线性代数课件同济大学第五版

合集下载

线性代数(第五版)课件

线性代数(第五版)课件

• 想搞软件工程,好,3D游戏的数学基础就 是以图形的矩阵运算为基础;当然,如果 你只想玩3D游戏可以不必掌握线代;想搞 图像处理,大量的图像数据处理更离不开 矩阵这个强大的工具,《阿凡达》中大量 的后期电脑制作没有线代的数学工具简直 难以想象。
• 想搞经济研究。好,知道列昂惕夫(Wassily Leontief)吗?哈佛大学教授,1949年用计 算机计算出了由美国统计局的25万条经济数 据所组成的42个未知数的42个方程的方程组, 他打开了研究经济数学模型的新时代的大门。
这些模型通常都是线性的,也就是说,它们
是用线性方程组来描述的,被称为列昂惕夫 “投入-产出”模型。列昂惕夫因此获得了 1973年的诺贝尔经济学奖。
• 相当领导,好,要会运筹学,运筹学的一 个重要议题是线性规划。许多重要的管理 决策是在线性规划模型的基础上做出的。 线性规划的知识就是线代的知识啊。比如, 航空运输业就使用线性规划来调度航班, 监视飞行及机场的维护运作等;又如,你 作为一个大商场的老板,线性规划可以帮 助你合理的安排各种商品的进货,以达到 最大利润。
§1 二阶与三阶行列式
我们从最简单的二元线性方程组出发,探 求其求解公式,并设法化简此公式.
一、二元线性方程组与二阶行列式
二元线性方程组
aa1211
x1 x1
a12 x2 a22 x2
b1 b2
由消元法,得
(a11a22 a a 12 21 ) x1 b1a22 a12b2
(a11a22 a a 12 21 ) x2 a11b2 b1a21
二、线性代数的课程特点
高度的抽象性和严密逻辑性,并缺乏直观 的思维模型.
开设时间为大一、大二年级. 线性代数课时短, 内容多. 理论多, 例题少.

线性代数同济大学第五版课件5-3

线性代数同济大学第五版课件5-3
正整数, f(x) = a0xm + a1xkB 相似, Am 与 Bm 相似, AT 与 BT 相似,
f(A) 与 f(B) 相似.
上页 下页
三、矩阵的对角化
对于 n 阶方阵 A , 若存在可逆矩阵 P , 使 P-1AP = ( 为对角矩阵),则称 A 能对角化.
以这些向量为列构造矩阵 P = ( p1 , p2 , · , pn ), · · 则 P 可逆, 且 AP = P , 其中 =diag (1 , 2 , · , n ) , · · 即 推论 P-1AP = .
证毕
如果n阶矩阵A的n个特征值互不相等,
则A与对角阵相似.
上页 下页
0 0 1 1 1 x , 问 x 为 何 值 时 , 例11 设 A 1 0 0 矩 阵A能 对 角 化 ?
第 三 节
主要内容
相似矩阵
相似矩阵的概念 相似矩阵的性质 矩阵对角化的充要条件
上页
下页
一、相似矩阵的概念
定义 7 设 A , B 为 n 阶方阵, 若有可逆矩阵P,
使 P-1AP = B , 则称矩阵 A 相似于矩阵 B. 对 A 进行运算
P-1AP 称为对 A 进行相似变换,可逆矩阵 P 称 为把 A 变成 B 的相似变换矩阵.
上页 下页
可. 推论 A与 阶方阵 A 与对角矩阵 由于 若 n B 相似, 所以, 必有可逆矩阵 P
由相似的定义和定理3,有下列 结论:
1. 若矩阵 A 与 矩阵 B 相似, 若矩阵 A
可逆, 则矩阵 B 也可逆, 且 A-1 与 B-1 相似.
2.若矩阵 A 与 B 相似, k 是常数, m 是
1 , 2 , · , n 的特征向量. · ·

线性代数同济大学第五版课件4-5PPT课件

线性代数同济大学第五版课件4-5PPT课件
第10页/共20页
三、向量的坐标
定义 8 如果在向量空间 V 中取定一个基
a1 , a2 , ···, ar , 那么 V 中任一向量 x 可唯一地表 示为
x = 1a1 + 2a2 + ···+ rar , 数组 1 , 2 , ···, r 称为向量 x 在基 a1 , a2 , ···, ar
V 的一个基, r 称为向量空间 V 的维数,并称 V 为 r 维向量空间.
第9页/共20页
例如: 由向量组 a1 , a2 , ···, am 所生成的向量空间
L ={ x = 1a1 + 2a2 + ···+ mam | 1, ···, m R }, 显然向量空间 L 与向量组 a1 , a2 , ···, am 等价, 所以向量组 a1 , a2 , ···, am 的最大无关组就是L 的 一个基, 向量组 a1 , a2 , ···, am 的秩就是 L 的维数.
第17页/共20页
即基变换公式为
(b1 , b2 , b3) = (a1 , a2 , a3)P , 其中表示式的系数矩阵 P = A-1B 称为从旧基到
新基的过渡矩阵.
设向量 x 在旧基和新基中的坐标分别为
y1 , y2 , y3 和 z1 , z2 , z3 ,即
y1
z1
x (a1, a2 , a3 ) y2 , x (b1, b2 , b3 ) z2 ,源自例 20 齐次线性方程组的解集
S = { x | Ax = 0 }
因为由齐次线性方程组的解的性质1、2,
即知其解集 S 对向量的线性运算封闭.
S是一个向量空间,
称为齐次线性方程组的解空间.
第4页/共20页

线性代数1同济大学第五版课件3-2

线性代数1同济大学第五版课件3-2
设 A 经初等列变换变为 B , 也有 R ( A ) R ( B ).
机动
目录
上页
下页
返回
设 A 经初等列变换变为
B,
则 A
T
经初等行变换变为
T T
B ,
T
R ( A ) R ( B ),
T T
且 R ( A ) R ( A ), R ( B ) R ( B ),

R ( A ) R ( B ).

