数学广角--鸽巢问题优秀课件

合集下载

小学数学人教版六年级下册《第一课数学广角(鸽巢问题)》课件

小学数学人教版六年级下册《第一课数学广角(鸽巢问题)》课件

07
17
27
1
0
0
0
1
4
4
3
3
7
37
27
37
2
0
1
1
2
新知导入
把7本书平 均分成3份 7÷3=2…1,如果 每个抽屉放2本, 还剩1本,把剩下 的这1本放进任何 一个抽屉,该抽屉 里就有3本书了。
把8本书放进3 个抽屉里呢?
8÷3=2…2,把8 本书放进3个抽屉 里,总有一个抽屉 至少放进3本书。
数学人教版 六年级下
鸽巢问题
新知导入
我给大家表演一个“魔 术”。一副牌,取出大小 王,还剩52张牌,你们5人 每人随意抽一张,我知道 至少有2张牌是同花色的。
老师说得对不对呢?
新知导入
把4支铅笔放进3个笔筒中, 不管怎么放,总有一个笔 筒里至少有2支铅笔。
“总有”和“至 少”什么意思?
为什么呢?
新知导入
试一试: 把5支铅笔放到4个笔筒里呢? 把6支铅笔放到5个笔筒里呢? 你发现了什么规律?
首先通过平均分,余下1支,不管放在哪个笔筒里,一 定会出现“总有一个盒子里至少有2支铅笔”。
新知导入
抽屉原理一
只要物体数量是抽屉数量的1倍多,总有一个抽屉里至少放 进2个物体。
新知导入
1. 5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进2 只鸽子。为什么?
至少取5个球可以保证 取到两个颜色相同的球。
新知导入
小组讨论
鱼缸里有足够数量的金鱼5种, 最少捞出多少条,可以保证捞 到6条同种类的金鱼?
(6-1) × 5+1=26(条)
抽取问题
要保证摸出n个同色的球,摸出的球的数 量至少要比颜色数的(n-1)倍多“1”

人教版六年级下册数学数学广角——鸽巢问题 课件(共20张PPT)

人教版六年级下册数学数学广角——鸽巢问题 课件(共20张PPT)

3、一副牌,取出大小王后,还 剩52张,抽出5张牌,至少有2张牌 是同花色的。你知道为什么了吗?
5 ÷ 4 =1 ...... 1
1 + 1 = 2 (张)
4、我们班有46名同学,其中至少有多 少名同学是同一个月过生日?你是怎么想的?
思考:幼儿园有15名小朋友,每个小朋 友都要有苹果,而且有一个小朋友至少要有 2个苹果,老师至少要准备多少个苹果?
给大家表演一个“魔术”。 一副牌,取出大小王,还剩 52张,你们5人每人随意抽 一张,我知道至少有2张牌 是同花色的。相信吗?
《义务教育教科书·数学》人教版六年级下册
二、探索新知
把4支铅笔放进3个笔筒中,不管怎 么放,总有1个笔筒里至少有2支铅 笔。 总有 表示一定有
至少 表示最少
“总有”和“至少”是 什么意思?
2、从扑克牌中取出两张王牌,在剩下的52张扑克牌中任意 挑选18张牌,至少有几张是同花色?
(3, 1 , 0) (2, 1, 1)
平均分
总有一个笔筒至少放进两支铅笔。
把5支笔放到4个笔筒里,总有一个笔筒里至少有( )支笔 把6支笔放到5个笔筒里,总有一个笔筒里至少有( )支笔 把7支笔放到6个笔筒里,总有一个笔筒里至少有( )支笔
把100支笔放到99个笔筒里呢? ......
总结: 只要笔的数量比笔筒的数量多1,不管怎么放,
把4支铅笔放进3个笔筒中,有几种放法?
小组合作
把四支铅笔放进三个笔筒中,有几种放法
要求:
1.所有的笔必须放进笔筒,不考虑笔筒的顺序,没 有放笔的用0表示。
2.想一想,怎样才能做到不重复,不遗漏。 3.分组合作,把摆放结果记录在草稿本上。
总有一个笔筒Leabharlann 至少有两支铅笔。(4, 0, 0) (2, 2 , 0)

人教版数学广角鸽巢问题优质课件1(共9张PPT)

人教版数学广角鸽巢问题优质课件1(共9张PPT)

