichypothesis完全弹性的假设弹性矩阵elastic matrix permulation tensor置换张量体力body force physical equation物理方程体应变胡克定律Hooke's law of volume physically linerhypothesis 物理线性的假设弹性力学elasticity plane problem ofelasticity 弹性力学的平面问题弹性力学基本假定basic assumptions ofelasticityplane strain problem平面应变问题体积模量bulk modulus plane stress problem平面应力问题体积应力volumetric strain plane wave平面波体应变volumetric strain plate板完全弹性的假设perfectly elastichypothesisPoisson ratio泊松比完全弹性体perfectly elastic body potential energy ofexternal force外力势能位移边界条件displacement boundarycondition potential functiondecomposition ofdisplacement field位移场的势函数分解式位移变分方程diaplacement variationalequationPrandtl analogy普朗特比拟位移场的势函数分解式potential functiondecomposition ofdisplacement fieldPrandtl stress function普朗特应力函数位移分量diaplacementcomponentspressure tunnel压力隧道位移解法diaplacement method princile of minimumpotential energy极小势能原理位移的形函数diaplacement shapefunctionprincipal plane主平面无初始应力的假设no initial stresshypothesisprincipal shear stress主切应力无旋波irrotational wave principal strain主应变无旋的位移场irrotationaldisplacement fieldprincipal stress主应力物理线性的假设physically linerhypothesis principle direction ofstrain应变主方向外力external force principle direction ofstress应力主方向外力功work of external force principle of least work最小功原理外力势能potential energy ofexternal force principle of minimum complementary energy最小余能原理完全弹性perfect elasticity principle of minimumpotential energy最小势能原理位移diaplacement principle of virtual workfor elastic solid弹性体的虚功原理位移单值条件condition of single-value displacementprinciple plane of stress应力主面位移法diaplacement method pure bending of beam梁的纯弯曲位移模式displacement model quadratic surface ofstrain 应变二次曲面物理方程physical equation quadratic surface ofstress 应力二次曲面线膨胀系数linear expansioncoefficientRayleigh wave瑞利波线性弹性力学linear elasticity Rayleigh-Ritz method瑞利-里茨法线性热弹性力学linear thermal elasticity reciprocal theorem ofshear stress切应力互等定理相对位移张量relative displacementtensorreflection反射小变形假设infinitesimaldeformation hypothesisrefraction折射小挠度问题small deflection matrix relative displacementtensor相对位移张量形函数矩阵shape function matrix rigid body displacement刚体位移虚位移virtual displacement rotation components转动分量虚位移方程virtual displacementequationrotation vector转动矢量虚应变virtual strain Saint-Venant equation圣维南方程虚应力virtual stress Saint-Venant principle圣维南原理虚应力方程virtual stress equation Saint-Venant torsionfunction圣维南扭转函数线应变normal strain second law ofthermodynamics热力学第二定律相容方程consistency equation second order tensor二阶张量形变deformation semi-infinite body半空间体形变势能strain erergy semi-infinite plane半平面体形函数shape function semi-inverse method半逆解法虚功方程virtual work equation settlement沉陷哑指标dummy index shape function形函数杨氏模量Young modulus shape function matrix形函数矩阵一点的应变状态state of strain at a point shear modulus切变模量一点的应力状态state of stress at a point shear strain切应变以位移表示的平衡微分方程differential equation ofequilibrium in terms ofdisplacementshear stress切应力应变二次曲面quadratic surface ofstrain shear stress lines切应力线应变分量strain components simply connected body单连体应变能密度strain energy density single triangle series单三角级数解应变矩阵strain matrix small deflection matrix小挠度问题应变协调方程strain compatibilityequation spatial axisymmetryproblem空间轴对称问题应变余能密度density of comlementarystrain energyspherical wave球面波应变张量strain tensor state of strain at a point一点的应变状态应变张量不变量strain tensor invariant state of stress at a point一点的应力状态应变主方向principle direction ofstrain statically possible stress静力可能的应力应力变分方程stress variationalequation strain compatibilityequation应变协调方程应力边界条件stress boundarycondition strain components应变分量应力二次曲面quadratic surface ofstress strain energy density应变能密度应力分量stress components strain erergy形变势能应力环量stress circulation strain matrix应变矩阵应力解法stress method strain tensor应变张量应力矩阵stress matrix strain tensor invariant应变张量不变量应力协调方程equation of stresscompatibility stress boundarycondition应力边界条件应力张量stress tensor stress circulation应力环量应力张量不变量stress tensor invariant stress components应力分量应力主方向principle direction ofstress stress concentration ofholes孔口应力集中应力状态特征方程characteristic equationof stress statestress matrix应力矩阵应用弹性力学applied elasticity stress method应力解法有限元finite element stress method应力法圆柱体扭转torsion of circular bar stress tensor应力张量压力隧道pressure tunnel stress tensor invariant应力张量不变量应力法stress method stress variationalequation 应力变分方程应力主面principle plane of stress summation convention求和约定有限单元法finite element method superposition principle叠加原理折射refraction surface force面力整体等效结点荷载列阵global equivalent nodalload vectorsurface wave表层波整体结点位移列阵global nodaldisplacement vectorsymmetric tensor对称张量整体分析global analysis temperature change变温正应变normal strain theorem of uniquenesssolution解的唯一性定理正应力normal stress thermal elastic strainpotential热弹性应变势正交各向异性弹性体orthotropic elastic body thermal stress热应力置换张量permulation tensor thick plate厚板主应变principal strain thin plate薄板主应力principal stress third order tensor三阶张量主平面principal plane torsion扭转主切应力principal shear stress torsion of circular bar圆柱体扭转转动矢量rotation vector torsional rigidity扭转刚度转动分量rotation components total complementaryenergy总余能自由能密度free energy density total potential energy总势能自由指标free index transverse isotropicelastic body横观各向同性弹性体纵波longitudinal wave transverse wave横波总刚度矩阵global stiffness matrix unit tensor单位张量总势能total potential energy variationalmethod,energy method变分法(能量法)总余能total complementaryenergyvirtual displacement虚位移总体编码global coding virtual displacementequation虚位移方程最小功原理principle of least work virtual strain虚应变最小势能原理principle of minimumpotential energyvirtual stress虚应力最小余能原理principle of minimumcomplementary energyvirtual stress equation虚应力方程坐标曲面coordinate surface virtual work equation虚功方程坐标曲线coordinate curves volumetric strain体积应力整体分析global analysis volumetric strain体应变整体劲度矩阵global stiffness matrix work of external force外力功轴对称axisymmetry Young modulus杨氏模量。