R ( B ) 3,
机动
目录
上页
下页
返回
故 B 中必有
3 阶非零子式
. 且共有
4 个.
计算 B 的前三行构成的子式
3 2 3
2 0 2
5
3
2 0 0
5 5 11
5 2 6 6
2
2 6
5 11
16 0 .
则这个子式便是A 的一个最高阶非零子式.
机动
目录
上页
下页
返回
例4
1 2 设A 2 3
则 D r D r 0 , 也有 R ( B ) r .
若A经一次初等行变换变为 ,则 R( A ) R( B ). B
由于 B 也可经过一次初等行变 换变为 A ,
故也有 R( B ) R( A). 因此 R( A) R( B ).
经一次初等行变换矩阵的秩不变,即可知经 有限次初等行变换矩阵的秩仍不变.
对于 A , 显有 R ( A ) R ( A ).
T T
对 A m n,有 0 R ( A ) min m , n
0,则 R ( A ) s ;

线性代数(同济第五版)第一、二章复习提纲PPT课件

线性代数(同济第五版)第一、二章复习提纲PPT课件
列的逆序数决定.
-
7
第四节 对 换
一、 对换的定义 二、 对换与排列奇偶性的关系
-
8
小结:
1. 一个排列中的任意两个元素对换,排列改 变奇偶性.
2.行列式的三种表示方法
D 1 ta p 1 1 a p 2 2 a p n n
D 1 ta 1 p 1 a 2 p 2 a n np
2.k 1akA ik j Dij 0,当 ij;
n
D,当 ij,
k1aik A jkDij 0,当 ij;
其中ij 10,,当 当iijj, .
-
13
第七节 克拉默法则
一、克拉默法则 二、相关定理
-
14
克拉默法则:
如果线性方程组 ( n 个未知变量、 n 个方程)
a11x1 a12x2 a1nxn b1
a 11 a 12 a 13
a 21 a 22 a 23 a1a 12a 233 a1a 22a 331 a1a 32a 132
a 31 a 32 a 33
a1a 12a 332 a1a 22a 133 a1a 32a 23,1
-
3
第二节 全排列及其逆序数
一、概念的引入 二、全排列及其逆序数
-
4
小结:
a11 a21
a12 a22
a1n a2n
b1 b2
an1 an2 ann bn
对线性方程组的 研究可转化为对 这张表的研究.
-
21
二、矩阵的定义
由 mn个数 a i j i 1 , 2 , ,m ; j 1 , 2 , ,n
排成的 m行 n列的数表
a11 a12 a1n
0 1

线性代数同济第五版

线性代数同济第五版

四、正交矩阵与正交变换
1. 正交矩阵 (1)定义:
若n阶方阵A满足 AT A E 即A1 AT , 则称A为 正交矩阵 .
(2)定理:
A 为正交矩阵 A的列(或行)向量都是单位向量且两两正
交. 注: 正交矩阵A的 n 个列(或行)向量构成向量空 间Rn 的一个规范正交基.
(3)性质:
5. 规范正交基 (1)定义 :
设n维向量e1 , e2 , , er 是ห้องสมุดไป่ตู้量空间 V (V R n )的一个正交 基, 且都是单位向量, 则称e1 , e2 , , er 是 V 的一个规范正交基.
1 0, 如,1 0 2 0 0 0 0 1 0 , , 0 3 4 为R 4的一个规范正交基. 0 1 0 0 0 1
4. n维向量间的夹角
当 x 0, y
x, y 0时, 规定: arccos
x y
称为n维向量x与y的夹角。
如, 1, 2, 2,3, 3,1,5,1
则 与的夹角 arccos [ , ]

18 arccos 3 2 6 4
[b1 , a 3 ] [b2 , a 3 ] b3 a 3 b1 b2 [b1 , b1 ] [b2 , b2 ]
b1 1,1,1,1
b2 0, 2, 1,3
8 14 0,2,1,3 1,1,2,0 3,5,1,1 1,1,1,1 4 14 再单位化, 得规范正交向量组如下:
因为, 如果设x同时是A的属于特征值1 , 2的
Ax 2 x
则x 0,
与定义矛盾 .

同济大学线性代数课件1-1

同济大学线性代数课件1-1

x x x a 11 1 a 12 2 a 13 3 b 1, a x x x 21 1 a 22 2 a 23 3 b 2, a x x x 31 1 a 32 2 a 33 3 b 3;
a11

b1
a13 a23 , a33
D2 a21 b2 a31 b3
二阶行列式的计算 ——对角线法则
主对角线
a 11 副对角线 a 2 1
a 12 aa aa 1 12 2 1 22 1 a 22
即:主对角线上两元素之积-副对角线上两元素之积
a11 x1 a12 x2 b1 二元线性方程组 a21 x1 a22 x2 b2
若令
b1 b2
例1
2x2 12 求解二元线性方程组 3x 1 2x1 x2 1
3 2 3 ( 4 ) 7 0 因为 D 2 1

