微分算子法实用整理总结

微分算子法实用整理总结
微分算子法实用整理总结

微分算子法

微分算子法分类小结

一、n 阶微分方程

1、二阶微分方程: 22d y d x +p(x)x

d dy

+q(x)y=f(x)

2、n 阶微分方程: y (n)+a 1y (n-1)

+a 2y (n-2)+a 3y (n-3)+ ... +a n y=f(x)

二、微分算子法 1、定义符号:

D x

=d d

,D 表示求导,如Dx 3=3x 2,D n y 表示y 对x 求导n 次;D 1表示积分,如D 1

x=

x 212 ,

n D

1

x 表示 对x 积分n 次,不要常数。 2、计算

将n 阶微分方程改写成下式:

D n y +a 1D n-1y +a 2D n-2y +a 3D n-3y + ... +a n-1Dy +a n y=f(x) 即 (D n +a 1D n-1+a 2D n-2+a 3D n-3+ ... +a n-1D +a n )y=f(x) 记F(D)=D n +a 1D n-1+a 2D n-2+a 3D n-3+ ... +a n-1D +a n

规定特解:

y

*

=)(F(D)1

x f

3、F (D )

1

的性质

(1)性质一:

F(D)

1

e

kx

=F(k)1e kx

(F (k) 不等于0)

注:若k 为特征方程的m 重根时,有

F (D )

1e kx = x m (D)F 1(m)e kx = x m

(k)F 1(m)e kx

(2)性质二:

F(D)

1

e kx

v (x)= e

kx

k)

F(D 1

+v (x)

(3)性质三:特解形如F(D)1sin(ax)和 F(D)1

cos(ax)

i.考察该式(该种形式万能解法):

F(D)

1

e

iax

利用性质一和二解出结果,并取相应的虚部和实部 作为原方程的特解 注:欧拉公式 e

iax

= cos(ax)+i sin(ax)

虚数 i 2

= -1

ii.若特解形如) F(D 12sin(ax)和) F(D 1

2cos(ax),也

可按以下方法考虑: 若F (-a 2)≠ 0,则

)

F (D 12sin(ax)=)F(-a 12sin(ax) )F(D 1

2cos(ax)=)F(-a 12cos(ax)

若F (-a 2)= 0 ,则按i.进行求解,或者设-a 2为F (-a 2)

的m 重根,则

)

F(D 12sin(ax)=x m

)(D F 12(m)sin(ax)

)F(D 12cos(ax)=x m

) (D F 12(m)cos(ax)

(4)性质四(多项式):

F(D)1(x p +b 1x p-1+b 2x p-2+...+b p-1x+b p )

= Q(D)(x

p

+b 1x p-1+b 2x p-2

+...+b p-1x+b p )

注:Q (D)为商式,按D 的升幂排列,且D 的最高次幂为p 。

(5)性质五(分解因式):

)(F (D )1x f =)()

(F (D)F 1

21x f D ?=)()(F (D)F 112x f D ? (6)性质六:

))()((F(D)

1

21x f x f +=)(F(D)1)(F(D)121x f x f +

三、例题练习

例1. 22d y

d x

+4y =e

x

则(D

2

+4)y =e x

,特解y

*

=4

12+D e

x

=4

112

+e

x

=5

1e x

(性质一)

例2、 y (4)+y =2cos(3x ),则(D 4+1)y = 2cos(3x )

特解y

*

=

1

1

4

+D 2cos(3x )= 2114+D cos(3x ) = 2

1)3-(122+cos(3x )=41

1

cos(3x )(性质三)

例3、22d y d x -

4x

d dy +4y = x 2e

2x ,则(D 2-

4D +4)y = x

2

e

2x

特解y

*

=+4

4-12D D x 2

e 2x = e

2x 2-212

)(+D x 2 = e

2x

12

D

x 2

= 121x 4e

2x (性质二) 例4、33d y d x -322d y

d x +3

x

d dy - y =

e x

,则(D 3

-3D 2

+3D -1)y =e

x

特解y *

=31-1)(D e x =e x 3

1-11)