cauchy应力张量

cauchy应力张量

cauchy应力张量1.引言- Cauchy应力张量是弹性力学中用于描述物体受力情况的重要工具。

-由Augustin-Louis Cauchy在19世纪初提出,是研究弹性体变形和应力分布的基础。

-本文将介绍Cauchy应力张量的定义、性质、应用以及其在力学中的重要性。

2.定义- Cauchy应力张量是描述物体上各点受力情况的数学对象。

-通常用一个3x3的矩阵来表示,其中每个元素代表物体中某一点在不同方向上的受力大小。

-张量的每个元素的大小和方向可以通过力学实验或数学推导得到。

3.性质-张量具有方向性,可以用于描述物体在不同方向上的应力分布。

-张量的对称性:Cauchy应力张量是一个对称矩阵,即张量的第i行第j列的元素等于第j行第i列的元素。

-张量的不变性:Cauchy应力张量的大小和方向在不同坐标系下是不变的,即坐标变换不会改变张量的值。

4.应用-应力分析:Cauchy应力张量可以用于分析物体在受力情况下的应力分布,从而帮助我们了解物体的变形和破坏情况。

-计算力学量:Cauchy应力张量可以用于计算物体的体积力、力矩、应力能等力学量。

-弹性模量:Cauchy应力张量可以通过应力和应变之间的关系来计算材料的弹性模量,从而评估材料的弹性性能。

5.重要性- Cauchy应力张量是弹性力学的基础,对于研究物体的应力分布、变形和破坏具有重要意义。

-在工程领域,Cauchy应力张量被广泛应用于材料力学、结构力学、工程地质等领域。

-在科学研究中,Cauchy应力张量的理论和方法也推动了力学和材料科学的发展。

6.结论- Cauchy应力张量是描述物体受力情况的数学对象,具有方向性和对称性。

-张量可以用于分析物体的应力分布、计算力学量、评估材料的弹性性能等。

- Cauchy应力张量在工程和科学研究中具有重要的应用价值,对推动相关领域的发展起到了重要作用。

patran中stress tensor的分类

patran中stress tensor的分类

patran中stress tensor的分类
在Patran中,stress tensor(应力张量)可以根据其计算方法和性质进行分类。

以下是常见的stress tensor分类:
1. 全局应力张量(Global Stress Tensor):这是最常见的应力张量,表示整个结构上的应力分布情况。

全局应力张量是通过有限元分析或其他数值方法计算得出的,用于描述结构在各个点上各个方向的应力分量。

2. 局部应力张量(Local Stress Tensor):局部应力张量是相对于某个局部坐标系的应力张量。

在Patran中,可以通过选择一个坐标系来计算和显示局部应力张量,以便研究结构的某个区域的应力分布情况。

3. 主应力张量(Principal Stress Tensor):主应力张量是在某个点上由全局应力张量计算得出的,表示在该点上的最大和最小主应力及其对应的应力方向。

主应力张量通常用于评估材料的强度和结构的稳定性。

4. 极值应力张量(Extreme Stress Tensor):极值应力张量是在结构中找到的最大和最小应力值及其对应的应力方向。

它可以用于确定结构中可能出现的应力集中区域、破裂点或疲劳寿命有限的区域。

5. 散度应力张量(Divergence Stress Tensor):散度应力张量描述了应力场中的应力变化率。

在Patran中,可以使用散度应力张量来评估结构是否处于平衡状态,以及结构是否存在所
谓的“应力冲击区”。

以上是Patran中常见的stress tensor分类。

根据需要,Patran 还提供了其他针对特定分析或设计目的的应力张量分类方法。

弹性力学大纲(工力64学时)

弹性力学大纲(工力64学时)

《弹性力学》课程教学大纲(总学分:4 总上课时数:64 实验课:0)mi@一、课程的性质与目的本课程是工程力学专业必修的一门主干专业课。

本课程的教学目的是使学生在学习理论力学和材料力学的基础上,进一步掌握分析复杂力学问题的基本原理和方法,培养学生利用一定的数学分析手段通过较严密的逻辑推理进行结构计算的能力,为学习有关专业课程以及进行结构分析和科研打下必要的力学基础。