答:至少有5名同学在同一个月过生日。
“抽屉原理”也称为“鸽巢原理”,最先是由19世纪的德国数学家狄里克雷运用于解决数学问题的,所以又称“狄里克雷原理”。
51 ÷ 12=4(名)…… 3(名)
它的应用千变万化,用它解决许多问题,常常得到一些令人惊异的结果。
51 ÷ 12=4(名)…… 3(名)
(1)从中抽出18张牌,至少有几张是同花色?
7只鸽子飞回5个鸽笼,至少有2只鸽子
只要小棒的根数比杯子的
个数 多多,1那么,不管怎么放,
总有一个杯子里,至少有
根小“商棒2+。1”
抽屉原理
“抽屉原理”也称为“鸽巢原理 ”,最先是由19世纪的德国数学家 狄里克雷运用于解决数学问题的, 所以又称“狄里克雷原理”。它的 应用千变万化,用它解决许多问题 ,常常得到一些令人惊异的结果。
51 ÷ 12=4(名)…… 3(名)
7只鸽子飞回5个鸽笼,至少有2只鸽子

7只鸽子飞回5个鸽笼,至少有2只鸽子
张叔叔参加飞镖比赛,投了5镖,
答:至少有2张数字相同。
人教版六年级数学下册第五单元数学广角
答:至少有5名同学在同一个月过生日。
20÷13=1(张)… …7(张) 1+1=2(张)
20÷13=1(张)… …7(张) 1+1=2(张)
18÷4=4(张)… …2 (张) 4+1=5(张)
从扑克牌中取出两张王牌,在剩下的52张
张叔叔参加飞镖比赛,投了5镖,
答:至少有2张数字相同。
从扑克牌中取出两张王牌,在剩下的52张
扑克牌任意抽牌。
(1)从中抽出18张牌,至少有几张是同花色?
18÷4=4(张)… …2 (张) 4+1=5(张) 答:至少有5张是同花色。

人教版六年级数学下册《鸽巢问题》数学广角PPT精品课件

人教版六年级数学下册《鸽巢问题》数学广角PPT精品课件

盒子里有同样大小的红球和蓝球各4个,要想摸 出的球一定有2个同色的,至少要摸出几个球?
至少要摸出3个球
只要摸出的球数比它们的颜色种数多1, 就能保证至少有两个球同色。
一天晚上,小红正要从自已放袜子的抽屉里 取袜子,突然灯熄了。她知道自己的抽屉里放有 白色与黄色的袜子各6只。小红至少要摸出多少只 袜子,才能保证拿出一双相同颜色的袜子?
9÷4=2……1 2+1=3
第五单元 数学广角--鸽巢问题 第3课
鸽巢问题
第3课时
人教版六年级下册数学课件

01 新课导入 02 新课讲解

03 课堂小结
CONTENTS
04 拓展延伸
第一部分 PART 01
新课导入
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here, or by copying your text, select paste in this box.
复习导入
5个人坐4把椅子,总有一把椅子上至少坐 2人,为什么?
把5个人分到“4个鸽巢”(代表4把 椅 子 ) 中 , 5÷4 = 1……1 , 所 以 一 定 有 “一个鸽巢”里至少有1+1=2(人),即 总有一把椅子上至少坐2人。
第二部分 PART 02
新课讲解
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here, or by copying your text, select paste in this box.

六年级数学下册课件 5 数学广角——鸽巢问题 -人教新课标(2014秋)(共15张PPT)

六年级数学下册课件  5 数学广角——鸽巢问题   -人教新课标(2014秋)(共15张PPT)