(+D ?1 =e

x

3

1D ?1=6

1x 3e x

(性质二) 例5、33d y d x -

y =sinx ,则(D 3-

1)y =sinx ,特解y *=1

-1

3D sinx

考察

1

-13

D

e ix

1

-13

D

e ix =

1-i 13

e ix

=1

i 1-+e ix =21-i e ix

=21

-i (cosx +i sinx)

=-21(cosx +sinx)+i 21

(cosx -

sinx)

取虚部为特解y *

=2

1(cosx -

sinx) (性质一、三)

例6、22d y d x +y =cosx ,则(D 2

+1)y =cosx ,特解y *=1

12+D cosx

考察1

12+D e ix

1

12+D e ix = i) i)(D -(1+D e ix =i)i)(D -(1+D e ix

=i 2i)-(1?D e ix =e ix i)-i (i 21

+?D ?1

=-2i x e ix =2

1

xsinx -i 21xcosx

取实部为特解y *

=2

1

xsinx (性质一、二、三)

例7、44d y d x

-y =e

x ,则(D 4

-1)y = e

x

特解y *

=

1

-14D e x

=

)

11)(D 1)(D -(1

2++D e

x

=

)

11)(11)(1-(1

2++D e

x

=

1-1D ?2121?e x =1-1D 41e x

=41e x 1-11+D ?1=41x e x (性质一、二、五)

例8、

2

2d y d x +y =x 2-x +2 , 则(D 2

+1)y = x 2-x +2

特解y

*

=

1

12

+D (x 2

-x +2) =(1-D 2)(x 2

-x +2)=x 2

-x (性质四)

例9、22d y d x +2x

d dy +2y =x

2e -x

,则(D 2

+2D +2)y =x 2e

-x

特解y

*

=1)1(12++D x 2e -x

=e -x 1)11-(12++D x 2

=e

-x

1

12+D x 2=e -x (1-D 2

)x 2=e -x (x 2-2) (性质二、四)

例10、22d y

d x

+y =xcosx ,则(D 2+1)y =xcosx ,

特解y

*

=112+D xcosx ,考察1

1

2+D x e ix

1

12+D x e

ix =i)i)(D -(1+D x e ix =e ix

i)i i)(D -i (1+++D x

=e

ix

i)2(D 1+D x =e ix )4

i 21(1D

D +x =e

ix

)4

1i 2x (1+D x =e ix )x 41i 4x

(2

+x

=(cosx +i sinx))x 41

i 4x (2+x

=

4

1(xcosx +x 2sinx)+i 41(xsinx-x 2

cosx) 取实部为特解y *

=41

(xcosx +x 2sinx) (性质二、三、四)

某些线性微分方程的算子解法

第23卷第5期 唐山师范学院学报 2001年9月 Vol. 23 No.5 Journal of Tangshan Teachers College Sep. 2001 ────────── 收稿日期:2001-06-20 作者简介:崔万臣(1953-),男,河北丰南人,唐山师范学院数学系讲师。 - 41 - 某些线性微分方程的算子解法 崔万臣 (唐山师范学院 数学系,河北 唐山 063000) 摘 要:给出了某些基本类型的线性微分方程的算子解法。 关键词:算子;逆算子;线性方程;特征根 中图分类号:O17 文献标识码:A 文章编号:1009-9115(2001)05-0041-02 在常微分方程中,方程求解问题是很重要的内容。一般常微分方程的求解不是容易的,但常系数线性方程的求解已经有了较多的方法。本文给出某些基本类型的常系数线性微分方程的算子解法。 1 算子的概念和性质 定义1 记d D dx =;222d D dx =… …n n n d D dx =。称2n D,D ......D 极其多项式n n 11n 1n L(D)D a D a D a --=++++ 为微分算子,简称算子。于是方程n n 11n 1n n n 1d d d y a y ......a y a y f (x)dx dx dx ---++++=可记为L(D)y f (x)= 定义2 设L(D)为一算子,若存在算子H(D)使L(D)(H(D)f (x))f (x)=,则称H(D)为L(D)的逆算子,记为1H(D)L(D)=于是方程L(D)y=f(x)等价于1y f (x)L(D) =可以证明,算子具有以下性质(证明略) 1.11221122L(D)(a y a y )a L(D)y a L(D)y +=+ 2.()()()()1212L (D)L D y L D L D y = 3. x x 11e e (L()0)L(D)L()λλ=λ≠λ 4.()x x 11e f (x)e f x L(D)L(D ) λλ=+λ 2 某些基本类型微分方程的算子解法 类型Ⅰ k L(D)y f (x)=,其中k f (x)为x 的k 次多项式。分两种情况讨论 1°若L(0)≠0,由逆算子定义直接可求得特解k k 1y f (x)Q(D)f (x)L(D) == 2°若L(0)=0,此时,()()()s 11L(D)D L D L 00,s 0=≠> 由性质2,方程的特解k k s 111y f (x)f (x)L(D)D L(D) == 例1 求方程22(D 1)y x 5+=+特解