二、课程内容的教学要求课程内容:0. Introduction to Elasticity:What is Elasticity? (什么是弹性力学);A Brief History of Elasticity (弹性力学简史);Tools of the Trade (弹性力学求解工具);Engineering Applications of Elasticity (工程应用);Fundamental Concepts in Elasticity (一些基本概念);Assumptions of Elasticity Theory (基本假设);Geometry of Elastic Solids (弹性力学研究对象);Topics That Will Be Covered (课程内容);Greek Alphabet (希腊字母)。

1. Mathematical Preliminary:Scalar, Vector and Matrix(标量、矢量、矩阵);Indicial Notation and Summation Convention(指标记法与求和约定);Kronecker Delta(克罗内克δ);Alternating Symbol(交错记号);Coordinate Transformation(坐标变换);Tensor(张量);Principal Values and Directions(特征值与特征向量);Tensor Algebra(张量代数);Tensor Calculus(张量微分);Integral Theorems(积分定理);Curvilinear Coordinates(曲线坐标系)。

力学专业英语词组+解释

力学专业英语词组+解释

拉力 tensile force正应力 normal stress切应力 shear stress静水压力 hydrostatic pressure集中力 concentrated force分布力 distributed force线性应力应变关系 linear relationship between stress andstrain弹性模量 modulus of elasticity横向力 lateral force transverse force轴向力 axial force拉应力 tensile stress压应力 compressive stress平衡方程 equilibrium equation静力学方程 equations of static比例极限 proportional limit应力应变曲线 stress-strain curve拉伸实验 tensile test‘屈服应力 yield stress极限应力 ultimate stress轴 shaft梁 beam纯剪切 pure shear横截面积 cross-sectional area挠度曲线 deflection curve曲率半径 radius of curvature曲率半径的倒数 reciprocal of radius of curvature纵轴 longitudinal axis悬臂梁 cantilever beam简支梁 simply supported beam微分方程 differential equation惯性矩 moment of inertia静矩 static moment扭矩 torque moment弯矩 bending moment弯矩对x的导数 derivative of bending moment with respect to x弯矩对x的二阶导数 the second derivative of bending moment with respect to x 静定梁 statically determinate beam静不定梁 statically indeterminate beam相容方程 compatibility equation补充方程 complementary equation中性轴 neutral axis圆截面 circular cross section两端作用扭矩 twisted by couples at two ends刚体 rigid body扭转角 twist angle静力等效 statically equivalent相互垂直平面 mutually perpendicular planes通过截面形心 through the centroid of the cross section 一端铰支 pin support at one end一端固定 fixed at one end弯矩图 bending moment diagram剪力图 shear force diagram剪力突变 abrupt change in shear force、旋转和平移 rotation and translation虎克定律 hook’s law边界条件 boundary condition初始位置 initial position、力矩面积法 moment-area method绕纵轴转动 rotate about a longitudinal axis横坐标 abscissa扭转刚度 torsional rigidity拉伸刚度 tensile rigidity剪应力的合力 resultant of shear stress正应力的大小 magnitude of normal stress脆性破坏 brittle fail对称平面 symmetry plane刚体的平衡 equilibrium of rigid body约束力 constraint force重力 gravitational force实际作用力 actual force三维力系 three-dimentional force system合力矩 resultant moment标量方程 scalar equation、矢量方程 vector equation张量方程 tensor equation汇交力系 cocurrent system of forces任意一点 an arbitrary point合矢量 resultant vector反作用力 reaction force反作用力偶 reaction couple转动约束 restriction against rotation平动约束 restriction against translation运动的趋势 tendency of motion绕给定轴转动 rotate about a specific axis沿一个方向运动 move in a direction控制方程 control equation共线力 collinear forces平面力系 planar force system一束光 a beam of light未知反力 unknown reaction forces参考框架 frame of reference大小和方向 magnitude and direction几何约束 geometric restriction刚性连接 rigidly connected运动学关系 kinematical relations运动的合成 superposition of movement固定点 fixed point平动的叠加 superposition of translation刚体的角速度 angular speed of a rigid body质点动力学 particle dynamics运动微分方程 differential equation of motion工程实际问题 practical engineering problems变化率 rate of change动量守恒 conservation of linear momentum定性的描述 qualitative description点线 dotted line划线 dashed line实线 solid line矢量积 vector product点积 dot product极惯性矩 polar moment of inertia角速度 angular velocity角加速度 angular accelerationinfinitesimal amount 无穷小量definite integral 定积分a certain interval of time 某一时间段kinetic energy 动能conservative force 保守力damping force 阻尼力coefficient of damping 阻尼系数free vibration 自由振动periodic disturbance 周期性扰动viscous force 粘性力forced vibration 强迫震动general solution 通解particular solution 特解transient solution 瞬态解steady state solution 稳态解second order partial differential equation 二阶偏微分方程external force 外力internal force 内力stress component 应力分量state of stress 应力状态coordinate axes 坐标系conditions of equilibrium 平衡条件body force 体力continuum mechanics 连续介质力学displacement component 位移分量additional restrictions 附加约束compatibility conditions 相容条件mathematical formulations 数学公式isotropic material 各向同性材料sufficient small 充分小state of strain 应变状态unit matrix 单位矩阵dilatation strain 膨胀应变the first strain invariant 第一应变不变量deviator stress components 应力偏量分量the first invariant of stress tensor 应力张量的第一不变量bulk modulus 体积模量constitutive relations 本构关系linear elastic material 线弹性材料mathematical derivation 数学推导a state of static equilibrium 静力平衡状态Newton‘s first law of motion 牛顿第一运动定律directly proportional to 与……成正比stress concentration factor 应力集中系数state of loading 载荷状态st venant’ principle 圣维南原理uniaxial tension 单轴拉伸cylindrical coordinates 柱坐标buckling of columns 柱的屈曲critical value 临界值stable equilibrium 稳态平衡unstable equilibrium condition 不稳定平衡条件critical load 临界载荷a slender column 细长杆fixed at the lower end 下端固定free at the upper end 上端自由critical buckling load 临界屈曲载荷potential energy 势能fixed at both ends 两端固定hinged at both ends 两端铰支tubular member 管型杆件transverse dimention 横向尺寸stability of column 柱的稳定axial force 轴向力elliptical hole 椭圆孔plane stress 平面应力nominal stress 名义应为principal stress directions 主应力方向axial compression 轴向压缩dynamic loading 动载荷dynamic problem 动力学问题inertia force 惯性力resonance vibration 谐振static states of stress 静态应力dynamic response 动力响应time of contact 接触时间length of wave 波长resonance frequency 谐振频率。