12 2 D 12 ( 2 ) 14 1 1 1 3 12 D 3 24 21 2 2 1
D 14 1 所以 x1 2, D 7
D
a 12 a 22
a 11 a 21
a 12 a 22
(方程组的系数行列式)
D1
a 11 D2 a 21
b1 b2
则上述二元线性方程组的解可表示为
ba a b D 1 2 2 1 2 2 1 x 1 a a a a D 1 1 2 2 1 2 2 1
a b ba D 1 1 2 1 2 1 2 x 2 a a a a D 1 1 2 2 1 2 2 1
二阶行列式的对角线法则 并不适用!
称为三阶行列式.
a11
a12
a13

线性代数课件--同济大学

线性代数课件--同济大学

用 k 乘第 i 行: 用 k 乘第 i 列:
ri k ci k
“运算性质”
12 3
24 6
1 0 1 2 r1 1 1 0 1
2
01 1
01 1
推论:行列式中某一行(列)的公因子可以提到 行列式符号外面。
24 6 12 3 1 0 1 21 0 1 01 1 01 1
性质4:若行列式有两行(列)的对应元素成比 例,则行列式等于0 。
a11 a22a33 a23a32 a12 a23a31 a21a33 a13 a21a32 a22a31
a11
a22 a32
a23 a33
a12
a21 a31
a23 a33
a13
a21 a31
a23 a33
结论 三阶行列式可以用二阶行列式表示.
思考题 任意一个行列式是否都可以用较低阶的行列式表示?
对角线法则:
主对角线
a11 a12 a21 a22
副对角线
a11a22 a12a21
例. 解方程组
32x1x1 2
x2 x2
12 1
解: D 3
2 3 (4) 7 0
21
12 2
3 12
D1 1
14 1
D2 2
21 1
x1
D1 D
14 7
2,
x2
D2 D
21 7
3
a11 0 0
a
D
21
a 22
0
a a11 22 ann
an1 an2 ann
(3) 对角行列式
a11
D
a22
a a11 22 ann
ann
(4) 副对角行列式

线性代数同济大学第五版课件4-3‘

线性代数同济大学第五版课件4-3‘
即 S 能由向量组 1 , 2 线性表示. 又因 1 , 2 的 四个分量显然不成比例,故 1 , 2 线性无关. 因 此根据最大无关组的等价定义,知1 , 2是 S 的 最大无关组,从而 RS = 2 .
四、定理的不同表现形式
设向量组 A : a1 , a2 , · , am 构成矩阵 · ·
例 9 设齐次线性方程组
x1 2 x2 x3 2 x4 0 , x4 0 , 2 x1 3 x2 x x 5x 7 x 0 2 3 4 1
的全体解向量构成的向量组为 S,求 S 的秩.

把系数矩阵A化为行最简形
1 A 2 1
矩阵 B = (a1 , a2 , · , am , b) 的秩. · ·
定理 1 向量 b 能由向量组 A 线性表示的
充要条件是
R (a1 , a2 , · , am) = R (a1 , a2 , · , am , b). · · · ·
注:记号R(a1 , a2 , · , am )既可理解为矩阵的秩,也 · · 可理解成向量组的秩.
B 的最大无关组依次为 A0:a1 , a2 , · , as 和 B0:b1 , b2 , · , bt . · · · · 由于 B0 组能由 B 组表示, B 组能由 A 组表示,
A 组能由 A0 组表示,因此 B0 组能由 A0 组表示,
根据定理3,
有 R(b1,b2, · ,bt) ≤ R(a1,a2, · ,as), · · · ·
1 0 2 (a 1 ,a 2 ,a 3 ) 1 2 4 , 由 R(a1,a2 , a3) =2 1 5 7
由R(a1 , a2) =2, R(a1 , a3) = 2,R(a2 , a3) = 2 可知 a1, a2 与a1, a3 及 a2 , a3 都是a1 , a2 , a3 的最大无关组.

线性代数同济大学第五版课件4-1

线性代数同济大学第五版课件4-1

矩阵 Km l ,使 (b1 , · , bl ) = (a1 , · , am )K, 也就 · · · · 组 A 线性表示, 则称向量组 B 能由向量组 A 线 是矩阵方程 性表示. 若向量组 A 与向量组 B 能相互线性表示, (a1 , a2 , · , am )X = (b1 , b2 , · , bl ) · · · · 则称这两个向量组等价. 可得 有解. 由上章 定理 6 矩阵方程 AX = B 有解的充要条
上页
下页
2. 向量组的定义
若干个同维数的列向量(或同维数的行向量) 所组成的集合叫做向量组. 例如
1 3 2 4 1 2 , 2 4 , 3 1 , 4 6 1 7 5 1
向量组 1, 2, · , n 称为矩阵 A 的列向量组. · ·
上页
下页
类似地, 矩阵A (aij )mn 又有m个n维行向量
a11 a12 a 21 a 22 A ai1 ai 2 a m1 a m 2 a1 n a2n a in a mn
b11 b12 b1n b21 b22 b2 n (c1 , c2 , , cn ) (a1 , a2 , , al ) b kl 2 kl n l1
上页
下页
1T 1T T T 2 2 同时,记 C , B , 则C 的行向量组 T T m l 能由 B 的行向量组线性表示 A 为这一表示的系数 , 矩阵:
2. 向量能由向量组线性表示的充要条件
定理 1 向量 b 能由向量组 A 线性表示的充