常微分方程知识点总结

常微分方程知识点总结 常微分方程知识点你学得怎么样呢?下面是的常微分方程知识 点总结,欢迎大家阅读! 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中 就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的 问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似, 也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。但是无论在方程

的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常 有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星 的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

微分算子法

高阶常微分方程的微分算子法 摘自《大学数学解题法诠释》 .徐利治,.冯克勤,.方兆本,.徐森林,.1999 高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。但是有一个例外:常系数线性微分方程。我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐 次方程的特解。本节主要讨论微分算子法。 1.求方程230y y y ''''''--=的通解. 解 记() n n y D y =,将方程写成 32230D y D y Dy --= 或3 2 (23)0D D D y --= 我们熟知,其实首先要解特征方程 32230D D D --= 得0,1,3D =-故知方程有三特解31,,x x e e -,由于此三特解为线性无关,故立得通解 3123x x y C C e C e -=++ 注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是 1111()()()()() n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++=L 其中系数1(),,()n a x a x L 是某区间(,)a b 上的连续函数,上述方程又可写成 1 1()(()())n n n L y D a x D a x y -≡+++L ()f x = 可以把上面括号整体看作一种运算,常称为线性微分算子。本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。 2.求解 61160y y y y ''''''-+-= 解 写成 32 (6116)0D D D y -+-= 从特征方程 3 2 06116D D D =-+- (1)(2)(3)D D D =--- 解得 1,2,3D =共三实根,故可立即写成特解 23123x x x y C e C e C e =++ 3.求解 39130y y y y ''''''-++= 解 写成 32 (3913)0D D D y -++= 或 2 (1)(413)0D D D y +-+= 特征方程 2 (1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin 3x e x 从而通解是 22123cos3sin 3x x x y C e C e x C e x -=++ 4.求(4) 45440y y y y y ''''''-+-+=之通解. 解 写成 432 (4544)0D D D D y -+-+= 或 22 (2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1 (cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2 (1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1 (cos )x -),解得 1sin ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+

(完整版)常微分方程的大致知识点

= + ?x = + ?x = + ?x 常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有 x 或 y 的项) y x 4、一阶线性非齐次方程 常数变易法,或 y = e ? a ( x )dx [? b (x )e -? a ( x )dx dx + C ] 5、伯努力方程 令 z = y 1-n ,则 dz = (1 - n ) y -n dy ,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 dx 6、全微分方程 若?M ?y 若 ?M ?y dx = ?N ,则u (x , y ) = C ,(留意书上公式) ?x ≠ ?N ,则找积分因子,(留意书上公式) ?x f (x f ( y , (二)毕卡序列 x y 1 y 0 0 x f (x , y 0 )dx , y 2 y 0 0 x f (x , y 1 )dx , y 3 y 0 0 f (x , y 2 )dx ,其余类推 (三)常系数方程 1、常系数齐次L (D ) y = 0 方法:特征方程 7、可降阶的二阶微分方程 d 2 y = , dy ) ,令 dy = d 2 y p ,则 = dy dx 2 d 2 y = dx dy ) ,令 dx dy = p ,则 dx 2 d 2 y dx = p dp dx 2 dx dx dx 2 dy 8、正交轨线族