五、全课总结
回顾这节课的学习,有什么收获?
1、了解青蛙生长过程中几个不同阶段 的形体 变化, 知道它 是捉虫 能手, 懂得
2、能按问题的提示扩写句子,把句子 写具体 ,通过 选词填 空、连 句,了 解小蝌 蚪是怎 样变成 青蛙的 。 3、会分角色朗读课文,能背诵课文最 后两个 自然段 。应该 保护青 蛙
四、应用原理 解决问题
5只鸽子飞进了3个鸽笼,总有一个鸽笼至少 飞进了2只鸽子。为什么?
四、应用原理 解决问题
把7个苹果放进4个抽屉里,不管怎么放, 总有一个抽屉里至少有( 2 )个苹果。
四、应用原理 解决问题
随意找13位老师,他们中至少有2个人的属相 相同。为什么?
四、应用原理 解决问题
现在你能来说一说这个魔术的道理吗?
只要铅笔的数量比笔筒的数量多1,不管怎么放, 总有一个笔筒里至少有2支铅笔。
三、提升思维 构建模型
你能得出什么结论? 8只鸽子飞回了7个鸽巢, 总有一个鸽巢里至少飞回了2只鸽子。
三、提升思维 构建模型
你能得出什么结论? 10个苹果放进了9个抽屉里, 总有一个抽屉里至少放进了2个苹果。
三、提升思维 构建模型
4、教学重点:学习生字新词,能分角 色有感 情地朗 读课文 ,懂得 青蛙是 捉害虫 的能手 ,懂得 保护青 蛙人人 有责。 5、教学难点:认识蝌蚪和青蛙,了解 青蛙生 长过程 以及在 不同阶 段的形 态变化 。
6、理解重点词句,了解作者从哪些方 面介绍 黄山奇 石,并 用自己 的话复 述。
注意:不考虑笔筒的摆放顺序。
二、合作探究 发现规律
(4,0,0) (2,2,0)
(3,1,0) (2,1,1)
二、合作探究 发现规律
平均分

六年级下册数学课件-第5单元数学广角——鸽巢问题-人教版(共10张PPT)

六年级下册数学课件-第5单元数学广角——鸽巢问题-人教版(共10张PPT)
÷ 名)……9(名 ÷ 名)……9(名
块 ÷ 名)……9(名 第 课时 鸽巢问题 ÷ 个)……6(个
5.瑶瑶的糖盒中有大小一样的5块奶糖、5块酥糖、 ÷ 名)……9(名
深圳·期末 篮子里有苹果、梨、橘子 都足够多 现在有 个小朋友 如果每个小朋友都从中任意拿出 个水果 那么至少有多少个小朋友拿
鸽 的水果是相同的
5+1=6(个)
7.一个盒子里装有黑白两种颜色的跳棋各10枚,从中 最少摸出几枚才能保证有2枚颜色相同?从中至少摸 出几枚,才能保证有3枚颜色相同?
2×1+1=3(枚) 2×(3-1)+1=5(枚)
谢谢观赏
5+5+1=11(块) 拓 六年一班有 名同学 至少有几名同学是在同一个月过生日 为什么
展 ÷ 个)……6(个
一个盒子里装有黑白两种颜色的跳棋各 枚 从中最少摸出几枚才能保证有 枚颜色相同 从中至少摸出几枚 才能保证有 枚颜色相同
第 课时 鸽巢问题
÷ 个)……5(个
瑶瑶的糖盒中有大小一样的 块奶糖、 块酥糖、 块硬糖 她不看 只伸手去抓 一次至少抓出几块糖 才能保证至少有一块奶糖
第2课时 鸽巢问题(2) ÷ 名)……9(名
÷ 个)……5(个 一个盒子里装有黑白两种颜色的跳棋各 枚 从中最少摸出几枚才能保证有 枚颜色相同 从中至少摸出几枚 才能保证有 枚颜色相同
÷ 名)……9(名 瑶瑶的糖盒中有大小一样的 块奶糖、 块酥糖、 块硬糖 她不看 只伸手去抓 一次至少抓出几块糖 才能保证至少有一块奶糖
7.先把一副扑克牌的大王和小王取出,再从剩下的52 张牌中任意抽,要保证至少有3张是相同花色的,至少 要抽出多少张扑克牌?
2×4+1=9(张)

