基因芯片技术及其应用(精)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因芯片技术及其应用
李家兴1001080728 园艺107
基因芯片( gene chip, DNA chip, DNA microarray 又被称为DNA芯片、DNA微阵列和生物芯片, 是指以大量人工合成的或应用常规分子生物学技术获得的核酸片段作为探针, 按照特定的排列方式和特定的手段固定在硅片、载玻片或塑料片上, 一个指甲盖大小的芯片上排列的探针可以多达上万个[1- 3]。在使用时,先将所研究的样品标记, 然后与芯片上的寡聚核苷酸探针杂交,再用激光共聚焦显微镜等设备对芯片进行扫描, 配合计算机软件系统检测杂交信号的强弱, 从而高效且大规模地获得相关的生物信息。此项技术将大量的核酸分子同时固定在载体上, 一次可检测分析大量的DNA和RNA, 解决了传统核酸印迹杂交技术复杂、自动化程度低、检测目标分子数量少、成本高、效率低等的缺点[4]。此外, 通过设计不同的探针阵列( array , 利用杂交谱重建DNA序列, 还可实现杂交测序( sequencing by hybridization,SBH [5]。目前, 该技术在基因表达研究、基因组研究、序列分析及基因诊断等领域已显示出重要的理论和应用价值[6]。
1 基因芯片技术的产生和发展
21 世纪将是生命科学的世纪, 基因芯片技术是近年产生的一项生物高新技术, 它将像计算机一样成为21 世纪即将来临的又一次新兴革命的奠基石[7,8]。基因芯片技术的产生与发展与人类基因组计划(Human Genome Project, HGP 的研究密不可分[9]。人类基因组的大量信息需要有一种快速、敏感、平行检测的技术,随着越来越多的基因被解码, 基因的功能研究成为迫切需要解决的课题。在这一背景下, 以基因芯片技术为主体的生物芯片诞生了, 它被誉为是20 世纪90 年代中期以来影响最深远的重大科技进展之一。基因芯片技术充分结合灵活运用了寡核苷酸合成、固相合成、PCR 技术、探针标记、分子杂交、大规模集成电路制造技术、荧光显微检测、生物传感器及计算机控制和图像处理等多种技术, 体现了生物技术与其他学科相结合的巨大潜力。基因芯片技术的理论基础是核酸杂交理论, Southern 印迹可以看作是生物芯片的雏形; 其后, 人们又发明了一个以膜片为介质基础的克隆库扫描
技术, 引入了克隆与杂交型号相对应的概念, 在此基础上, 分格筛选技术得到了应用; 1989 年Ed Southern提出了利用在玻片表面固定的核苷酸探针进行基因序列测定的实验设计; 而真正使基因芯片技术发展并实用化的, 是得益于非孔固相支持介质的使用和高密度原位合成核苷酸两项技术的发明, 从而推进了基因芯片产品的商业化。在美国硅谷, 1991 年Affymax 公司开始了生物芯片的研制, 1992 年从Affymax 派生出来的世界上第一家专门生产生物芯片的公司Affymetrix 宣告成立。
Forder( 现任Affymetrix 总裁及其同事在20 世纪90 年代初发明了一种利用光刻技术在固相支持物上光导合成多肽的方法, 在此基础上于1993 年设计了一种寡核苷酸生物芯片, 1996年制造出了第一块商业化的基因芯片。1994 年在美国能源部防御研究计划署、俄国科学院和俄国人类基因组计划1 000 多万美元的资助下研制出了一种生物芯片, 用于检测β- 地中海贫血病人血样的基因突变。1998 年美国的纳米基因公司(Nanogen 利用生物芯片在世界上构建了首例缩微芯片实验室, 该成果被美国期刊选入1998 年世界10 大科技突破之中。最近几年, 国际上掀起了基因芯片设计热潮, 使基因芯片技术得到不断完善和发展, 出现了多种芯片技术。最初的芯片主要目标是用于DNA序列的测定、基因表达图谱鉴定及基因突变体的监测和分析, 因此称为基因芯片。但目前这一技术已扩展到非核酸领域, 如已出现了蛋白质芯片分析技术、Biacore 技术和丝网印刷技术等。在这一发展趋势下, 芯片技术现多被称为生物芯片技术。根据芯片上固定的探针的不同, 可将生物芯片分为基因芯片、蛋白质芯片、细胞芯片、组织芯片等; 根据原理的不同, 可以
分为元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片; 根据所进行的反应过程, 可将生物芯片分为生物样品的制备芯片、PCR 芯片、毛细管电泳芯片及PCR 毛
细管电泳芯片等[10- 13]。
2 基因芯片的技术原理及制作
基因芯片技术是分子生物学中常用分子杂交技术的扩展。其基本做法是将大量的核酸片段有规则地固定在某种介质上,制成芯片, 然后将要检测的样品加以标记, 再与做成的芯片充分
杂交, 加以洗脱, 用图像显示出来。目前适用于制作芯片的载体材料主要有半导体硅片、玻璃片、金属片、各种有机高分子制作的薄膜等, 其中以载玻片最常用。基因芯片的制作一般有2 种方法, 一种为原位合成( in situ synthesis , 适用于寡核苷酸; 一种为
合成后交联( post- synthetic attachment , 多用于大片段DNA, 有时也适用于寡核苷酸, 甚至mRNA。
3 基因芯片的使用操作
基因芯片操作的基本过程如下: 分离纯化的生物样品先进行扩增、标记, 然后与芯片上的探针阵列杂交, 再对杂交信号进行检测与分析, 最后得出待测样品的遗传信息。3.1 样品的准备从血液或组织中得到的生物样品(DNA或mRNA 一般不能与芯片反应, 需进行一定程度的扩增, 而且对样品中的靶序列( 靶分子需进行高效而特异的扩增, 以获取样品中的靶分子, 如cDNA片段、PCR 产物、mRNA、寡核苷酸等。靶分子的标记主要采用荧光标记法, 也可用生物素、放射性同位素等标记。样品的标记在其PCR、RT- PCR 扩增或逆转录过程中进行。常用荧光色素Cy- 3、Cy- 5 或生物素标记dNTP。DNA聚合酶选择荧光标记的dNTP 为底物, 参与引物延伸, 这样新合成的DNA片段中就掺入了荧光分子。对于cDNA, 一般是在反转录过程中掺入荧光基因[25]。
3.2 分子杂交
在此步骤中发生靶标样品核酸分子与( 芯片探针之间的选择性反应。芯片杂交属于固- 液相杂交, 与膜上杂交相似。芯片杂交中固定在芯片上的往往是成千上万的核酸探针, 而与之杂交的则是经过标记的核酸样品。待测样品经扩增、标记等处理后,可与基因芯片上探针阵列进行分子杂交。靶分子与探针分子之间的杂交是芯