? ? dy 单的实根, , y = C e 1x + C e 2 x 1 2 1 2 单的复根1, 2 = ± i , y = e x (C cos x + C 2 sin x ) 重的实根 = = , y = (C + C x )e x 1 2 1 2 重的复根1, 2 = ± i ,3, 4 = ± i , y = e x [(C + C 2 x ) c os x + (C 3 + C 4 x ) sin x ] 2、常系数非齐次L (D ) y = 方法:三部曲。 f (x ) 第一步求L (D ) y = 0 的通解Y 第二步求L (D ) y = f (x ) 的特解 y * 第三步求L (D ) y = f (x ) 的通解 y = Y + y * 如何求 y * ? 当 f (x ) = P m (x )e x 时, y * = x k Q (x )e x 当 f (x ) = P m (x )e ux cos vx + Q (x )e ux sin vx 时, y * = x k e ux (R (x ) cos vx + S m (x ) sin vx ) 当 f (x ) 是一般形式时, y * = ? x W (x ,) f ()d ,其中 W(.)是郎斯基行列式 x 0 W () (四)常系数方程组 方法:三部曲。 第一步求 dX dt = A (t ) X 的通解, Φ(t )C 。利用特征方程 A - I = 0 ,并分情况讨论。 第二步求 dX dt 第三步求 dX dt = A (t ) X + f (t ) 的特解, Φ(t )?Φ-1 (s ) f (s )ds ,(定积分与不定积分等价) = A (t ) X + f (t ) 的通解, Φ(t )C + Φ(t )?Φ-1 (s ) f (s )ds (五)奇点与极限环 ? dx = ax + b y dt ? ? = cx + dy 1、分析方程组? dt 的奇点的性质,用特征方程: A - I = 0 特征方程的根有 3 种情况:相异实根、相异复根、相同实根。第一种情况:相异实根,1 ≠ 2 1 1 m m m

微分算子法典型例题讲解

高阶常微分方程的微分算子法 高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。但是有一个例外:常系数线性微分方程。我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐 次方程的特解。本节主要讨论微分算子法。 1.求方程230y y y ''''''--=的通解. 解 记()n n y D y =,将方程写成 32230D y D y Dy --= 或32(23)0D D D y --= 我们熟知,其实首先要解特征方程 32230D D D --= 得0,1,3D =-故知方程有三特解31,,x x e e -,由于此三特解为线性无关,故立得通解 3123x x y C C e C e -=++ 注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是 1111()()()()() n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++= 其中系数1(),,()n a x a x 是某区间(,)a b 上的连续函数,上述方程又可写成 1 1()(()())n n n L y D a x D a x y -≡+++ ()f x = 可以把上面括号整体看作一种运算,常称为线性微分算子。本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。 2.求解 61160y y y y ''''''-+-= 解 写成 32(6116)0D D D y -+-= 从特征方程 3 2 06116D D D =-+- (1)(2)(3)D D D =--- 解得 1,2,3D =共三实根,故可立即写成特解 23123x x x y C e C e C e =++ 3.求解 39130y y y y ''''''-++= 解 写成 32(3913)0D D D y -++= 或 2(1)(413)0D D D y +-+= 特征方程 2(1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin3x e x 从而通解是 22123cos3sin3x x x y C e C e x C e x -=++ 4.求(4)45440y y y y y ''''''-+-+=之通解. 解 写成 432(4544)0D D D D y -+-+= 或 22(2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1(cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2(1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0 ()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1(cos )x -),解得 1s i n ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+ 12cos sin cos ln cos sin C x C x x x x x =+++

偏微分方程理论的归纳与总结

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程); (2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性. 椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空