线性代数_同济大学(第五版)课件

线性代数_同济大学(第五版)课件

幻灯片1线性代数(第五版)幻灯片2●在以往的学习中,我们接触过二元、三元等简单的线性方程组.●但是,从许多实践或理论问题里导出的线性方程组常常含有相当多的未知量,并且未知量的个数与方程的个数也不一定相等.幻灯片3●我们先讨论未知量的个数与方程的个数相等的特殊情形.●在讨论这一类线性方程组时,我们引入行列式这个计算工具.幻灯片4●行列式是线性代数的一种工具!●学习行列式主要就是要能计算行列式的值.第一章行列式●内容提要●§1 二阶与三阶行列式●§2 全排列及其逆序数●§3 n 阶行列式的定义●§4 对换●§5 行列式的性质●§6 行列式按行(列)展开§7 克拉默法则●行列式的概念.●(选学内容)●行列式的性质及计算.●——线性方程组的求解.幻灯片5§1 二阶与三阶行列式●我们从最简单的二元线性方程组出发,探●求其求解公式,并设法化简此公式.幻灯片6一、二元线性方程组与二阶行列式●二元线性方程组●由消元法,得●当时,该方程组有唯一解幻灯片7●二元线性方程组●请观察,此公式有何特点?●分母相同,由方程组的四个系数确定.●分子、分母都是四个数分成两对相乘再相减而得.●求解公式为幻灯片8●我们引进新的符号来表示“四个数分成两对相乘再相减”.●二元线性方程组●记号●数表●其求解公式为●表达式称为由该●数表所确定的二阶行列式,即●其中,称为元素.●i 为行标,表明元素位于第i 行;●j 为列标,表明元素位于第j 列.●原则:横行竖列幻灯片9●二阶行列式的计算●——对角线法则●主对角线●副对角线●即:主对角线上两元素之积-副对角线上两元素之积幻灯片10●二元线性方程组●若令●(方程组的系数行列式)●则上述二元线性方程组的解可表示为幻灯片11●求解二元线性方程组●例1●解●因为●所以幻灯片12二、三阶行列式●定义设有9个数排成3行3列的数表●原则:横行竖列●引进记号●主对角线●副对角线●称为三阶行列式.●二阶行列式的对角线法则并不适用!幻灯片13●三阶行列式的计算●——对角线法则●实线上的三个元素的乘积冠正号,●虚线上的三个元素的乘积冠负号.●注意:对角线法则只适用于二阶与三阶行列式.幻灯片14●例2 计算行列式●解●按对角线法则,有幻灯片15●例3 求解方程●方程左端●解●由得幻灯片16§2 全排列及其逆序数幻灯片17●用1、2、3三个数字,可以组成多少个没有重复数字的三位数?●引例● 1 2 3●解● 1● 3● 2●百位●3种放法● 3● 1● 2● 1●2种放法●十位●1种放法● 1● 2● 3●个位●共有●种放法.幻灯片18●问题把 n 个不同的元素排成一列,共有多少种不同的●排法?●定义把 n 个不同的元素排成一列,叫做这 n 个元素的全排列. n 个不同元素的所有排列的种数,通常用Pn 表示.●显然●即n 个不同的元素一共有n! 种不同的排法.● 3个不同的元素一共有3! =6种不同的排法●123,132,213,231,312,321●所有6种不同的排法中,只有一种排法(123)中的数字是按从小到大的自然顺序排列的,而其他排列中都有大的数排在小的数之前.●因此大部分的排列都不是“顺序”,而是“逆序”.幻灯片20●对于n 个不同的元素,可规定各元素之间的标准次序.●n 个不同的自然数,规定从小到大为标准次序.●定义当某两个元素的先后次序与标准次序不同时,●就称这两个元素组成一个逆序.●例如在排列32514中,● 3 2 5 1 4●思考题:还能找到其它逆序吗?●答:2和1,3和1也构成逆序.幻灯片21●定义排列中所有逆序的总数称为此排列的逆序数.●排列的逆序数通常记为 .●奇排列:逆序数为奇数的排列.●偶排列:逆序数为偶数的排列.●思考题:符合标准次序的排列是奇排列还是偶排列?●答:符合标准次序的排列(例如:123)的逆序数等于零,因而是偶排列.幻灯片22●计算排列的逆序数的方法●设是 1, 2, …, n 这n 个自然数的任一排列,并规定由小到大为标准次序.●先看有多少个比大的数排在前面,记为;●再看有多少个比大的数排在前面,记为 ;●最后看有多少个比大的数排在前面,记为 ;●则此排列的逆序数为幻灯片23●例1:●求排列 32514 的逆序数.●解:●练习:●求排列 453162 的逆序数.●解:幻灯片24§3 n 阶行列式的定义幻灯片25一、概念的引入●规律:●三阶行列式共有6项,即3!项.●每一项都是位于不同行不同列的三个元素的乘积.●每一项可以写成(正负号除外),其中●是1、2、3的某个排列.●当是偶排列时,对应的项取正号;当是奇排列时,对应的项取负号.幻灯片26●所以,三阶行列式可以写成●其中表示对1、2、3的所有排列求和.●二阶行列式有类似规律.下面将行列式推广到一般的情形.幻灯片27二、n 阶行列式的定义●简记作,●其中为行列式D的(i, j)元● n 阶行列式共有 n! 项.●每一项都是位于不同行不同列的 n 个元素的乘积.●每一项可以写成(正负号除外),其中●是1, 2, …, n 的某个排列.●当是偶排列时,对应的项取正号;当是奇排列时,对应的项取负号.幻灯片28●思考题:成立吗?●答:符号可以有两种理解:●若理解成绝对值,则;若理解成一阶行列式,则 .