隧道超前地质预报(地质雷达)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隧道超前地质预报(地质雷达)
目录
1 概况............................. - 1 -2物探方法基本原理 ................. - 1 -
2.1 基本原理............................................ - 1 -
2.2 探地雷达在勘查中的基本参数........ - 2 -
2.2.1 电磁脉冲波旅行时............... - 2 -
2.2.2 电磁波在介质中的传播速度- 3 -
2.2.3 电磁波的反射系数............... - 3 - 2.3 数据处理方法................... - 3 -
2.3.1 距离归一化................................... - 3 -
2.3.2确定波速........................................ - 3 -
2.3.3 水平和垂直滤波........................... - 4 -
3 设计文件描述的预报段地质条件..... -
4 -
4 掌子面地质编录及地质分析......... - 4 -
5 探底雷达测试与结果分析........... -
6 -
5.1 测线的布置................. - 6 -
5.2 数据处理结果............... - 7 -
5.3解译分析................... - 8 -
6.结论和建议....................... - 9 -附件一:掌子面地质编录表.......... - 10 -
1 概况
###隧道为@@@@高速公路G7标段的在建隧道。
隧道位于@@市@@县@@村@@沟右岸。
隧址区属后龙门山推覆构造带,围岩岩性主要为钙质千枚岩、凝灰千枚岩、石英千枚岩。
因受构造影响,岩体局部(一般为不同岩性接触带)片(劈)理极发育,岩石呈薄片状、碎片状结构,岩质极软,破碎。
该破碎带为地表水入渗、地下水储存、运移的通道。
受四川省广甘高速公路有限责任公司委托,通过公开竞标的方式,@@@@@@@@@@@@@@@承担了@@高速公路YB2合同段(含G7标段@@隧道)的超前地质预报工作。
我单位组织相关人员于2010年1月7日对##高速公路G7标段##隧道进口右线进行了现场探测工作。
探测的掌子面里程桩号为K20+262,预测前方30米的不良地质情况。
本次现场测试方法采用探地雷达电磁波反射法,采用设备为美国GSSI公司生产的SIR-20 GPR 地质雷达,采用天线频率为100MHz。
2物探方法基本原理
2.1 基本原理
探地雷达是一种用于确定地下介质分布情况的高频电磁技术,基于地下介质的电性差异,探地雷达通过一个天线发射高频电磁波,另一个天线接收地下介质反射的电磁波,并对接收到的信号进行处理、分析、解译。
其详细工作过程是:由置于地面的天线向地下发射一高频电磁脉冲,当其在地下传播过程中遇到不同电性(主要是相对介电常数)界面时,电磁波一部分发生折射透过界面继续传播,另一部分发生反射折向地面,被接收天线接收,并由主机记录,在更深处的界面,电磁波同样发生反射与折射,直到能量被完全吸收为止(见图1、2)。
反射波从被发射天线发射到被接收天线接收的时间称为双程走时t,当求得地下介质的波速时,可根据测到的精确t值折半乘以波速求得目标体的位置或埋深,同时结合各反射波组的波幅与频率特征可以得到探地雷达的波形图像,从而了解场地内目标体的分布情况。
图1 探地雷达电磁波传播示意图a
图2 探地雷达电磁波传播示意图b