六年级数学下册 数学广角——鸽巢问题 精品PPT人教新课标优秀PPT

六年级数学下册 数学广角——鸽巢问题 精品PPT人教新课标优秀PPT

如果每个笔筒里放1枝铅笔,最多放(3 Nhomakorabea)枝铅笔, 剩下的( 1)枝铅笔还要放进其中一个笔筒里, 所以,总有一个笔筒里至少放( 2 )枝铅笔。
六年级数 学下册 数学广 角—— 鸽巢问 题 精 品PPT人 教新课 标优秀 PPT
六年级数 学下册 数学广 角—— 鸽巢问 题 精 品PPT人 教新课 标优秀 PPT
小结
放的铅笔数比笔筒的数量多1, 就总有1个笔筒里至少放进2支 铅笔。
抽屉原理一:
只要放的物体比抽屉的数量 多1,总有一个抽屉里至少 放入2个物体。
六年级数 学下册 数学广 角—— 鸽巢问 题 精 品PPT人 教新课 标优秀 PPT
六年级数 学下册 数学广 角—— 鸽巢问 题 精 品PPT人 教新课 标优秀 PPT
例1
把4支铅笔放进3个笔筒中,不管怎 么放,总有一个笔筒里至少有2支铅 笔。为什么呢?
问题:“总有”和 “至少”是什么意 思?
六年级数 学下册 数学广 角—— 鸽巢问 题 精 品PPT人 教新课 标优秀 PPT
六年级数 学下册 数学广 角—— 鸽巢问 题 精 品PPT人 教新课 标优秀 PPT
把4枝铅笔放进3个笔筒里
7只鸽子飞回5个鸽舍,至少有(2 ) 只鸽子要飞进同一个鸽舍里。
如果每个鸽舍里飞进一只鸽子,最多飞进5只鸽子, 剩下的2只鸽子飞进其中的一个鸽舍里或分别飞进两 个鸽舍里, 所以,至少有2只鸽子要飞进同一个鸽舍里。
六年级数 学下册 数学广 角—— 鸽巢问 题 精 品PPT人 教新课 标优秀 PPT
六年级数 学下册 数学广 角—— 鸽巢问 题 精 品PPT人 教新课 标优秀 PPT 六年级数 学下册 数学广 角—— 鸽巢问 题 精 品PPT人 教新课 标优秀 PPT

六年级数学下册课件5数学广角——鸽巢问题人教新课标(共31张PPT)

六年级数学下册课件5数学广角——鸽巢问题人教新课标(共31张PPT)
剩下的1支还要放进其中的一个笔筒里。 所以不管怎么放,总有一个笔筒里至少放进2支笔。
六年级数学下册课件 - 5 数学广角— — 鸽巢问题 - 人教新课标(共3 1 张P P T )
六年级数学下册课件 - 5 数学广角— — 鸽巢问题 - 人教新课标(共3 1 张P P T )
把4支笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少放进2支笔。
我能说 把5支笔放进4个笔筒里,不管怎么
放,总有一个笔筒里至少放进( )
支笔,为什么?
答:假设每个笔筒里先放1支笔, 最多可放4支。
剩下的1支还要放进其中的一个笔筒里。 所以不管怎么放,总有一个笔筒里至少放进2支笔。
六年级数学下册课件 - 5 数学广角— — 鸽巢问题 - 人教新课标(共3 1 张P P T )
六年级数学下册课件 - 5 数学广角— — 鸽巢问题 - 人教新课标(共3 1 张P P筒里。
六年级数学下册课件 - 5 数学广角— — 鸽巢问题 - 人教新课标(共3 1 张P P T )
六年级数学下册课件 - 5 数学广角— — 鸽巢问题 - 人教新课标(共3 1 张P P T ) 六年级数学下册课件 - 5 数学广角— — 鸽巢问题 - 人教新课标(共3 1 张P P T )
把10支笔放进9个笔筒里,不管怎么放,总有一个笔筒里至少放进2支笔.
n+1个 n个抽
物体

我的发 现
把n+1个物体放进n个抽屉里,总有一个抽 屉里至少放进2个物体。
六年级数学下册课件 - 5 数学广角— — 鸽巢问题 - 人教新课标(共3 1 张P P T )
老师魔术的秘密
一副牌,取出大小王,
5位同学每人随意抽 出一张。
六年级数学下册课件 - 5 数学广角— — 鸽巢问题 - 人教新课标(共3 1 张P P T )

六年级数学下册课件 - - 5 数学广角——鸽巢问题 -人教新课标(2014秋)(共20张PPT)[优秀课件]

六年级数学下册课件 - - 5 数学广角——鸽巢问题   -人教新课标(2014秋)(共20张PPT)[优秀课件]