常微分方程的大致知识点

常微分方程的大致知识点Last revision on 21 December 2020

常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有x y y x 或的项) 4、一阶线性非齐次方程 常数变易法,或])([)()(?+??=-C dx e x b e y dx x a dx x a 5、伯努力方程 令n y z -=1,则dx dy y n dx dz n --=)1(,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 6、全微分方程 若x N y M ??=??,则C y x u =),(,(留意书上公式) 若 x N y M ??≠??,则找积分因子,(留意书上公式) 7、可降阶的二阶微分方程 ),(22dx dy x f dx y d =,令dx dy dx y d p dx dy ==22,则 ),(22dx dy y f dx y d =,令dy dp p dx y d p dx dy ==22,则 8、正交轨线族 (二)毕卡序列 ?+=x x dx y x f y y 0),(001,?+=x x dx y x f y y 0),(102,?+=x x dx y x f y y 0),(203,其余类推 (三)常系数方程 1、常系数齐次0)(=y D L 方法:特征方程 单的实根21,λλ,x x e C e C y 2121λλ+= 单的复根i βαλ±=2,1,)sin cos (21x C x C e y x ββα+= 重的实根λλλ==21,x e x C C y λ)(21+= 重的复根i βαλ±=2,1,i βαλ±=4,3,]sin )(cos )[(4321x x C C x x C C e y x ββα+++=

微分算子法中D的运算

微分算子法中D 的运算 D :微分的意思,如Dx 2=2x , D 3x 2=0 D 1:积分的意思,如D 1x=2x 2 ******************************************************************************* 定理1:)()(F k F e e D kx kx = 注意使用公式时的前后顺序 例: x x x x e e k e e D 22222225)12()1()1(=+=+=+ 推论:) (1)(F 1k F e e D kx kx = (F(k)≠0) 例:x e y y 2=+'' x e y D 22)1(=+ x x x e e e D y 22222*5 1121)1(1=+=+= ****************************************************************************** 定理2:)(sin sin )(F 22a F ax ax D -?= )(cos cos )(F 22a F ax ax D -?= 注意使用公式时的前后顺序 推论:) (1sin sin )(F 122a F ax ax D -?= (F(-a 2) ≠0) 例:x y y 3cos 24=+) ( x y D 3cos 2)1(4 =+ x x x x D x D y 3cos 4113cos 82121)3(13cos 23cos 1)(123cos )1(1222224*=??=+-??=?+?=?+?=遇到sinax,cosax 时,要凑出D 2来。F(D)里有D 2,即可代换为-a 2,代换后继续算F(D)。 ******************************************************************************* 定理3: )()()()(F x v k D F e x v e D kx kx += 注意使用公式时的前后顺序 推论:)() (1)()(F 1x v k D F e x v e D kx kx += 例:x e x y y 22y 44?=+'-''

2018年电大第三版常微分方程答案知识点复习考点归纳总结参考

习题1.2 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为:

dx dy =- y x y x +- 令x y =u 则dx dy =u+x dx du 代入有: -1 12++u u du=x 1 dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32+=0 解:原方程为:dx dy =y e y 2e x 3 2 e x 3-3e 2y -=c. 9.x(lnx-lny)dy-ydx=0 解:原方程为: dx dy =x y ln x y 令 x y =u ,则dx dy =u+ x dx du

姚老师最爱的两招:表格法与微分算子法

姚老师最爱的两招:表格法与微分算子法,因为效率高,所以喜欢,仅此而已!录入可是字字辛苦,希望大家珍惜哦! 一、 分部积分的表格法 分部积分主要针对被积函数为两类函数乘积的类型,主要可以归纳为反幂、对幂、幂三、幂指和三指五种,幂可以扩展为多项式函数,三主要指正弦和余弦两类三角函数,基本原则是把其中一类函数拿去凑微分,遵循“反对幂三指”、越往后越先凑微分的原则,前四种称为“终止模式”,最后一种称为“循环模式”。当涉及到幂函数(多项式函数)次数较高时,需多次用到分部积分,计算较繁且易出错,因此介绍一个推广公式: 定理:设(),()u u x v v x ==有1n +阶连续导数,则 (1)()(1)(2)(3)1(1)''''''(1)n n n n n n n uv dx uv u v u v u v u vdx +---++=-+-++-? ?。(此定理及证 明可略,仅告诉大家,我不是瞎编乱造,而是有理论依据的!) 【证:用数学归纳法。 当0n =时,''uv dx uv u vdx =-??。 设1n k =≥时,(1)()(1)(2)(3)1(1)''''''(1)k k k k k k k uv dx uv u v u v u v u vdx +---++=-+-+ +-?? (*) 则当1n k =+时,(2)(1)(1)(1)'k k k k uv dx udv uv u v dx ++++==-???, 将上式的'u (*)式中的u ,则有 (1)()(1)(2)1(2)'''''''(1)k k k k k k u v dx u v u v u v u vdx +--++=-+++-? ?, 从而(2)(1)()(1)(2)2(2)''''''(1)k k k k k k k uv dx uv u v u v u v u vdx ++--++=-+-+ +-??,得证。】 上述式子并不好记,它的一个直观表达就是表格法,如下表。 1))1)2) v v +-- 下面通过例子给予演示: (1)“幂三”型 例1.1 52(325)cos x x x xdx +-+? 解:

