齿轮泵的介绍
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
齿轮泵的介绍
齿轮泵是依靠泵缸与啮合齿轮间所形成的工作容积变化和移动来输送液体或使之增压的回转泵。
由两个齿轮、泵体与前后盖组成两个封闭空间,当齿轮转动时,齿轮脱开侧的空间的体积从小变大,形成真空,将液体吸入,齿轮啮合侧的空间的体积从大变小,而将液体挤入管路中去。
吸入腔与排出腔是靠两个齿轮的啮合线来隔开的。
齿轮泵的排出口的压力完全取决于泵出处阻力的大小。
齿轮泵的基本概念:齿轮泵的概念是很简单的,即它的最基本形式就是两个尺寸相同的齿轮在一个紧密配合的壳体内相互啮合旋转,这个壳体的内部类似“8”字形,两个齿轮装在里面,齿轮的外径及两侧与壳体紧密配合。
来自于挤出机的物料在吸入口进入两个齿轮中间,并充满这一空间,随着齿的旋转沿壳体运动,最后在两齿啮合时排出。
在术语上讲,齿轮泵也叫正排量装置,即像一个缸筒内的活塞,当一个齿进入另一个齿的流体空间时,液体就被机械性地挤排出来。
因为液体是不可压缩的,所以液体和齿就不能在同一时间占据同一空间,这样,液体就被排除了。
由于齿的不断啮合,这一现象就连续在发生,因而也就在泵的出口提供了一个连续排除量,泵每转一转,排出的量是一样的。
随着驱动轴的不间断地旋转,泵也就不间断地排出流体。
泵的流量直接与泵的转速有关。
实际上,在泵内有很少量的流体损失,这使泵的运行效率不能达到100%,因为这些流体被用来润滑轴承及齿轮两侧,而泵体也绝不可能无间隙配合,故不能使流体100%地从出口排出,所以少量的流体损失是必然的。
然而泵还是可以良好地运行,对大多数挤出物料来说,仍可以达到93%~98%的效率。
对于粘度或密度在工艺中有变化的流体,这种泵不会受到太多影响。
如果有一个阻尼器,比如在排出口侧放一个滤网或一个限制器,泵则会推动流体通过它们。
如果这个阻尼器在工作中变化,亦即如果滤网变脏、堵塞了,或限制器的背压升高了,则泵仍将保持恒定的流量,直至达到装置中最弱的部件的机械极限(通常装有一个扭矩限制器)。
对于一台泵的转速,实际上是有限制的,这主要取决于工艺流体,如果传送的是油类,泵则能以很高的速度转动,但当流体是一种高粘度的聚合物熔体时,这种限制就会大幅度降低。
齿轮泵的驱动装置:齿轮泵由一个独立的电机驱动,可有效地阻断上游的压力脉动及流量波动。
在齿轮泵出口处的压力脉动可以控制在1%以内。
在挤出生产线上采用一台齿轮泵,
可以提高流量输出速度,减少物料在挤出机内的剪切及驻留。
外啮合齿轮泵是应用最广泛的一种齿轮泵,一般齿轮泵通常指的就是外啮合齿轮泵。
它的结构如图5-14所示,主要有主动齿轮、从动齿轮、泵体、泵盖和安全阀等组成。
泵体、泵盖和齿轮构成的密封空间就是齿轮泵的工作室。
两个齿轮的轮轴分别装在两泵盖上的轴承孔内,主动齿轮轴伸出泵体,由电动机带动旋转。
外啮合齿轮泵结构简单、重量轻、造价低、工作可靠、应用范围广。
齿轮泵工作时,主动轮随电动机一起旋转并带动从动轮跟着旋转。
当吸入室一侧的啮合齿逐渐分开时,吸入室容积增大,压力降低,便将吸人管中的液体吸入泵内;吸入液体分两路在齿槽内被齿轮推送到排出室。
液体进入排出室后,由于两个齿轮的轮齿不断啮合,便液体受挤压而从排出室进入排出管中。
主动齿轮和从动齿轮不停地旋转,泵就能连续不断地吸入和排出液体。