物体数
抽屉

称 鸽巢原理
物体数÷抽屉数=商……余数
至少数:商+1
如果物体数除以抽屉数有余数, 用所得的商加1,就会发现“总有一个 抽屉里至少有商加1个物体”。
“ 抽屉原理”又称“鸽巢原理”,最先是由 19世纪的德国数学家狄利克雷提出来的,所 以又称“狄里克雷原理”,这一原理在解决实 际问题中有着广泛的应用。“抽屉原理”的应 用是千变万化的,用它可以解决许多有趣的
这种方法是从最不利的情况来考虑,先平均分,每个笔筒里都 放一枝,就可以使放得较多的这个文具盒里的铅笔尽可能的少。 这样,就能很快得出不管怎么放,总有一个文具盒里至少放进 2枝铅笔。
假设法
4÷3=1(枝)……1(枝) 1+1=2(枝)
总有一个笔筒里至少放2根笔。
推进新课
如果把5枝笔放在3个笔筒里,会有什 么结果?
5÷3=1(枝)……2(枝) 1+1=2
5枝铅笔放在3个笔筒里,不管怎么放, 总有一个笔筒里至少有2枝铅笔。
如果把7枝笔放在4个笔筒里,会有 什么结果? 7÷4=1(枝)……3(枝) 1+1=2
如果把8枝笔放在3个笔筒里,会有什么结果?
8÷3=2(枝)……2(枝) 2+1=3
把3枝 笔 放在 2个 笔筒 里 把4枝 笔 放在 3个 笔筒里 把100枝 笔 放在 99个 笔筒里 把N+1枝 笔 放在 N个 笔筒里
7÷5=1……2 1+1=2
4、 8只鸽子飞回3个鸽舍,至少有( 3 )
只鸽子要飞进同一个鸽舍。为什么?
我们先让一个鸽舍里飞进2只鸽子,3个鸽舍最 多可飞进6只鸽子,还剩下2只鸽子,无论怎么飞, 所以至少有3只鸽子要飞进同一个笼子里。
8÷3=2……2 2+1=3

数学第五单元《数学广角》鸽巢问题PPT

数学第五单元《数学广角》鸽巢问题PPT

练习题三
05
CHAPTER
总结与思考
鸽巢问题的重要性和意义
培养逻辑思维
鸽巢问题涉及逻辑推理和排列组合,通过解决这类问题,可以培养学生的逻辑思维和推理能力。
数学建模
鸽巢问题是一种典型的数学建模问题,通过解决这类问题,学生可以学习如何将实际问题转化为数学模型,提高数学应用能力。
数学文化的传承
代数法
03
CHAPTER
鸽巢问题的实际案例
总结词:等量分配
详细描述:有10个小朋友要分20个苹果,每个小朋友至少要分到一个苹果,问怎么分最合适?
分苹果的问题
总结词:位置限制
详细描述:有8把椅子摆成一排,现有3人随机就座,任何两人不相邻的坐法种数为多少?
安排座位的问题
总结词
有限资源分配
详细描述
详细描述
枚举法
总结词
通过假设结论不成立,然后推导出矛盾,从而证明结论成立。
详细描述
反证法是一种常用的数学证明方法。在解决鸽巢问题时,我们可以先假设结论不成立,即假设至少有一个鸽巢没有鸽子或者有多于n个鸽子(n为鸽巢数量)。然后通过逻辑推理和计算,推导出矛盾,从而证明结论成立。这种方法可以避免枚举法的繁琐,适用于问题规模较大或者情况较为复杂的情况。
03
02
01
如何更好地理解和掌握鸽巢问题
鸽巢问题可以应用于资源分配问题,例如在有限的时间内分配任务给多个员工。
资源分配
在数据分析中,如果需要将数据分类或分组,鸽巢问题可以提供思路和方法。
数据分析
在城市交通规划中,鸽巢问题可以用于解决车辆路径规划、停车位分配等问题。
交通规划
鸽巢问题在实际生活中的应用
数学第五单元《数学广角》鸽巢问题