VASP全参数设置详解

VASP全参数设置详解

VASP参数设置详解软件主要功能:采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型l 计算材料的状态方程和力学性质(体弹性模量和弹性常数)l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF)l 计算材料的光学性质l 计算材料的磁学性质l 计算材料的晶格动力学性质(声子谱等)l 表面体系的模拟(重构、表面态和STM模拟)l 从头分子动力学模拟l 计算材料的激发态(GW准粒子修正)计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册INCAR文件:该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类:对所计算的体系进行注释:SYSTEM定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWAV定义电子的优化–平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG–电子部分优化的方法:ALGO,IALGO,LDIAG–电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX–自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF定义离子或原子的优化–原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW –分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS–离子弛豫收敛标准:EDIFFG定义态密度积分的方法和参数–smearing方法和参数:ISMEAR,SIGMA–计算态密度时能量范围和点数:EMIN,EMAX,NEDOS–计算分波态密度的参数:RWIGS,LORBIT其它–计算精度控制:PREC–磁性计算:ISPIN,MAGMOM,NUPDOWN–交换关联函数:GGA,VOSKOWN–计算ELF和总的局域势:LELF,LVTOT–结构优化参数:ISIF–等等。

构造地质学双语 3 stress

构造地质学双语 3 stress

Chapter 3 StressThe structures of the earth’s crust are the result of forces. In order to study the mechanism of various structural deformations, it is necessary to be familiar with some fundamental knowledge of the rocks behavior under the forces.1.Body forces and surface forcesForce is the ability to push or pull on an object. Forces have magnitude and direction and are therefore vector quantities.●Body forces(体力): act equally on every partic le in a body, regardless of position.Include: Gravitational forces(flow of glaciers, collapse of orogeny, rise of magmas.Electromagnetic forces.●Surface forces(面力): operate across surfaces of contact between adjacent parts of asystem - not necessarily a "physical surface". The applied forces between adjacentrock bodies belong to surface forces. Associated with three major types of load:Gravitational loading- due to weight of overlying rock; Thermal loading- due toheating and cooling of rocks; Displacement loading- due to large scale mechanicaldisturbance of rocks (plate collision and extension, magma emplacement(岩浆侵位),etc.).2.Stress on a planeWhen a material is loaded with a force, stress at some location in the material is defined as force per unit area.For example, consider a wire or cylinder, anchore d at the top, and hanging down. Some force F (e.g. a hanging weight) pulls at the bottom, as sketched:A is the original cross-sectional area(截面积) of the wire, and L is the original wire length. In this situation, the material experience s a stress, called an axial stress,denoted by the subscript a, andgiven byNotice that the dimensions(量纲) of stress are the s ame as those of pressure, i.e. force per unit area. Units of stress = Pa (Pascal) = N/m2. Also, kPa (kilopascal, 103 Pa), Mpa (megapascal,106 Pa) and GPa (gigapascal, 109 Pa).Stress is a vector(向量). Stress can be acting in any orientation to a plane. Stress acting on a single plane can be reduced to two vector components. These are the normal stress component and the shear stress component.●The normal stress(正应力)component has the symbol sigma n. It is the stresscomponent perpendicular to the plane.●The shear stress(剪应力)component has the symbol Tau. It is the stress componentthat is parallel to the axes of the plane.2.Stress on a pointA point defines the intersection of an infinite number of planes, each with a different orientation. So, the state of stress acting on a point describes all the stresses acting on these planes. Each of these planes will have the normal and shear stress components that have been described above. The magnitudes of these components vary as a function of the orientation of the plane. This property can be illustrated in three- dimensions to obtain the stress ellipsoid(椭球体).Visually, the length of the line of the stress vector is representative of the magnitude of the stress applied. The length of the stress vector will vary due to the orientation of the plane. Imagine this property being applied to the infinite number of planes that a point intersects. This report will not comment on how the lengths of the stress vectors are determined, only on what outcome we can derive from themIf we envelope these stress vectors, we obtain an ellipsoid. This is the stress ellipsoid. It fully describes the state of stress at a point. Here are some properties of the Stress Ellipsoid●The ellipsoid allows us to find the stress for any plane:An ellipsoid is defined by three axes. In the stress ellipsoid, these axes are defined as the principal stresses. These three principal stress axes are orthogonal to one another. They are also perpendicular to three plane. These planes have the only orientation where the shear stresses are equal to zero. Thus the planes only have the normal stress acting on them. These three planes are called the principal planes of stress. However, in this report we are mainly concerned with the axes of the ellipsoid.The principal stress(主应力)axes of the stress ellipsoid are labelled sigma1, sigma2 and sigma3. σ1 is the maximum principal stress(最大主应力)axis (the direction ofmaximum stress), σ2 is the intermediate principal stress axis. σ3 is the minimumprincipal stress axis(最小主应力)(the direction of minimum stress)3.States of stress (应力状态)There are several common states of stress that can be defined by the relationships of the principal stresses. These stress states are isotropic(各向同性应力), anisotropic(各向异性)and deviatoric(偏应力). Types of anisotropic states of stress are uniaxial(单轴), biaxial(双轴)and triaxial(三轴).∙An isotropic state of stress is where all three principal stresses are equal in magnitude.The ellipsoid is actually a sphere in this case. Sigma1=sigma2=sigma3。