微分算子法

高阶常微分方程的微分算子法 撰写 摘自《大学数学解题法诠释》 .徐利治,.冯克勤,.方兆本,.徐森林,.1999 高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。但是有一个例外:常系数线性微分方程。我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐 次方程的特解。本节主要讨论微分算子法。 1.求方程230y y y ''''''--=的通解. 解 记() n n y D y =,将方程写成 32230D y D y Dy --= 或32 (23)0D D D y --= 我们熟知,其实首先要解特征方程 32230D D D --= 得0,1,3D =-故知方程有三特解31,,x x e e -,由于此 三特解为线性无关,故立得通解 3123x x y C C e C e -=++ 注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是 1111()()()()() n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++=L 其中系数1(),,()n a x a x L 是某区间(,)a b 上的连续函数,上述方程又可写成 11()(()())n n n L y D a x D a x y -≡+++L ()f x = 可以把上面括号整体看作一种运算,常称为线性微分算子。本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。 2.求解 61160y y y y ''''''-+-= 解 写成 32 (6116)0D D D y -+-= 从特征方程 3 2 06116D D D =-+- (1)(2)(3)D D D =--- 解得 1,2,3D =共三实根,故可立即写成特解 23123x x x y C e C e C e =++ 3.求解 39130y y y y ''''''-++= 解 写成 32 (3913)0D D D y -++= 或 2 (1)(413)0D D D y +-+= 特征方程 2 (1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin 3x e x 从而通解是 22123cos3sin 3x x x y C e C e x C e x -=++ 4.求(4) 45440y y y y y ''''''-+-+=之通解. 解 写成 432 (4544)0D D D D y -+-+= 或 22 (2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1 (cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2 (1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1 (cos )x -),解得 1sin ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

微分算子法

微分算子法

高阶常微分方程的微分算子法 摘自《大学数学解题法诠释》 .徐利治,.冯克勤,.方兆本,.徐森林,.1999 高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。但是有一个例外:常系数线性微分方程。我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐 次方程的特解。本节主要讨论微分算子法。 1.求方程230y y y ''''''--=的通解. 解 记() n n y D y =,将方程写成 3 2 230D y D y Dy --= 或3 2(23)0 D D D y --= 我们熟知,其实首先要解特征方程 32230 D D D --= 得0,1,3D =-故知方程有三特解 31,,x x e e -,由于此三特解为线性 无关,故立得通解 31 23x x y C C e C e -=++ 注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是 1111()()() ()() n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++=L 其中系数1 (),,()n a x a x L 是某区间 (,) a b 上的连续函数,上述方 程又可写成 11()(()())n n n L y D a x D a x y -≡+++L () f x = 可以把上面括号整体看作 一种运算,常称为线性微分 算子。本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。 2.求解 61160y y y y ''''''-+-= 解 写 成 32(6116)0 D D D y -+-=