一般,岩体、混凝土等的物质的相对介电常数为4—8,空气相对介电常数为1,而水体的相对介电常数高达81,差异较大,如在探测范围内存在水体、溶洞、断层破碎带,则会在雷达波形图中形成强烈的反射波信号,再经后期处理,能够得到较为清晰的波形异常图。
在众多地质超前预报手段中,使用探地雷达预报属于短期预报手段,预报距离与围岩电性参数、测试环境干扰强弱有关。
一般,探地雷达预报距离在15~35米。
2.2 探地雷达在勘查中的基本参数
2.2.1 电磁脉冲波旅行时 v z v x z t 2422≈+=
式中:z-勘查目标体的埋深; x-发射、接收天线的距离(式中因z>x,故X 可忽略);v-电磁波在介质中的传播速度。
2.2.2 电磁波在介质中的传播速度 r r r c c v εμε≈=
式中:c —电磁波在真空中的传播速度(0.29979m/ns );r ε—介质的相对介电常数,r μr
2.2.3 电磁波的反射系数
电磁波在介质传播过程中,当遇到相对介电常数明显变化的地质现象时,电磁波将产生反射及透射现象,其反射和透射能量的分配主要与异常变化界面的电磁波反射系数有关:
γ=(ε11/2-ε21/2)/(ε11/2+ε21/2
) 式中:r — 界面电磁波电场反射系数;1ε—第一层介质的相对介电常数;2ε—第二层介质的相对介电常数。
2.3 数据处理方法
本次数据处理工作主要使用RADAN65软件进行,所作的处理工作如下:
2.3.1 距离归一化
在用探地雷达进行连续探测时,由于不可避免的因素,天线移动的速度很难做到匀速,导致每米扫描线数不同,需要使用标记功能测算出天线移动的距离,通常是每2米1个标记,在后期处理中根据选择每米扫描数,增补或删除一些扫描线,使得测线内的扫描线均匀。
2.3.2确定波速 由于探地雷达记录的是反射波的双程走时t ,需要用波速计算出目标体的位置,这关系到深度解释的问题,是一项非常重要的工作,波速计算可通过以下公式进行:
s c v =
其中:v是电磁波波速;
c是真空中电磁波波速;
s是相对介电常数;
2.3.3 水平和垂直滤波
雷达资料中水平波特别发育,它产生于雷达仪器本身。
即使将天线对空,也会记录到回波,这回波不是来自天空,而是来自于控制器、数据线、天线的相互作用,是难以避免的。
水平波具有时间相等的特点,水平滤波就是利用这一特性。
滤波过程中,可将相邻的一定数量的扫描线求平均,再与个别扫描线相比较,就可消除水平波。
水平滤波中选取的扫描线数越大,滤波效果越小。
相反选取的扫描线数越小,滤除水平波的效果越明显。
但如果水平滤波扫描线取得太少,可能会滤掉一些缓变界面信号。
因而在进行水平滤波时,要根据对象进行试验、调整,以求最佳效果。
垂直滤波中较为常用的方法有带通滤波,高通滤波,低通滤波,小波变换等。
垂直滤波的目的是为了消除杂散波干扰,这些杂散波是来自于外源,不是天线自身发出的,频率不在雷达天线频带内。
有时为了区分不同的地质体,选取不同的频带,都要用到垂直滤波。
垂直滤波是一种数学变换,有时会带来较大的失真,滤波的频带越窄,失真越大,应用中要认真选取方法和参数。
因为雷达天线的发射与接收都设定了带宽,也就是说雷达信号本身已经过滤波,所以一般资料处理中的滤波处理改善并不明显。
3 设计文件描述的预报段地质条件
设计文件描述的预报段(K20+262—K20+292)地质特征为:表层为块石,松散结构,白云岩为厚层状,质硬,节理较发育;钙质千枚岩节理、裂隙发育,片理间结合较差,岩质软,顺层,且顺层以上白云岩厚度薄,与钙质千枚岩接触带具软弱夹层,开挖后白云岩易顺层滑塌。
设计为Ⅴ级围岩。
4 掌子面地质编录及地质分析
为做好本次隧道超前地质预报工作,我们对K20+262掌子面进行了相应的地质编录和素描(详见附件一:掌子面地质编录表)。
通过现场调查,掌子面岩性为白云岩与
千枚岩互层交杂,右部和上部以千枚岩为主,左下部发育为千枚岩。
千枚岩产状为:S74°E /NE∠47°。