VASP参数设置详解

VASP参数设置详解

VASP参数设置详解软件主要功能:采用周期性边界条件(或超原胞模型)处理原子、分子、团簇、纳米线(或管)、薄膜、晶体、准晶和无定性材料,以及表面体系和固体l 计算材料的结构参数(键长、键角、晶格常数、原子位置等)和构型l 计算材料的状态方程和力学性质(体弹性模量和弹性常数)l 计算材料的电子结构(能级、电荷密度分布、能带、电子态密度和ELF)l 计算材料的光学性质l 计算材料的磁学性质l 计算材料的晶格动力学性质(声子谱等)l 表面体系的模拟(重构、表面态和STM模拟)l 从头分子动力学模拟l 计算材料的激发态(GW准粒子修正)计算主要的四个参数文件:INCAR ,POSCAR,POTCAR ,KPOINTS,下面简要介绍,详细权威的请参照手册INCAR文件:该文件控制VASP进行何种性质的计算,并设置了计算方法中一些重要的参数,这些参数主要包括以下几类:●对所计算的体系进行注释:SYSTEM●定义如何输入或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWAV●定义电子的优化–平面波切断动能和缀加电荷时的切断值:ENCUT,ENAUG–电子部分优化的方法:ALGO,IALGO,LDIAG–电荷密度混合的方法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX–自洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF●定义离子或原子的优化–原子位置优化的方法、移动的步长和步数:IBRION,NFREE,POTIM,NSW –分子动力学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS–离子弛豫收敛标准:EDIFFG●定义态密度积分的方法和参数–smearing方法和参数:ISMEAR,SIGMA–计算态密度时能量范围和点数:EMIN,EMAX,NEDOS–计算分波态密度的参数:RWIGS,LORBIT●其它–计算精度控制:PREC–磁性计算:ISPIN,MAGMOM,NUPDOWN–交换关联函数:GGA,VOSKOWN–计算ELF和总的局域势:LELF,LVTOT–结构优化参数:ISIF–等等。

材料成型力学答案

材料成型力学答案

1-11-2答:是。

证明:因为,Snx=ex σx+ey τxy+ez τxz且主应力状态时切应力为0所以,Snx=ex σx 同理,Sny=ey σy Snz=ez σz因为,全应力Sn =ex Snx+ey Sny+ez Snz 所以Sn=σx+σy+σz 得证。

1-3:解: P x =x σ l +yx τmP y =xy τl + y σmP x =P y =0 l=sin α m=cos α∴x σsin α +yxτcos α = 0y σc o s α +xy τsin α= 01-4.解:对a 点应力张量第一不变量 1I =321σσσ++=40+20+0=60应力张量第二不变量 2I =)(133221σσσσσσ++-=-(40⨯20+20⨯0+40⨯0)=-800应力张量第三不变量 3I =321σσσ=0对b 点应力张量第一不变量 z y x I σσσ++=1=30+30+0=60应力张量第二不变量2222)(zx yz xy x z z y y x I τττσσσσσσ+++++-= = -(30⨯30+30⨯0+0⨯30)+102=-800应力张量第三不变量22232xyz xz y yz x zx yz xy z y x I τστστστττσσσ---+==0从上可知,a 点和b 点的应力张量第一、二、三不变量分别相等 因此,a 点与b 点的应力状态相同。

