微流控系统对神经元轴突生长和再生研究的意义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微流控系统对神经元轴突生长和再生研究的意义
成年哺乳动物中枢神经系统受损会导致持久性神经功能缺失并且其功能的恢复很有限。在过去的10年里,科学家们不断加大科研力度进行神经再生研究并以实现功能恢复为终极目标。许多研究都集中在防止进一步神经损伤或病理损伤后功能连接的修复。相比于周围神经系统,成人中枢神经系统难以再生的主要原因有两个基本方面:环境抑制的影响和成年中枢神经系统神经元生长能力的减弱。由于以往研究已证实损伤的中枢神经系统轴突可长入周围神经移植物中,科学家们已经鉴别出多个中枢神经系统轴突生长抑制因子,它们主要与中枢神经系统髓磷脂的退变(如Nogo,MAG,OMGP),以及胶质瘢痕(如硫酸软骨素蛋白聚糖CSPGs)有关。然而,这些胞外抑制性信号的单独阻断往往不足以使多数受伤的轴突实现长距离再生,同时成熟中枢神经系统神经元的固有再生能力也是决定轴突再生长一个重要因素。来自美国德克萨斯州A&M大学的Jianrong Li 教授提出联合治疗策略增强神经元的生长能力并在此期间克服环境抑制因素,这给更好的轴突再生和神经修复指明了方向。相关研究内容发表在2014年10月第19期《中国神经再生研究(英文版)》杂志上。
条块分割的神经元培养平台轴突分离示意图
Article: "Microfluidic systems for axonal growth and regeneration research " by Sunja Kim1,3, Jaewon Park2,3, Arum Han2,3, Jianrong Li1,3 (1 Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA ; 2 Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA; 3 Institution for Neuroscience, Texas A&M University, College Station, Texas, USA)
Kim S, Park J, Han A, Li J. Microfluidic systems for axonal growth and regeneration research. Neural Regen Res. 2014;9(19):1703-1705.
欲获更多资讯:Neural Regen Res
Microfluidic systems for axonal growth and regeneration research
Damage to the adult mammalian central nervous system (CNS) often results in persistent neurological deficits with limited recovery of functions. The past decade has seen increasing research efforts in neural regeneration research with the ultimate goal of achieving functional recovery. Many studies have focused on prevention of further neural damage and restoration of functional connections that are compromised after injury or pathological damage. Compared to the peripheral nervous system, the failure of the adult CNS to regenerate is largely attributed to two basic aspects: inhibitory environmental influences and decreased growth capabilities of adult CNS neurons. Since early demonstration of successful growth of injured CNS axons into grafted peripheral nerve, multiple CNS axonal growth inhibitory factors have been identified and are mainly associated with degenerating CNS myelin (such as Nogo, MAG, OMgp) and with glial scar (such as chondroitin sulfate proteoglycans, CSPGs). However, blockade of these extracellular inhibitory signals alone is often insufficient for the majority of injured axons to achieve long-distance regeneration, as intrinsic regenerative capacity of mature CNS neurons is also a critical determinant for axon re-growth. Prof. Jianrong Li from Texas A&M University, USA proposed that combinatory strategies that enhance neuronal growth and in the meantime overcome environmental inhibitory cues appear to confer better axonal regeneration and neural repair. The relevant study has been published in the Neural Regeneration Research (Vol. 9, No. 19, 2014).
Schematic illustrations of compartmentalized neuron culture platforms for axon isolation
Article: "Microfluidic systems for axonal growth and regeneration research " by Sunja Kim1,3, Jaewon Park2,3, Arum Han2,3, Jianrong
Li1,3 (1 Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA ; 2 Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA; 3 Institution for Neuroscience, Texas A&M University, College Station, Texas, USA)
Kim S, Park J, Han A, Li J. Microfluidic systems for axonal growth and regeneration research. Neural Regen Res. 2014;9(19):1703-1705.