●注意:当n = 1时,一阶行列式|a| = a,注意不要与绝对值的记号相混淆. 例如:一阶行列式 .幻灯片29●例:●写出四阶行列式中含有因子的项.●解:●和●例:●计算行列式幻灯片30●解:●其中幻灯片31幻灯片32●四个结论:●(1) 对角行列式●(2)幻灯片33●(3) 上三角形行列式(主对角线下侧元素都为0)●(4) 下三角形行列式(主对角线上侧元素都为0)幻灯片34●思考题:用定义计算行列式●-1●解:用树图分析●3●1●-2●1●-1●2●-2●3●3●-1●故幻灯片35●思考题●已知,求的系数.幻灯片36●解●含的项有两项,即●对应于●故的系数为-1.幻灯片37§4 对换幻灯片38一、对换的定义●定义●在排列中,将任意两个元素对调,其余的元素不动,这种作出新排列的手续叫做对换.●将相邻两个元素对换,叫做相邻对换.●例如幻灯片39●备注●相邻对换是对换的特殊情形.●一般的对换可以通过一系列的相邻对换来实现.如果连续施行两次相同的对换,那么排列就还原了.幻灯片40二、对换与排列奇偶性的关系●定理1 对换改变排列的奇偶性.●证明●先考虑相邻对换的情形.幻灯片41●注意到除外,其它元素的逆序数不改变.幻灯片42●当时,,, .●当时,,, .●因此相邻对换改变排列的奇偶性.幻灯片43●既然相邻对换改变排列的奇偶性,那么●因此,一个排列中的任意两个元素对换,排列的奇偶性改变.●推论●奇排列变成标准排列的对换次数为奇数,●偶排列变成标准排列的对换次数为偶数.●由定理1知,对换的次数就是排列奇偶性的变化次数,而标准排列是偶排列(逆序数为零),因此可知推论成立.●证明幻灯片44●因为数的乘法是可以交换的,所以 n 个元素相乘的次序是可以任意的,即●每作一次交换,元素的行标与列标所成的排列●与都同时作一次对换,即与同时改变奇偶性,但是这两个排列的逆序数之和的奇偶性不变.幻灯片45●设对换前行标排列的逆序数为,列标排列的逆序数为 .●设经过一次对换后行标排列的逆序数为●列标排列的逆序数为●因为对换改变排列的奇偶性,是奇数,也是奇数.●所以是偶数,●即是偶数.●于是与同时为奇数或同时为偶数.●因此,交换中任意两个元素的位置后,其行标排列与列标排列的逆序数之和的奇偶性不变.幻灯片46●经过一次对换是如此,经过多次对换还是如此. 所以,在一系列对换之后有幻灯片47幻灯片48●例1 试判断和●是否都是六阶行列式中的项.幻灯片49●例2 用行列式的定义计算幻灯片50●解幻灯片51三、小结● 1. 对换改变排列奇偶性.● 2. 行列式的三种表示方法幻灯片52§5 行列式的性质幻灯片53一、行列式的性质●记●行列式称为行列式的转置行列式.●若记,则 .●性质1 行列式与它的转置行列式相等,即 .幻灯片54●性质1 行列式与它的转置行列式相等.●证明●若记,则●根据行列式的定义,有●行列式中行与列具有同等的地位,行列式的性质凡是对行成立的对列也同样成立.幻灯片55●性质2 互换行列式的两行(列),行列式变号.●备注:交换第行(列)和第行(列),记作 .●验证●于是●推论如果行列式有两行(列)完全相同,则此行列式为零.●证明●互换相同的两行,有,所以 .幻灯片56●性质3 行列式的某一行(列)中所有的元素都乘以同一个倍数,等于用数乘以此行列式.●备注:第行(列)乘以,记作 .●验证●我们以三阶行列式为例. 记●根据三阶行列式的对角线法则,有幻灯片57●推论行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面.●备注:第行(列)提出公因子,记作 .幻灯片58●性质4 行列式中如果有两行(列)元素成比例,则此行列式为零.●验证●我们以4阶行列式为例.幻灯片59●性质5 若行列式的某一列(行)的元素都是两数之和,●例如:●则幻灯片60●验证●我们以三阶行列式为例.幻灯片61●性质6 把行列式的某一列(行)的各元素乘以同一个倍数然后加到另一列(行)对应的元素上去,行列式不变.●备注:以数乘第行(列)加到第行(列)上,记作 .●验证●我们以三阶行列式为例. 记●则幻灯片62二、应用举例●计算行列式常用方法:利用运算把行列式化为●上三角形行列式,从而算得行列式的值.●例1幻灯片63●解幻灯片64幻灯片65幻灯片66幻灯片67幻灯片68●解幻灯片69幻灯片70●例3 设●证明幻灯片71●证明●对作运算,把化为下三角形行列式●设为●对作运算,把化为下三角形行列式●设为幻灯片72●对 D 的前 k 行作运算,再对后 n 列作运算,●把 D 化为下三角形行列式●故幻灯片73三、小结● (行列式中行与列具有同等的地位, 凡是对行成立的性质对列也同样成立).●行列式的6个性质●计算行列式常用方法:(1)利用定义;(2)利用性质把行列式化为上三角形行列式,从而算得行列式的值.幻灯片74●思考题●计算4阶行列式幻灯片75●思考题解答●解幻灯片76幻灯片77§6 行列式按行(列)展开●对角线法则只适用于二阶与三阶行列式.●本节主要考虑如何用低阶行列式来表示高阶行列式.幻灯片78一、引言●结论三阶行列式可以用二阶行列式表示.●思考题任意一个行列式是否都可以用较低阶的行列式表示?幻灯片79●在n 阶行列式中,把元素所在的第行和第列划后,留下来的n-1阶行列式叫做元素的余子式,记作 .●把称为元素的代数余子式.