1-5 Solution: The Mohr ’s stress circle is shown in the following figure. The center of the circle is 2yx σσ+ and the radius is22)2(XYyx τσσ+-.It can be seen from the circle that:1σ=2yx σσ++22)2(XYyx τσσ+-=20402-+2230)24020(++=(302-10)MPa 3σ=(-302-10) MPa 2σ=0The principal shear stresses:121122332313135)225)222MPa MPa σσστσσστσστ-⎧===⎪⎪-⎪==-=⎨⎪-⎪==⎪⎩The maximum shear stress:13max 2σστ-==1-6 .解(1) l=m=n=1/3 S nx =xσl+xyτm+zxτn=1/3(50+30+80)=0S ny =xyτl+yσm+zyτn=1/3(30+0+30)=0S nz =xzτl+yzτm+zσn=1/3(-80-30+110)=0222n m l z y x n σσσσ++=+lm(xy τ+yx τ)+mn(yz τ+zy τ)+nl(zx τ+xz τ)=0n τ=0(2)mσ=1/3(xσ+yσ+zσ)=53.3s ij σ=⎪⎪⎪⎭⎫ ⎝⎛3.530003.530003.53 d ij σ=⎪⎪⎪⎭⎫ ⎝⎛------67.5630803033.5330803033.3 (3) =50+0+110=160=-50⨯110+302+(-80)2+(-30)2=2700=2⨯30⨯(-80)⨯(-30)-50⨯(-30)2-110⨯302=0027*******=--σσσ1σ=175.39,2σ=0,3σ=-15.39当1σ=175.39时,2221110308039.175303039.175********.175n m l n m l n nl m n m l l ++=+--=-=-+=⎪⎪⎭⎪⎪⎬⎫=>⎪⎩⎪⎨⎧-===79.023.057.0n m l 1-7. 解:(1)σ=31(σ1+σ2+σ3)=31(5-1+8)=4τ=31213232221)()()(σσσσσσ-+-+-=3.74 ⑵σm=31(σ1+σ2+σ3)=4z y x I σσσ++=12222)(zx yz xy x z z y y x I τττσσσσσσ+++++-=22232xy z xzy yz x zx yz xy z y x I τστστστττσσσ---+=σD ij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-405001 主应力状态 主偏差应力状态1-8 答:对一应力张量ij δ=⎪⎪⎪⎭⎫⎝⎛z y z y y xxz xδτττδτττδzyzxxy ,取m δ=(x δ+y δ+z δ)/3,则: Sij δ=⎪⎪⎪⎭⎫ ⎝⎛m m δ000δ000δm称为应力球张量。

工程力学专业英语词组+解释

工程力学专业英语词组+解释
拉力 tensile force
正应力 normal stress
切应力 shear stress
静水压力 hydrostatic pressure
集中力 concentrated force
分布力 distributed force
静定梁 statically determinate beam
静不定梁 statically indeterminate beam
相容方程 compatibility equation
补充方程 complementary equation
中性轴 neutral axis
圆截面 circular cross section
曲率半径的倒数 reciprocal of radius of curvature
纵轴 longitudinal axis
悬臂梁 cantilever beam
简支梁 simply supported beam
微分方程 differential equation
两端作用扭矩 twisted by couples at two ends
刚体 rigid body
扭转角 twist angle
静力等效 statically equivalent
相互垂直平面 mutually perpendicular planes
通过截面形心 through the centroid of the cross section
一端铰支 pin support at one end
一端固定 fixed at one end
弯矩图 bending moment diagram

应力偏量的物理意义

应力偏量的物理意义

应力偏量的物理意义1什么是应力?要理解应力当然先要理解什么是力。

很多人认为牛顿第二定律给出了力的定义。

但牛顿第二定律给出的力的计算式has no independent meaning([4])。

力的定义有一定的任意性,它也许毫无道理,但并不奇怪(It may be gratuitous, but it is not bizarre[4])。

Feynman先生认为上述定义是无用的([3]&12.1:The Newtonian statement above, however, seems to be a most precise definition of force, and one that appeals to the mathematician; nevertheless, it is completely useless),似乎不存在力的精确定义([3]&12.1: If you insist upon a precise definition of force, you will never get it!)。

既然两位诺贝尔奖获得者都这么说。

我们还是放弃在这里定义力,假设它是一种基本物理量为好。

但是要注明的是,在现代物理学中,力不是基本物理量,它一般被理解为能量的空间导数或动量的时间导数。

此时应力的定义也相应解释为能量密度的导数等(如[5])。

但本文不采用这种不直观的定义方法。

记过连续体一点x的任意切面(法线方向n)的表面力矢量场为f(n,x)。

Cauchy定理指出这里的即为Cauchy应力张量。

几乎所有的连续体力学教程都会写下上述Cauchy定理的证明,但严格的少见。

Cauchy定理仍然有议论的余地,如放松定理成立的光滑条件,考虑上述表面力矢量场是法线方向的空间导数的函数,将其导入微分几何学等([10]-[14])。

2为什么Cauchy应力张量是对称的考虑一物体,其动量为, 所受体积力为,面力为。

各向同性弹性介质非线性本构方程

各向同性弹性介质非线性本构方程

第27卷增刊I Vol.27 Sup. I 2010年 6 月 June 2010文章编号:1000-4750(2010)Sup.I-0001-05工程力学 ENGINEERING MECHANICS各向同性弹性介质非线性本构方程*李忱1,2,杨桂通1,黄执中3(1. 太原理工大学应用力学研究所,山西,太原 030024;2. 山西大学工程学院,山西,太原 030013;3. 北京航空航天大学,北京 100191)摘要:从张量函数出发,围绕共轭应力、应变变量,研究了各向同性非线性弹性介质各种形式的本构方程以及各种形式方程之间的关系。