泵体上装有安全阀,当排出压力超过规定压力时,输送液体可以自动顶开安全阀,使高压液体返回吸入管。
内啮合齿轮泵,它由一对相互啮合的内齿轮、及它们中间的月牙形件、泵壳等构成。
月牙形件的作用是将吸入室和排出室隔开。
当主动齿轮旋转时,在齿轮脱开啮合的地方形成局部真空,液体被吸A泵内充满吸入室各齿间,然后沿月牙形件的内外两侧分两路进入排出室。
在轮齿进入啮合的地方,存在于齿间的液体被挤压而送进排出管。
齿轮泵除具有自吸能力、流量与排出压力无关等特点外,泵壳上无吸A阀和排出阀,具有结构简单,流量均匀、工作可靠等特性,但效率低、噪音和振动大、易磨损,用来输送无腐蚀性、无固体颗粒并且具有润滑能力的各种油类,温度一般不超过70’℃,例如润滑油、食用植物油等。
一般流量范围为0.045~30ms/h,压力范围为0.7—20MPa,工作转速为1200—4000r/min。
齿轮泵的结构特点:(1)结构简单,价格便宜;
(2)工作要求低,应用广泛;
(3)端盖和齿轮的各个齿间槽组成了许多固定的密封工作腔,只能用作定量泵。
齿轮采用具有国际九十年代先进水平的新技术--双圆弧正弦曲线齿型圆弧。
它与渐开线齿轮相比,最突出的优点是齿轮啮合过程中齿廓面没有相对滑动,所以齿面无磨损、运转平衡、无困液现象,噪声低、寿命长、效率高。
该泵摆脱传统设计的束缚,使得齿轮泵在设计、生产和使用上进入了一个新的领域。
泵设有差压式安全阀作为超载保护,安全阀全回流压力为泵额定排出压力1.5倍。
也可在允许排出压力范围内根据实际需要另行调整。
但是此安全阀不能作减压阀长期工作,需要时可在管路上另行安装。
该泵轴端密封设计为两种形式,一种是机械密封,另一种是填料密封,可根据具体使用情况和用户要求确定。
齿轮泵的结构特点:优点:结构简单紧凑、体积小、质量轻、工艺性好、价格便宜、自吸力强、对油液污染不敏感、转速范围大、能耐冲击性负载,维护方便、工作可靠。
缺点:径向力不平衡、流动脉动大、噪声大、效率低,零件的互换性差,磨损后不易修复,不能做变量泵用。
困油现象 原因:液压油在渐开线齿轮泵运转过程中,因齿轮相交处的封闭体积随时间改变,常有一部分的液压油被密封在齿间,如图所示,称为困油现象,因液压油不可压缩将使外接齿轮产生极大的振动和噪声,影响系统正常工作。
措施:在前后盖板或浮动轴套上开卸荷槽开设卸荷槽的原则:两槽间距为最小闭死容积,而使闭死容积由大变小时与压油腔相通,闭死容积由小变大时与吸油腔相通。
泄漏现象 齿轮泵的泄漏较大,外啮合齿轮运转时泄漏途径有以下三点:一为齿轮顶隙,其次为测隙,第三为啮合间隙。
其中端面侧隙泄漏较大,占总泄漏量的80%-85%,当压力增加时,前者不会改变,但后者挠度大增,此为外啮合齿轮泵泄漏最主要的原因,容积效率较低,故不适合用作高压泵。
解决方法:端面间隙补偿采用静压平衡措施,在齿轮和盖板之间增加一个补偿零件,如浮动轴套、浮动侧板。
受力不均衡现象 右侧是压油腔,左侧是吸油腔,两腔的压力是不平衡的;另外压油腔因齿顶泄漏,其压力为递减。
两不均衡压力作用于齿轮和轴一径向不平衡压力,油压越高,该力越大,加速轴承磨损,降低轴承寿命,使轴弯曲,加大齿顶与轴孔磨损。
防止措施:采用压力平衡槽或缩小压油腔。
齿轮泵(外啮合)常规设计的设计要点:
设计齿轮泵时,应在保证所需要的性能和寿命的前提下,尽可能使泵的尺寸小、重量轻、制造容易、成本低。