人教版新插图小学六年级数学下册第5单元《数学广角-鸽巢问题》课件

人教版新插图小学六年级数学下册第5单元《数学广角-鸽巢问题》课件
4+1=5(个)
答:至少取5个球,可以保证取到两个颜色相同的球。
(教材P69 做一做T2)
3.给一个正方体木块的6个面分别涂上蓝、黄两种颜色。不论怎么涂至少有3个面涂的颜色相同。为什么?
把两种颜色看成两个抽屉,正方体的6个面看成分放的物体。 6÷2=3(个) 至少有3个面涂的颜色相同。
至少要摸出3个球
只要摸出的球数比它们的颜色种数多1,就能保证有两个球同色。
盒子里有同样大小的红、黄、蓝球各6个,要想摸 出的球一定有2个同色的球,至少要摸出几个球?
3+1=4(个)
答:至少要摸出4个球。
拓展思维
巩固运用
1.向东小学六年级共有367名学生,其中六(2)班有 37名学生。
2.给一个正方体木块的6个面分别涂上蓝、黄两种颜色。不论怎么涂至少有3个面涂的颜色相同。为什么?
把两种颜色看成两个抽屉,正方体的6个面看成分放的物体。 6÷2=3(个) 至少有3个面涂的颜色相同。
3.把红、蓝、黄3种颜色的筷子各3根混在一起。如果让你闭上眼睛,从中最少拿出几根才能保证一定有2根同色的筷子?如果要保证有2双不同色的筷子(指一双筷子为其中一种颜色,另一双筷子为另一种颜色。)呢?
答:每次最少拿出4根才能保证一定有2根同色的筷子。每次最少拿6根才能保证一定有2双不同色的筷子。
4.任意给出3个不同的自然数,其中一定有2个数的和是偶数,请说明理由。
任意给出3个不同的自然数,共有4种情况。(1)1个奇数,2个偶数,偶数+偶数=偶数;(2)2个奇数,1个偶数,奇数+奇数=偶数;(3)3个奇数,奇数+奇数=偶数;(4)3个偶数,偶数+偶数=偶数。所以任意给出3个不同的自然数,其中一定有2个数的和是偶数。

5.1-鸽巢问题课件(共26张PPT)六年级下册数学人教版

5.1-鸽巢问题课件(共26张PPT)六年级下册数学人教版
( 枚举法)
(4,0,0)
(3,1,0)
(2,2,0)
(2,1,1)
能不能只摆一种情况就能找到至 少数呢?
可以这样想:先在每个笔筒中各 放 1 支,共放了3支。剩下ቤተ መጻሕፍቲ ባይዱ 1 支也要放进其中的一个笔筒里。 所以至少有一个笔筒中有 2 支铅 笔。
4÷3﹦1(支)……1(支) 1+1=2(支)
①把5支铅笔放到4个笔筒里,总有一个笔筒里至少放多少支
把25个小朋友看成25抽屉,把60件玩具放进25个 抽屉里,60÷25=2(件)……10(件),2+1=3 (件)总有一个抽屉中至少放了3件玩具,因此会 有小朋友得到3件或3件以上的玩具。
假设法
如果把5支笔放在3个笔筒里,总有 一个笔筒里至少放了多少支笔?
5÷3﹦1(支)……2 (支) 1+1﹦2(支)
为什么加“1”?
如果把笔的支数和笔筒的个数继续增加:
①7支铅笔放进3个笔筒里,总有一个笔筒里至少放进多少 支笔?
7÷3=2(支)……1(支) 2+1=3(支)
②17支铅笔放进6个笔筒里,总有一个笔筒里至少放进多 少支笔?
数学广角——鸽巢问题
一、游戏引入
我给大家表演一个“魔 术”。一副牌,取出假 牌,大王和小王,还剩 52张,请一位同学上来 随意抽出五张,我知道 至少有2张牌是同花色 的。相信吗?
二、探究新知
把3支铅笔放进2个笔筒中,有哪 些放法呢?
可把3支铅笔都放在左边的笔筒里。
可以在左边笔筒里放 2 支,右边笔 筒里放 1支。
“不管怎么放,总有一个笔筒里至少 有2支铅笔”这样的说法对吗?
“总有”和 “至少”是 什么意思?
总有:一定有。 至少:最少。
如果把4支铅笔放进3个笔筒里,会有 怎样的结论呢?

《鸽巢问题》完整ppt课件

《鸽巢问题》完整ppt课件

模型扩展
可以将鸽巢原理扩展到多维空间 、非均匀分布等复杂情况。
应用领域
鸽巢原理在计算机科学、组合数 学、概率论等领域有着广泛的应 用,如哈希表设计、算法分析、
概率不等式证明等。
实例分析
通过具体实例分析鸽巢原理的应 用,如生日悖论、抽屉原理等。
2024/1/29
10
2024/1/29
03
典型案例分析
《鸽巢问题》完整 ppt课件
2024/1/29
1
目录
• 鸽巢问题概述 • 鸽巢问题数学模型 • 典型案例分析 • 鸽巢问题求解方法 • 计算机在鸽巢问题中的应用 • 鸽巢问题拓展研究
2024/1/29
2
2024/1/29
01
鸽巢问题概述
3
问题背景与提
鸽巢问题的历史渊源
最早由德国数学家狄利克雷提出,也 称作抽屉原理或狄利克雷原理。
原理的推广形式
可以推广到多个物体和多个容器的 情况,只要物体数量多于容器数量 ,就必然存在至少一个容器包含两 个或以上的物体。
原理的逆否命题
如果每个容器内最多只有一个物体 ,则物体总数不超过容器数。
5
应用领域及意义
2024/1/29
组合数学中的应用
01
用于解决存在性证明问题,如证明某类组合对象必然存在某种
实际问题的抽象化
问题的提出方式
通常表述为“如果有n个鸽巢和n+1 只鸽子,至少有一个鸽巢里有两只鸽 子。”
将现实生活中分配物品到容器的问题 抽象为数学模型。
2024/1/29
4
鸽巢原理基本概念
鸽巢原理的定义
如果将多于n个物体放到n个容器 中去,则至少有一个容器里放有