推导出用张量不变量,标量不变量表示的两种形式非线性Green弹性介质本构方程。

证明了方程是完备的,不可约的。

作为应用举例,研究了橡胶材料的工程应用问题。

关键词:非线性;本构方程;不变量;共轭应力-应变;张量函数中图分类号:O343.5 文献标识码:AON CONSTITUTIVE EQUATIONS OF ISOTROPIC NON-LINEARELASTIC MEDIUM*LI Chen1,2 , YANG Gui-tong1 , HUANG Zhi-zhong3(1. Institute of Applied Mechanics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China;2. Engineering College of Shanxi University, Taiyuan, Shanxi 030013, China;3. Beijing University of Aeronautics and Astronautics, Beijing 100191, China) Abstract: By means of tensor function, conjugate variables of stress and strain, the different constitutive equations of isotropic non-linear elastic medium and the relations between different equation forms are studied. The constitutive equations of non-linear Green elastic medium in terms of tensor invariables and scalar invariables are deduced. It is proved that the equations are complete and irreducible. Finally the constitutive equations are applied to rubber materials as an illustration of engineering practice.Key words: non-linear; constitutive equation; invariant; conjugate stress and strain; tensor function非线性本构定律的一般研究和张量函数表示理论在连续介质力学中的应用,始于RivLin的工作[1的非线性本构方程,应采用可从实验观测到的最小数目的变量,强调了张量函数的表示不但是完备的,还应该是不可约的。

第五章-应力张量-应变张量与应力应变关系

第五章-应力张量-应变张量与应力应变关系

x
y
将旧系下的矢量分量
向新系坐标
投影可得矢量
在新坐标系下的分量
进一步可表为
令 则式(5-12)可简记为
(5-12)
这就是矢量的坐标变换公式。此式在三维空间中 同样成立,这时取
(5-12)
2. 笛卡尔张量
上面证明了,同一矢量,当坐标旋转时,其分量 之间满足关系式(5-12)。下面我们将证明如果 分量间满足关系(5-12),则它们表示同一矢量。
为张量
的主值, 为张量 的主方向。
求应力张量主应力及其相应的主方向的方法就可 以用来求任意二阶张量的主值和主方向 。
§5-5 物体内无限邻近两点位置 的变化 转动张量
在§2-4中,我们曾指出,物体的位形应由三部分 组成:物体的整体刚体位移,单元的变形以及由 相邻单元变形引起的本单元的方位的变化。
为三阶张量,
为二阶张量,其外积为
缩并,为
用不变性的形式记为
(5)张量对坐标的导数
在笛卡尔直角坐标系中,张量对坐标的导数 仍然是张量,且为比原张量高一阶的张量。
由坐标变换关系:
(1)
设 为三阶张量,在转轴以后的新 坐标系下为
分别称为应力张量的第一、第二、 第三不变量。
主应力的几个重要性质:
(1)主应力为实数
(2)主方向的正交性
设与主应力
对应的主方向为
如果

这表明,三个主方向是相互正交的。
如果

表明
的方向同时与 和 方向垂直;

位移矢量、力矢量都是一阶张量。
在§5-1中,已知坐标旋转变换时,新、旧系下 应力分量之间的坐标转换公式为

新修正偶应力理论Reddy型层合板稳定分析

新修正偶应力理论Reddy型层合板稳定分析

新修正偶应力理论Reddy型层合板稳定分析陈万吉;薛继伟【摘要】基于新修正偶应力理论建立了一个Reddy型复合材料层合板稳定性模型.该理论中曲率张量不对称,而偶应力矩张量对称.Reddy型层合板模型能够满足横向剪切应力为0的自由表面条件,而且横向剪切为二次函数,避免了常剪力一阶理论需要引入的剪力修正系数.为了便于工程应用,通过虚功原理推导了只含纤维材料尺度参数正交铺设的Reddy型层合板偶应力模型的稳定性方程,并以微尺度正交铺设四边简支层合方板为例,分析了不同铺设角和轴向载荷作用时临界载荷的细观尺度效应,并且与一阶剪切变形和Kirchhoff板理论结果对比.结果表明,本文建立的新修正偶应力Reddy型层合板模型更适合分析较厚的复合材料层合板稳定性的尺度效应.%In this paper,a model of composite laminated Reddy plate is established based on the new modified couple stress theory which contains asymmetric curvature tensor and symmetry couple stress tensor for stability analysis.The model of composite laminated Reddy plate can satisfy the free surface condition.At the same time,the transverse shear stress shows a quadratic parabola distribution without the correction factor which introduced in First-Order Shear Deformation Theory.For the convenience of engineering application,the stability equation of cross-ply composite laminated Reddy plate which merely involves the material length scale parameter of fiber derived by means of the virtual work principle.Moreover,a simply supported cross-ply composited laminated simple square plate is used to analyse the scale effect with different angle-plies and axial loads and the results are compared with the results fromMindlin and Kirchhoff plate theories.Numerical results show that the present model is more appropriate for capturing scale effects in the stability analysis of thicker composite laminated plate.【期刊名称】《计算力学学报》【年(卷),期】2017(034)002【总页数】6页(P162-167)【关键词】新修正偶应力理论;Reddy层合板;材料尺度参数;尺度效应;稳定性分析【作者】陈万吉;薛继伟【作者单位】沈阳航空航天大学辽宁省飞行器复合材料结构分析与仿真重点实验室,沈阳 110136;沈阳航空航天大学辽宁省飞行器复合材料结构分析与仿真重点实验室,沈阳 110136【正文语种】中文【中图分类】O317Fleck等[1]在细铜丝微扭转试验中发现,直径为12 μm铜丝的抗扭刚度是170 μm的3倍;McFarland等[2]在微米级聚丙烯悬臂梁弯曲试验中发现,相比于连续体力学计算结果,微米梁的实际抗弯强度至少大了4倍;Kouzeli等[3]在研究体积不同的颗粒增强铝基复合材料实验时发现,减小增强颗粒的尺寸,复合材料的强度显著增大。