常微分方程期末试题知识点复习考点归纳总结参考

期末考试 一、填空题(每空2 分,共16分)。 1.方程22d d y x x y +=满足解的存在唯一性定理条件的区域是 . 2. 方程组 n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 维空间中的一条积分曲线. 3.),(y x f y '连续是保证方程),(d d y x f x y =初值唯一的 条件. 4.方程组???????=-=x t y y t x d d d d 的奇点)0,0(的类型是 5.方程2)(2 1y y x y '+'=的通解是 6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是 7.二阶线性齐次微分方程的两个解)(1x y ?=,)(2x y ?=成为其基本解组的充要条件是 8.方程440y y y '''++=的基本解组是 二、选择题(每小题 3 分,共 15分)。 9.一阶线性微分方程 d ()()d y p x y q x x +=的积分因子是( ). (A )?=x x p d )(e μ (B )?=x x q d )(e μ (C )?=-x x p d )(e μ (D )?=-x x q d )(e μ 10.微分方程0d )ln (d ln =-+y y x x y y 是( ) (A )可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程 11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( ). (A) 1±=x (B)1±=y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程222+-='x y y ( )奇解. (A )有一个 (B )有无数个 (C )只有两个 (D )无 三、计算题(每小题8分,共48分)。 14.求方程22 2d d x y xy x y -=的通解 15.求方程0d )ln (d 3=++y x y x x y 的通解 16.求方程2 221)(x y x y y +'-'=的通解

微分算子法典型例题讲解

高阶常微分方程的微分算子法 3.求解 39130y y y y ''''''-++= 解 写成 32 (3913)0D D D y -++= 或 2 (1)(413)0D D D y +-+= 特征方程 2 (1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin 3x e x 从而通解是 22123cos3sin 3x x x y C e C e x C e x -=++ 4.求(4) 45440y y y y y ''''''-+-+=之通解. 解 写成 432 (4544)0D D D D y -+-+= 或 22 (2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1 (cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2 (1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1 (cos )x -),解得 1sin ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+ 12cos sin cos ln cos sin C x C x x x x x =+++

常微分方程基本知识点

常微分方程基本知识点 第一章 绪论 1. 微分方程的概念(常微分与偏微),什么是方程的阶数,线性与非线性,齐次与非齐次,解、特解、部分解和通解的概念及判断! (重要) 例:03)(22=-+y dx dy x dx dy (1阶非线性); x e dx y d y =+22sin 。 2.运用导数的几何意义建立简单的微分方程。(以书后练习题为主) (习题1,2,9题) 例:曲线簇cx x y -=3满足的微分方程是:__________. 第二章 一阶方程的初等解法 1.变量分离方程的解法(要能通过适当的变化化成变量分离方程);(重要) 2.齐次方程的解法(变量代换);(重要) 3.线性非齐次方程的常数变易法; 4.分式线性方程、贝努利方程、恰当方程的概念及判断(要能熟练的判断各种类型的一阶方程)(重要); 例题:(1).经变换_____y c u os =___________后, 方程1cos sin '+=+x y y y 可化为___线性_____方程; (2).经变换_____y x u 32-=____________后, 方程1 )32(1 '2+-=y x y 可化为____变量分离__方程; (3).方程0)1(222=+-dy e dx ye x x x 为:线性方程。

(4).方程221 'y x y -=为:线性方程。 5.积分因子的概念,会判断某个函数是不是方程的积分因子; 6.恰当方程的解法(分项组合方法)。(重要) 第三章 一阶方程的存在唯一性定理 1.存在唯一性定理的内容要熟记,并能准确确定其中的h ; 2.会构造皮卡逐步逼近函数序列来求第k 次近似解!(参见书上例题和习题 3.1的1,2,3题) 第四章 高阶微分方程 1.n 阶线性齐次(非齐次)微分方程的概念,解的概念,基本解组,解的线性相关与线性无关,齐次与非齐次方程解的性质; 2.n 阶线性方程解的Wronskey 行列式与解的线性相关与线性无关的关系; 3.n 阶线性齐次(非齐次)微分方程的通解结构定理!!(重要) 4.n 阶线性非齐次微分方程的常数变易法(了解); 5.n 阶常系数线性齐次与非齐次微分方程的解法(Eurler 待定指数函数法确定基本解组),特解的确定(比较系数法、复数法);(重要) 例题:t te x x 24=-'',确定特解类型? (习题4.2相关题目) 6.2阶线性方程已知一个特解的解法(作线性齐次变换)。(重要) 7.其他如Euler 方程、高阶方程降阶、拉普拉斯变换法等了解。

相关文档
最新文档