因此,合理选择泵的各参数及尺寸非常关键,设计时通常给出泵的额定压力和几何排量作为原始设计参数。
根据外啮合齿轮泵排量公式3102-⨯KzmB π可知只要确定参数z 、B 、m ,泵的结构尺 寸就大体确定了,泵的结构尺寸确定后,在进行相关的结构设计和强度校核。
1. 选择齿数Z 齿数的确立应根据液压泵设计要求从流量、压力脉动、机械效率等方面综合考虑。
从增大排量的方面考虑,在齿轮分度圆直径不变的条件下,齿数越少。
模数越大,泵的排量就越大。
从泵的性能考虑,齿数减少,对改善困油现象及提高机械效率有力,但泵的
流量及压力脉动增加。
根据对齿轮泵噪声和减少体积的要求,为保证流量脉动系数不致太大,一般要求最少齿数不小于6。
航空齿轮燃油泵常用齿数z=10~14 ,要求不高的滑油泵最少齿数可到6,小于标准压力角所对应得最小齿数,为避免根切,要进行变位修正。
负荷不大的齿轮,齿数在14以上,可以不进行修正,允许产生一定的根切。
2. 确定齿轮模数m 齿轮模数决定齿形尺寸,在一定的齿轮外廓尺寸下,模数大,齿间面积大,供油量大,故模数应尽可能取大。
根据统计,航空发动机燃油泵的齿轮模数可以表示为Q m )6.0~4.0(= 式中Q 为理论供油量(升/分)。
3. 确定齿宽B 增大齿宽可使齿间容积和容积效率得到提高,有利于增加供油量。
但是齿宽过大将使齿轮液压作用面和轴承的液压负载增大;使齿牙沿齿宽的接触精度要求提高。
特别是高压齿轮泵,需要对齿宽进行限制。
齿宽B 一般可根据模数m 大小确定即m B )8~6(=,一般齿宽m B 12<。
4. 4. 选定转速 转速一般根据发动机的情况选定。
5. 确定齿轮压力角 一般为标准压力角 20=α,亦可根据需要适当扩大,但不可超过
30
6.确定变位系数及齿轮尺寸
7. 验算齿顶切向速度
8. 卸荷槽尺寸设计
9.计算齿轮负荷
10. 设计轴承
11. 选定断面衬套形式,设计衬套尺寸
12. 设计壳体结构,决定进、出口形状、尺寸
齿轮泵输入扭矩、功率的计算
O 为主动齿轮,O'为从动齿轮,油从下往上流动。
齿高是h ,齿根圆半径为r ,齿轮厚为T ,齿数为k 。
A 、B 、C 为高压油侧,齿轮有效受压部分,a 、b 、c 是低压侧有效受压部分。
低压侧连接油箱,压力视为0,只考虑高压侧的受压。
从几何关系能算出一个齿室的截面积S
k rh h k r h r S )
2(546.0)(546.022
2+⨯=-+⨯⨯=πππ
其中系数 )(546.0S S S '+=
这样计算出齿轮泵的排量V
T rh h K T S V ⨯+⨯=∙∙=)2(546.02π
高压油对A 、B 产生的压力,对主动齿轮O 来说都是顺时针力矩,而C 产生的 是逆时针力矩, 其中,A 、B 、C 的有效面积都是hXT 因此,主动齿轮O 输入力矩为
2
1)2()2(2∙+∙∙=+⨯⨯⨯=hr h T P r h T h P M (不考虑齿轮泵的机械损耗) π
ππPV V P T V T P M ≈∙∙⨯=∙⨯⨯∙∙=5.0546.021546.0 即齿轮泵的输入扭矩与泵的排量、排出压力关系为
πV
P M ⨯= 其中排量单位为rec m l ,压力单位为MPa
331030
1030--⨯⨯⨯=⨯∙∙=n V P n M Q π(Kw ) 其中n 为齿轮泵的转速,如果要换算到发动机的输出,还要算上发动机的变速比和发动机的传送效率。