高一数学上学期第三次月考试题1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

郸城一高2016届高一第三次考试

数学试卷

一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是

符合题目要求的.)

1.已知全集U=R ,集合A={}1>x x ,集合B={}

043≤-x x ,满足如图所示的阴影部分的集合是

A .{}

1>x x B .⎭⎬⎫

⎩⎨⎧≤

<341x x C .{}1≤x x D .⎭

⎬⎫

⎩⎨⎧>34x x 2.函数x

x y 11+

-=的定义域为

A .}10|{≤≤x x

B .}0|{≥x x

C .}01

|{<≥x x x ,或 D .}10|{≤

32)(+=的零点所在的区间是

A .)1,2(--

B .)0,1(-

C .)1,0(

D .)2,1(

4.已知⎪⎩

⎨⎧<-=>=)0(1)0(0)0(1)(x x x x f ,,,

,⎩⎨⎧=)(0)(1)(为无理数,为有理数,x x x g ,则))((πg f 的值为

A .1

B .0

C .1-

D .π

5.已知2

.12=a , 0.2

12b -⎛⎫= ⎪

⎝⎭

,2log 25=c ,则a ,b ,c 的大小关系为

A .b a c <<

B .a b c <<

C .c a b <<

D .a c b << 6.已知函数93)(2

--+=a ax x x f 的值域为)+∞,0[,则=)1(f

A .6

B .6-

C .4

D .13

7.已知奇函数()f x 在0x ≥时的图象如图所示,则不等式的解集为

A .(1,2)

B .(2,1)--

C .(2,1)

(1,2)-- D .(1,1)-

8.已知2-

+=的图象上,则一定有

x

2

1

y

A .321y y y <<

B .123y y y <<

C .231y y y <<

D .312y y y << 9.函数2

2x

y x =-的图像大致是

A. B. C. D. 10.定义在R 上的偶函数f (x )满足:对任意的x 1, x 2∈(-∞,0)(x 1≠x 2),

f (x 2)-f (x 1)

x 2-x 1

<0,则

A .f (-3)<f (-2)<f (1)

B .f (1)<f (-2)<f (-3)

C .f (-2)<f (1)<f (-3)

D .f (-3)<f (1)<f (-2)

11.已知函数⎩⎨⎧>

++≤

+-=2

12

1

21212)(log 1

2)(x x x ax x x f a 是定义域上的单调减函数,则a 的取值范围是

A .)1,21[

B .)43,21[

C .]1,21[

D .]4

3,21[

12.定义在R 上的函数()f x 满足()()4f x f x -=-,当2x >时,()f x 单调递增,如果

124x x +<,且()()12220x x --<,则()()12f x f x +的值

A .恒小于0

B .恒大于0

C .可能为0

D .可正可负 二、填空题:(本大题共4小题,每小题5分,共20分.)

13.设)(x f 是定义在R 上的奇函数,当0≤x 时,x x x f -=2

2)(,则=)1(f _______. 14.若函数m y x +=+1

)

5

1( 的图象不过第一象限,则实数m 的取值范围是__________.

15.函数)32(log 2

2

1++-=x x y 的单调递减区间为_________.

16.已知函数)(x f =,若直线m y =与函数)(x f y =的三个不同

交点的横坐标依次为321,,x x x ,则321x x x ++的取值范围是________.

三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题满分10分)

计算下列各式的值.

(1)()

2

33

20

2

125

.027********-

-

+⎪⎭

⎫ ⎝⎛---⎪⎭

⎝⎛π

(2)2lg 5lg )2(lg 2ln 5lg 25.6log 23

log 15.22⋅++++++-e

18.(本小题满分12分)

设集合{}

04|2=+=x x x A ,{}

01)1(2|2

2=-+++=a x a x x B

(1)若A B B ⋃=,求a 的值. (2)若A B B ⋂=,求a 的值组成的集合C. 19.(本题满分12分)

已知函数)(x f 为奇函数,当0≥x 时,x x f =)(. ⎩

⎨⎧<-≥=0)(0

)()(x x f x x f x g ,,,

(1)求当0

间]55[,-上的图象;(不用列表描点)

(2)根据已知条件直接写出)(x g 的解析式,

并说明)(x g 的奇偶性.

20.(本小题满分12分)

某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.

(1)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数的表达式.

(2)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本) 21.(本小题满分12分)

设函数2

()21

x f x a =-

+. (1)求证:不论a 为何实数()f x 总为增函数;

(2)确定a 的值,使()f x 为奇函数及此时()f x 的值域. 22.(本小题满分12分)

已知)10(),

1

(1

)(log 2<<--=

a x x a a x f a

(1)求f (x )的解析式;

(2)判断并证明f (x )的奇偶性与单调性;

(3)若不等式0)4()13(2

>-+-k t f t f 对任意]3,1[∈t 都成立,求实数k 的取值范围.

相关文档
最新文档