VASP参数设置详解

VASP参数设置详解

VASP参数设置详解VASP参数设置详解软件主要功能:采⽤周期性边界条件(或超原胞模型)处理原⼦、分⼦、团簇、纳⽶线(或管)、薄膜、晶体、准晶和⽆定性材料,以及表⾯体系和固体l 计算材料的结构参数(键长、键⾓、晶格常数、原⼦位置等)和构型l 计算材料的状态⽅程和⼒学性质(体弹性模量和弹性常数)l 计算材料的电⼦结构(能级、电荷密度分布、能带、电⼦态密度和ELF)l 计算材料的光学性质l 计算材料的磁学性质l 计算材料的晶格动⼒学性质(声⼦谱等)l 表⾯体系的模拟(重构、表⾯态和STM模拟)l 从头分⼦动⼒学模拟l 计算材料的激发态(GW准粒⼦修正)计算主要的四个参数⽂件:INCAR ,POSCAR,POTCAR ,KPOINTS,下⾯简要介绍,详细权威的请参照⼿册INCAR⽂件:该⽂件控制VASP进⾏何种性质的计算,并设置了计算⽅法中⼀些重要的参数,这些参数主要包括以下⼏类:●对所计算的体系进⾏注释:SYSTEM●定义如何输⼊或构造初始的电荷密度和波函数:ISTART,ICHARG,INIWAV●定义电⼦的优化–平⾯波切断动能和缀加电荷时的切断值:ENCUT,ENAUG–电⼦部分优化的⽅法:ALGO,IALGO,LDIAG–电荷密度混合的⽅法:IMIX,AMIX,AMIN,BMIX,AMIX_MAG,BMIX_MAG,WC,INIMIX,MIXPRE,MAXMIX–⾃洽迭代步数和收敛标准:NELM,NELMIN,NELMDL,EDIFF●定义离⼦或原⼦的优化–原⼦位置优化的⽅法、移动的步长和步数:IBRION,NFREE,POTIM,NSW –分⼦动⼒学相关参数:SMASS,TEBEG,TEEND,POMASS,NBLOCK,KBLOCK,PSTRESS–离⼦弛豫收敛标准:EDIFFG●定义态密度积分的⽅法和参数–smearing⽅法和参数:ISMEAR,SIGMA–计算态密度时能量范围和点数:EMIN,EMAX,NEDOS–计算分波态密度的参数:RWIGS,LORBIT●其它–计算精度控制:PREC–磁性计算:ISPIN,MAGMOM,NUPDOWN–交换关联函数:GGA,VOSKOWN–计算ELF和总的局域势:LELF,LVTOT–结构优化参数:ISIF–等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The acceleration a3 contributes nothing to this
moment, as it is parallel to
x3. The arm for computing the
(1/2)x2 a3
moment of a1 about x3 is
(1/2)x2.
x3
x3
force, the relevant balance equation is
x1 x1 x2

m rxarxFS
x2
2
SYMMETRY OF THE STRESS TENSOR
The control volume has dimensions x1, x2 and x3. The acceleration vectors a1, a2 and a3 are located at the center of the control volume. We wish to compute the moment of the acceleration vector rxaabout the x3 axis, as a prelude to computing mrxa.
At the end of the lecture we show how the result generalizes to the other shear stresses (23 = 32 and 13 = 31) and the case for which the body force (gravity) is included.
mass m, and body
(gravitational) force Fg . Newton’s second law requires that
maFSFg
Conservation of momentum requires the following. Where rdenotes an arbitrarily chosen moment arm,
The arm for computing the
moment of a2 about x3 is (1/2)x1.
The contribution to the
moment from a2 is thus
a2
1 2
x1

The x3 component of mrxa
is thus given as
x3
x1x2x3a22 1x1a12 1x2
a2
a3
a1 a2 x3 x1 x1 x2
(1/2)x1
(1/2)x1
4
x2
SYMMETRY OF THE STRESS TENSOR
We now wish to compute
rxபைடு நூலகம்S
where
FSi jinjdA S
x3
Face B (right)
No contribution from 23 because 23 is parallel to x3
SYMMETRY OF THE STRESS TENSOR
The stress tensor ij satisfies the symmetry condition
ij ji
This condition is a consequence of the conservation of moment of
m rxarx(F SF g)
1
SYMMETRY OF THE STRESS TENSOR
A complete proof that the stress tensor ij is symmetric is rather tedious. Here we simplify the problem by a) considering only the surface force and b) demonstrating that 12 = 21.
The contribution to the
a1 a2 x3
moment from a1 is thus

a1
1 2
x
2
a1
(1/2)x2
x1 x1 x2
3
x2
SYMMETRY OF THE STRESS TENSOR
The contribution to the moment about the x3 axis from a2 is computed as follows.
We demonstrate the desired
result (12 = 21) by taking moments about the x3 axis of the illustrated control volume,
which is moving with the fluid.
x3
Since we have dropped the body
momentum. Consider a volume of moving fluid (rather than a fixed
volume through which fluid flows in and accelerating at rate a and subjected to
out) containing surface force FS
We do this by considering the contributions from each of the six faces of the control volume.
x3
x3 x1 x1 x2
x2
5
SYMMETRY OF THE STRESS TENSOR
Face A (left)
A
No contribution from 21
B
because 21 is parallel to
arm (1/2)x1.
No contribution from 23 because 23 is parallel to x3
Only contribution is: 22x2x1x321x1
相关文档
最新文档