●例如●结论因为行标和列标可唯一标识行列式的元素,所以行列●式中每一个元素都分别对应着一个余子式和一个代数余子式.幻灯片80●引理一个n 阶行列式,如果其中第行所有元素除●外都为零,那么这行列式等于与它的代数余子式的乘积,即.●例如幻灯片81●当位于第1行第1列时,●分析●即有●(根据P.14例10的结论)●又●从而●下面再讨论一般情形.幻灯片82●我们以4阶行列式为例.●思考题:能否以代替上述两次行变换?幻灯片83●思考题:能否以代替上述两次行变换?●答:不能.幻灯片84●被调换到第1行,第1列幻灯片85二、行列式按行(列)展开法则●定理3 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即幻灯片86●同理可得幻灯片87●例(P.12例7续)幻灯片88●例证明范德蒙德(Vandermonde)行列式●证明用数学归纳法●所以n=2时(1)式成立.幻灯片89●假设(1)对于n-1阶范德蒙行列式成立,从第n行开始,后行●减去前行的倍:●按照第1列展开,并提出每列的公因子,就有幻灯片90● n−1阶范德蒙德行列式幻灯片91●推论行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即●分析我们以3阶行列式为例.●把第1行的元素换成第2行的对应元素,则幻灯片92●定理3 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即●推论行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即●综上所述,有●同理可得幻灯片93●例计算行列式●解幻灯片94幻灯片95●例设 , 的元的余子式和●代数余子式依次记作和,求●及●分析利用幻灯片96●解幻灯片97幻灯片98§7 克拉默法则幻灯片99●二元线性方程组●若令●(方程组的系数行列式)●则上述二元线性方程组的解可表示为幻灯片100一、克拉默法则●如果线性方程组●的系数行列式不等于零,即幻灯片101●那么线性方程组(1)有解并且解是唯一的,解可以表示成●其中是把系数行列式中第列的元素用方程组右端的常数项代替后所得到的阶行列式,即幻灯片102●定理中包含着三个结论:●方程组有解;(解的存在性)●解是唯一的;(解的唯一性)●解可以由公式(2)给出.●这三个结论是有联系的. 应该注意,该定理所讨论的只是系数行列式不为零的方程组,至于系数行列式等于零的情形,将在第三章的一般情形中一并讨论.幻灯片103关于克拉默法则的等价命题●设●定理4 如果线性方程组(1)的系数行列式不等于零,则该线性方程组一定有解,而且解是唯一的 .●定理4′如果线性方程组无解或有两个不同的解,则它的系数行列式必为零.幻灯片104●例解线性方程组●解幻灯片105幻灯片106幻灯片107●线性方程组●常数项全为零的线性方程组称为齐次线性方程组,否则称为非齐次线性方程组.●齐次线性方程组总是有解的,因为(0,0,…, 0)就是一个解,称为零解. 因此,齐次线性方程组一定有零解,但不一定有非零解.●我们关心的问题是,齐次线性方程组除零解以外是否存在着非零解.幻灯片108●齐次线性方程组的相关定理●定理5 如果齐次线性方程组的系数行列式,则齐次●线性方程组只有零解,没有非零解.●定理5′如果齐次线性方程组有非零解,则它的系数行列式必为零.●备注●这两个结论说明系数行列式等于零是齐次线性方程组有非零解的必要条件.●在第三章还将证明这个条件也是充分的. 即:齐次线性方程组有非零解系数行列式等于零幻灯片109●练习题:问取何值时,齐次方程组●有非零解?●解●如果齐次方程组有非零解,则必有 .●所以时齐次方程组有非零解.幻灯片110●思考题●当线性方程组的系数行列式为零时,能否用克拉默法则解方程组?为什么?此时方程组的解为何?●答:当线性方程组的系数行列式为零时,不能用克拉默法●则解方程组,因为此时方程组的解为无解或有无穷多解.幻灯片111三、小结● 1. 用克拉默法则解线性方程组的两个条件●(1)方程个数等于未知量个数;●(2)系数行列式不等于零.● 2. 克拉默法则的意义主要在于建立了线性方程组的解●和已知的系数以及常数项之间的关系.它主要适用于●理论推导.幻灯片112第二章矩阵及其运算幻灯片113§1 矩阵●一、矩阵概念的引入●二、矩阵的定义●三、特殊的矩阵●四、矩阵与线性变换幻灯片114● B一、矩阵概念的引入● C● A●例某航空公司在A、B、C、D 四座城市之间开辟了若干航线,四座城市之间的航班图如图所示,箭头从始发地指向目的地.● D●城市间的航班图情况常用表格来表示:●√●√幻灯片115● A B C D●√●√● A● B● C● D●√●√●√●√●√●为了便于计算,把表中的√改成1,空白地方填上0,就得到一个数表:●这个数表反映了四个城市之间交通联接的情况.幻灯片116二、矩阵的定义●由 m×n 个数排成的 m 行 n 列的数表●称为 m 行 n 列矩阵,简称 m×n 矩阵.●记作幻灯片117●简记为●这 m×n 个数称为矩阵A的元素,简称为元.●元素是实数的矩阵称为实矩阵,●元素是复数的矩阵称为复矩阵.