人教版六年级数学下册第5单元《数学广角——鸽巢问题》精美课件

人教版六年级数学下册第5单元《数学广角——鸽巢问题》精美课件

课堂练习
六年级三班,有50人,每人至少订一份学习刊物,现有A、 B、C三种刊物,每人有几种选择方式?这个班订相同刊物 的至少有多少人?
把有几种选择方式,看作抽屉书数。
①A ②B ③C ④A和B ⑤A和C ⑥B和C ⑦A、B和C 50÷7=7(人)……1(人) 7+1=8(人)
答:每人有7种选择方式。这个班订相同刊物的至少有8人。
至少
等于或多于
为什么呢?
总有 一定有
探究新知
把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里 至少放2支铅笔,为什么?
动手摆一摆,小组讨论, 展示分得情况,看哪一 组最先得出结论?
探究新知
可以把4支铅笔都放在左边的笔筒里。
探究新知
也可以在左边笔筒里放3支,中间笔筒里放1支, 右边不放。
探究新知
人教版 数学 六年级 下册
5 数学广角—鸽巢问题
比较简单的鸽巢原理
情境导入
我取你猜出们至大知少小道有王一2之副个后扑同呢克学?牌拿还一的有共是 同多有花少多色张少的?张。吗?
探究新知
想一想:把4支铅笔放进3个 笔筒中,你能怎么放呢?
探究新知
把4支铅笔放进3个笔筒中, 不管怎么放,总有一个笔筒 里至少有2支铅笔。
鸽巢问题
把n+1个物体任意放进n个抽屉中,(n是非0自然 数),那么一定有一个抽屉中至少放进了2个物体。
情境导入
你能用哪些方法解决问题?
假设法

假设所有鸽巢都放一个,

剩下的1个就要放进其

中的一个鸽巢。
探究新知
把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放 进3本书。这句话对吗,为什么?
探究新知

六年级数学下册_5数学广角——鸽巢问题人教新课标ppt(荐)ppt(20张)标准课件

六年级数学下册_5数学广角——鸽巢问题人教新课标ppt(荐)ppt(20张)标准课件
5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。 “ 抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。 下面我们应用这一原理解决问题。 3、7只鸽子飞回5个鸽舍,至少有( )只鸽子要飞进同一个鸽舍里。 6枝铅笔放在5个笔筒里,不管怎么放,总有一个笔筒里至少有2枝铅笔。
2、 11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。 2:四人合作,动手摆一摆,3只鸽子飞进2个鸽巢,有几种飞法? 物体数÷抽屉数=商……余数 3:“总有”和“至少” 是什么意思呢? “ 抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。 4÷3=1(枝)……1(枝)
物体数
抽屉

称 鸽巢原理
物体数÷抽屉数=商……余数
至少数:商+1
如果物体数除以抽屉数有余数, 用所得的商加1,就会发现“总有一个 抽屉里至少有商加1个物体”。
“ 抽屉原理”又称“鸽巢原理”,最先是由 19世纪的德国数学家狄利克雷提出来的,所 以又称“狄里克雷原理”,这一原理在解决实 际问题中有着广泛的应用。“抽屉原理”的应 用是千变万化的,用它可以解决许多有趣的
你发现什么?
铅笔的枝数比笔筒数多1,不管怎么 放,总有一个笔筒里至少有2枝铅笔。
把N+1枝笔放进N个笔筒里呢?……
总有一个笔筒里至少放2根笔。
怎样才能最快地知道这个放得最多的笔筒里至少有枝 笔?
平均分
这种方法是从最不利的情况来考虑,先平均分,每个笔筒里都 放一枝,就可以使放得较多的这个文具盒里的铅笔尽可能的少。 这样,就能很快得出不管怎么放,总有一个文具盒里至少放进 2枝铅笔。