围岩主要发两组组节理,第一组节理产状为S25°W/SE∠65°,间距0.35-0.5m,可见长度 1.5-3.0 m。
第二组节理产状为S44°W/SE∠63°,间距0.2-0.3m,可见长度 1.0-2.0 m。
岩体呈裂隙块体结构,嵌合程度紧密,岩层风化程度为微弱风化-弱风化。
榔头敲击声清脆到清脆。
掌子面湿润,局部有渗滴水现象。
现场初步判断掌子面围岩级别为Ⅴ级(设计围岩也为Ⅴ级)。
通过观察分析,围岩变形和破坏特征为:该洞段为白云岩与千枚岩过渡地段的尾端,为白云岩与千枚岩的参杂,局部有软泥加层出现,整体稳定较差,开挖是容易产生掉块和小规模的塌方。
图3 右洞掌子面特征图a
图4 右洞掌子面特征图b
5 探底雷达测试与结果分析
5.1 测线的布置
本次工作采用美国GSSI公司的SIR-20探地雷达,其精度高,性能稳定、可靠。
主要工作技术参数为:100Hz屏蔽天线,每次扫描的采样点数:500;每秒钟的扫描数:100;相对介电常数:6。
由于现场施工原因,本次测量工作只沿隧道掌子面布置了一条测线,测量时由两位测量人员手持天线紧贴掌子面由探测起点移动到探测终点(如图5)。
图5 探地雷达测线布置示意图
5.2 数据处理结果
采用前述方法,对探测数据进行处理后,获得的主要结果如图6、7所示。
图6 K20+262掌子面雷达横向测线扫描图(彩色能
量图)
图7 K20+262掌子面雷达横向测线扫描图(波形堆
积图)
图6、图7为探地雷达横向测线解译所得的能量图和波形图。
图中纵坐标标识数字为根据电磁波传播双程走时计算出的视深度,本次探地雷达探测范围为30米;横坐标标识数字为测线长度(单位:m),测线长约为5米。
5.3解译分析
本次雷达探测距离根据电磁速度和反射走时计算为30m,根据探地雷达解译结果得出以下结论:
1、掌子面前方0-6m范围内雷达呈低能反射,无明显的反射界面。
推测该段围岩岩体特征无大的变化,基本维持与掌子面类似的特征。
因为无明显电磁波反射。
2前方7-15m,电磁波反射波明显增强,且测线由右向左依次出现较强的电磁反射波。
推测该区段由右向左依次会出现岩体特征的较大变化,使得围岩综合介电常数发生变化,进而使得该段反射电磁波明显增强。
3、前方15-30m,雷达波整体出现强反射,且有频率降低,局部出现明显的小范
围的反射波组。
推测该段围岩局部有较为明显的变化,且含有一定地下水,使得电磁在该段高频损失,低频突出,且能量很强。
6.结论和建议
本次超前地质预报距离为30米,预报里程范围K20+262—K20+292,综合地质和物探的结果,具体预报结论如下:
1、K20+262—K20+268段:围岩岩性无大的变化,掌子面底部仍然以白云岩为主,局部含有千枚岩以及软化泥层,为岩性过渡带末端岩性特征,开挖容易产生掉块现象。
开挖时请加强施工。
2、K20+268—K20+277段:结合物探和地质以及各方面资料,推测该段从右到左依次出现围岩变化,由白云岩为主参杂千枚岩以及软化泥层的地层逐步过渡到完全的千枚岩地层,在岩性交界面处,岩体含有一定地下水,呈渗滴水状出露,千枚岩一侧围岩稳定差,容易出现掉块和塌方现象,施工到该段请注意及时加强施工。
3、K20+277—K20+292段:推测该段以及进入全千枚岩地层,且局部岩体较为破碎,含有地下水,呈渗滴水状,局部可能出现线出水,加之千枚岩强度低且遇水容易软化,该段围岩稳定较差,容易掉块和发生小规模的塌方,请施工方注意观察检测,及时支护。
3、建议下次预报的掌子面里程为K20+287—K20+292,希望施工单位提前通知我们。
- 9 -
附件一:掌子面地质编录表
@@至@@高速公路建设项目
隧道施工地质跟踪调查及编录表
项目名称:骑马隧道G7标段右洞第 1 页共 1 页桩号:k20+262 填表时间:2010.01.07 隧道轴线走向:
- 10 -
照片编号背
景
素
描
围岩级别(类别)
图
Ⅴ
现场划分
记录人员:@@@ 测绘人员:@@@
- 9 -。