幻灯片118矩阵行列式●行数不等于列数●共有m×n个元素●本质上就是一个数表●行数等于列数●共有n2个元素幻灯片119●三、特殊的矩阵●行数与列数都等于 n 的矩阵,称为 n 阶方阵.可记作 .●只有一行的矩阵称为行矩阵(或行向量) .●●只有一列的矩阵称为列矩阵(或列向量) .元素全是零的矩阵称为零距阵.可记作 O .●例如:幻灯片120●形如的方阵称为对角阵.●特别的,方阵称为单位阵.●记作●记作.幻灯片121●同型矩阵与矩阵相等的概念●两个矩阵的行数相等、列数相等时,称为同型矩阵.●例如●为同型矩阵.●两个矩阵与为同型矩阵,并且对应元●素相等,即则称矩阵 A 与 B 相等,记作 A = B .幻灯片122●例如●注意:不同型的零矩阵是不相等的.幻灯片123●四、矩阵与线性变换● n 个变量与 m 个变量之间的●关系式●表示一个从变量到变量线性变换,●其中为常数.幻灯片124●系数矩阵●线性变换与矩阵之间存在着一一对应关系.幻灯片125●例线性变换●称为恒等变换.●单位阵 En幻灯片126●例 2阶方阵●投影变换●例2阶方阵●以原点为中心逆时针●旋转j 角的旋转变换幻灯片127§2 矩阵的运算幻灯片128●一、矩阵的加法●定义:设有两个 m×n 矩阵 A = (aij),B = (bij) ,那么矩阵 A 与 B 的和记作 A+B,规定为●说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.幻灯片129●知识点比较幻灯片130●矩阵加法的运算规律●设 A、B、C 是同型矩阵设矩阵 A = (aij) ,记-A = (-aij),称为矩阵 A 的负矩阵.显然幻灯片131●二、数与矩阵相乘●定义:数 l 与矩阵 A 的乘积记作 l A 或 A l ,规定为幻灯片132●数乘矩阵的运算规律设 A、B是同型矩阵,l , m 是数矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算.幻灯片133●知识点比较幻灯片134●一、矩阵与矩阵相乘●定义:设,,那么规定矩阵 A 与矩阵 B 的乘积是一个 m×n 矩阵,其中●并把此乘积记作 C = AB.幻灯片135●矩阵乘法的运算规律●(1) 乘法结合律●(2) 数乘和乘法的结合律(其中 l 是数)●(3) 乘法对加法的分配律●(4) 单位矩阵在矩阵乘法中的作用类似于数1,即●纯量阵不同于对角阵●推论:矩阵乘法不一定满足交换律,但是纯量阵 lE 与任何同阶方阵都是可交换的.幻灯片136●(5) 矩阵的幂若 A 是 n 阶方阵,定义●显然●思考:下列等式在什么时候成立?●A、B可交换时成立幻灯片137●四、矩阵的转置●定义:把矩阵 A 的行换成同序数的列得到的新矩阵,叫做的转置矩阵,记作AT .●例幻灯片138●转置矩阵的运算性质幻灯片139●解法2幻灯片140●定义:设 A 为 n 阶方阵,如果满足,即●那么 A 称为对称阵.●如果满足 A = -AT,那么 A 称为反对称阵.●对称阵●反对称阵幻灯片141●例:设列矩阵 X = ( x1, x2, …, xn )T 满足 X T X = 1,E 为 n 阶单位阵,H = E-2XXT,试证明 H 是对称阵,且 HHT = E.●证明:●从而 H 是对称阵.幻灯片142●五、方阵的行列式●定义:由 n 阶方阵的元素所构成的行列式,叫做方阵 A 的行列式,记作|A|或detA.●运算性质幻灯片143●定义:行列式 |A| 的各个元素的代数余子式 Aij 所构成的如下矩阵●称为矩阵 A 的伴随矩阵.●性质幻灯片144●六、共轭矩阵●当为复矩阵时,用表示的共轭复数,记,称为的共轭矩阵.●运算性质●(设A,B 为复矩阵,l 为复数,且运算都是可行的):幻灯片145§3 逆矩阵幻灯片146●矩阵与复数相仿,有加、减、乘三种运算.●矩阵的乘法是否也和复数一样有逆运算呢?●这就是本节所要讨论的问题.●这一节所讨论的矩阵,如不特别说明,所指的都是 n 阶方阵.●从乘法的角度来看,n 阶单位矩阵 E 在同阶方阵中的地位类似于 1 在复数中的地位.一个复数 a ≠ 0的倒数 a-1可以用等式 a a-1 = 1 来刻划. 类似地,我们引入幻灯片147●定义: n 阶方阵 A 称为可逆的,如果有 n 阶方阵 B,使得●这里 E 是 n 阶单位矩阵.●根据矩阵的乘法法则,只有方阵才能满足上述等式.●对于任意的 n 阶方阵 A,适合上述等式的矩阵 B 是唯一的(如果有的话).●定义:如果矩阵 B 满足上述等式,那么 B 就称为 A 的逆矩阵,●记作 A-1 .幻灯片148●下面要解决的问题是:●在什么条件下,方阵 A 是可逆的?如果 A 可逆,怎样求 A-1 ?幻灯片149●结论:,其中幻灯片150●例:求3阶方阵的逆矩阵.●解:| A | = 1,幻灯片151●方阵A可逆●此时,称矩阵A为非奇异矩阵●定理:若方阵A可逆,则.幻灯片152●推论:如果 n 阶方阵A、B可逆,那么、、●与AB也可逆,且幻灯片153●线性变换●的系数矩阵是一个n 阶方阵 A ,若记●则上述线性变换可记作 Y = AX .幻灯片154§4 矩阵分块法幻灯片155前言●由于某些条件的限制,我们经常会遇到大型文件无法上传的情况,如何解决这个问题呢?