最新-六年级下册《数学广角-鸽巢问题》市公开课获奖课件省名师示范课获奖课件

最新-六年级下册《数学广角-鸽巢问题》市公开课获奖课件省名师示范课获奖课件

4
40 0
3
2
41 42
0
0
2
41 1
不论怎么放,总有一种笔筒里至少有2
支铅笔.
3.算一算: ——平均分法
我们能不能找到一种更为直接旳措施,只摆 放一种情况,也能得到上面旳结论呢?想一 想,能够小组内交流一下.
431 1
至少数=1+1
不论怎么放,总有一种笔筒里至少有2
支铅笔.
二 、合作探究(2):
为何会有这么旳 成果?
这么分实际上是怎样在分? 怎样列式? 平均分
7 3 2 1 至少数=2+1
三、思索并回答:
1. 把8本书放进3个抽屉里,不论怎么放,
总有一种抽屉里至少有几本书? 3本
2. 把10本书放进3个抽屉里,不论怎么放,
总有一种抽屉里至少有几本书? 4本
3. 把12本书放进3个抽屉里,不论怎么放,
六年级数学下册
二、合作探究(1):1.放一放:—枚举法 例1.把4支铅笔放进3个笔筒中,不论怎
么放,总有1个笔筒里至少有2支铅笔.为何呢? 请动手放一放,有几种放法?
2.分一分: ——分解数法
假如我们把4支铅笔看成是数字4,把3个
笔筒里旳铅笔旳数量看成是要分解成旳3个数,
4和这三个数有什么关系?怎样分?
总有一种抽屉里至少有几本书? 4本
小结:“鸽巢问题” 旳计算措施 “物体数÷鸽巢数=商数……余数” 整除时:“至少数=商数” 不能整除时:“至少数=商数+1”
鸽巢(抽屉)原理:
有kn+b (0≤b<n,k 、n、b为整数)支笔,
放进n个笔筒,
(1)当b=0 时,总有一种笔筒里至少
有k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
义务教育教科书数学六年级下册
把4支铅笔放进3个笔筒中, 不管怎么放,总有一个笔筒 里至少有2支铅笔。
把4支铅笔放进3个笔筒里,有几种 不同的放法,有哪几种?
4支铅笔放进3个笔筒里,无论怎么放,总有一
个笔筒里至少放进( 2 )支铅笔。
(4,0,0)
(3,1,0)Leabharlann (2,2,0)(2,1,1)
在每种放法的最多数中找最小数
• 11只鸽子飞会4个鸽舍,至少有几只鸽 子飞回同一个鸽舍里,为什么?
在我们班的任意13人中,至少2个人是在 同一个月的生日,想一想,为什么?
这节课你有什么收获?
谢谢!
平均分
把5支铅笔放进4个笔筒里,总有一个笔筒里至少放进( 2 )支铅笔 2 把6支铅笔放进5个笔筒里,总有一个笔筒里至少放进( )支铅笔
2 把10支铅笔放进9个笔筒里,总有一个笔筒里至少放进( )支铅笔
…… 2 把100支铅笔放进99个笔筒里,总有一个笔筒里至少放进( )支铅笔
铅笔的支数比笔筒数多1,不管怎么放, 总有一个笔筒里至少有2支铅笔
10÷3=3(本)…...1(本)
鸽巢问题简介
“抽屉原理”最先是由19世纪的德国数 学家狄里克雷(Dirichlet)运用于解决数学 问题的,所以又称“狄里克雷原理”,也称 为“鸽巢原理”。“抽屉原理”的应用却是 千变万化的,用它可以解决许多有趣的问题, 并且常常能得到一些令人惊异的结果。“抽 屉原理”在数论、集合论、组合论中都得到 了广泛的应用。
把5支铅笔放进3个笔筒里,总有一 个笔筒里至少有几支铅笔,为什么?
把7本书放进3个抽屉里,不管怎么放,总 有一个抽屉至少放进多少本书?为什么?
7÷3=2(本)……1(本)
把8本书进3个抽屉中,不管怎么放,总 有一个抽屉至少放进多少本书?为什么?
8÷3=2(本)……2(本)
把10本书进3个抽屉中,不管怎么放,总 有一个抽屉至少放进多少本书?为什么?
相关文档
最新文档