●这时我们可以借助WINRAR把文件分块,依次上传.●家具的拆卸与装配●问题一:什么是矩阵分块法?问题二:为什么提出矩阵分块法?幻灯片156问题一:什么是矩阵分块法?定义:用一些横线和竖线将矩阵分成若干个小块,这种操作称为对矩阵进行分块;每一个小块称为矩阵的子块;矩阵分块后,以子块为元素的形式上的矩阵称为分块矩阵.●这是2阶方阵吗?幻灯片157思考题伴随矩阵是分块矩阵吗?答:不是.伴随矩阵的元素是代数余子式(一个数),而不是矩阵.幻灯片158问题二:为什么提出矩阵分块法?答:对于行数和列数较高的矩阵 A,运算时采用分块法,可以使大矩阵的运算化成小矩阵的运算,体现了化整为零的思想.幻灯片159分块矩阵的加法幻灯片160●若矩阵A、B是同型矩阵,且采用相同的分块法,即●则有●形式上看成是普通矩阵的加法!幻灯片161分块矩阵的数乘幻灯片162●若l 是数,且●则有●形式上看成是普通的数乘运算!幻灯片163分块矩阵的乘法●一般地,设A为m l 矩阵,B为l n矩阵,把A、B 分块如下:幻灯片164按行分块以及按列分块m n 矩阵A 有m 行n 列,若将第i 行记作若将第j 列记作则幻灯片165于是设 A 为 m s 矩阵,B 为 s n 矩阵,若把 A 按行分块,把 B 按列块,则幻灯片166分块矩阵的转置若,则例如:●分块矩阵不仅形式上进行转置,●而且每一个子块也进行转置.幻灯片167分块对角矩阵●定义:设 A 是 n 阶矩阵,若● A 的分块矩阵只有在对角线上有非零子块,●其余子块都为零矩阵,●对角线上的子块都是方阵,●那么称 A 为分块对角矩阵.例如:幻灯片168分块对角矩阵的性质●| A | = | A1 | | A2 | … | As |●若| As | ≠0,则 | A | ≠0,并且幻灯片169第三章矩阵的初等变换与线性方程组幻灯片170知识点回顾:克拉默法则●设●结论 1 如果线性方程组(1)的系数行列式不等于零,则该线性方程组一定有解,而且解是唯一的.(P. 24定理4)●结论 1′如果线性方程组无解或有两个不同的解,则它的系数行列式必为零. (P.24定理4')●线性方程组的解受哪些因素的影响?●用克拉默法则解线性方程组的两个条件:●(1) 方程个数等于未知量个数;●(2) 系数行列式不等于零.幻灯片171§1 矩阵的初等变换●一、初等变换的概念●二、矩阵之间的等价关系●三、初等变换与矩阵乘法的关系●四、初等变换的应用幻灯片172一、矩阵的初等变换●引例:求解线性方程组幻灯片173●③÷2幻灯片174●②-③●③-2×①●④-3×①幻灯片175●②÷2●③+5×②●④-3×②幻灯片176●④-2×③幻灯片177●①●②●③●恒等式●④●取x3 为自由变量,则●令x3 = c ,则幻灯片178●三种变换:●交换方程的次序,记作;●以非零常数 k 乘某个方程,记作;●一个方程加上另一个方程的 k 倍,记作 .●结论:●由于对原线性方程组施行的变换是可逆变换,因此变换前后的方程组同解.在上述变换过程中,实际上只对方程组的系数和常数进行运算,未知数并未参与运算.●其逆变换是:幻灯片179●定义:下列三种变换称为矩阵的初等行变换:●对调两行,记作;●以非零常数 k 乘某一行的所有元素,记作;●某一行加上另一行的 k 倍,记作 .●其逆变换是:●初等行变换。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 矩阵及其运算
P47 习题二
§2.1 矩阵:
t1, t2 §2.3 逆矩阵: t10, t11(1)(3) §2.4 矩阵的分块: t27, t28 课后练习:t25,t26
§2.2 矩阵的运算:
线性代数课件(同济大学 第五版)作业与课后练习
第三章 矩阵的初等变换与线性方程组
P78 习题三
第一章 行列式
P25 习题一
§1.1 §1.2二阶、三阶行列式, 逆序数:
t2, t4(1)(3) t5,t9 §1.3 行列式的性质: t6(1)(3), t8(1)(2)(5) §1.4 行列式按行(列)展开: t9 §1.5 克莱姆法则: t10
§1.3 n阶行列式:
线性代数课件(同济大学 第五版)作业与课后练习
t1(1), t2 §3.2 矩阵的秩: t4, t2 课后练习:t3 §3.3 线性方程组的解: t13(1), t14(1), t16 课后练习:t17
§3.1 矩阵的初等变换:
线性代数课件(同济大学 第五版)作业与课后练习
第四章 向量组的线性相关性
P106 习题四
t1 §4.2 向量组的线性相关性: t4 课后练习:t5,t6, t8 §4.3 向量组的秩: t11, t13 课后练习:t12(2) §4.4 线性方程组解的结构: t20(1), t26(1) §4.5 向量空间: t38 课后练习:t37
§4.1 向量组及其线性组合:
线性代数课件(同济大学 第五版)作业与课后练习
第五章 相似矩阵与二次型
P134 习题五
§5.1 向量的内积、长度与正交性:
t1
课后练习:t7,
§5.2 方阵的特征值与特征向量:
§5.3 相似矩阵: §5.4
t6
t9
t20 对称矩阵的对角化: t19
§5.5 二次型及其标准数课件(同济大学 第五版)作业与课后练习
相关文档
最新文档