光纤式传感器讲解

合集下载

光纤传感器的工作原理

光纤传感器的工作原理

光纤传感器的工作原理光纤传感器作为一种重要的光学传感器,广泛应用于各个领域,如光通信、工业自动化、医疗设备等。

本文将介绍光纤传感器的工作原理及其在实际应用中的特点。

一、工作原理光纤传感器是利用光学原理来实现物理量的检测和测量的装置。

它基于光的传输、反射、折射、散射等现象,通过改变光的强度、频率或相位来感知和测量被测物理量。

1. 光传输光纤传感器中的光信号通过光纤传输到被测物体或环境中。

光纤具有优异的光导传输特性,可以保证光信号在传输过程中的稳定性和可靠性。

2. 光的接收与反射被测物体或环境中的光信号与光纤发射的光信号相互作用后,一部分被反射回光纤。

这里的反射可以是由于光的散射、反射或折射等效应引起的。

3. 光的探测与解读通过光纤传感器接收到的反射光信号会被传感器内部的光电探测器接收并转换成电信号。

电信号会被后续的电路处理和解读,从而获取被测量的物理量信息。

二、特点和应用光纤传感器具有以下特点,使其在各个领域得到广泛应用:1. 高精度光纤传感器具有高分辨率和高灵敏度,可以对微小物理量进行准确测量。

同时,光纤传感器还能实现长距离的传输,适用于大范围的测量需求。

2. 免受干扰光纤传感器的信号传输是光学信号,不会受到电磁干扰,有较高的抗干扰能力。

这使得光纤传感器在工业自动化、电磁环境复杂的场合下具有稳定可靠的性能。

3. 多功能光纤传感器可以根据需求设计不同的传感结构,实现对不同物理量的测量。

如温度、压力、湿度等物理量都可以通过光纤传感器进行检测。

4. 实时性光纤传感器的工作响应快速,能够实时获取被测物理量的变化。

这使得在对实时监测和控制要求较高的应用领域,如工业生产过程中的物料流动监测等,光纤传感器发挥了极其重要的作用。

光纤传感器由于其独特的工作原理和优越的性能,在多个领域有广泛的应用。

以下是一些典型的光纤传感器应用案例:1. 环境监测通过光纤传感器,可以实时监测环境参数,如温度、湿度、气体浓度等。

这对于环境保护、工业安全等方面具有重要意义。

光纤传感器的特点和工作原理

光纤传感器的特点和工作原理

光纤传感器的特点和工作原理一、光纤传感器的特点:1.高灵敏度:光纤传感器可以实现高灵敏度的测量,在微小尺度下可以检测到微小变化,并将其转化为电信号输出。

2.多功能性:光纤传感器可以根据不同的应用需求进行设计和选择,可以实现温度、压力、形变、位移、流速、振动等多种物理量的测量和监测。

3.抗干扰性强:由于光纤传感器采用光学原理进行测量,光信号不易受到电磁干扰的影响,从而大大提高了传感系统的稳定性和抗干扰性。

4.远距离传输:光纤传感器的传输距离可以达到几公里,甚至更远,可以满足从传感位置到控制中心的长距离传输需求。

5.抗腐蚀性强:光纤传感器中的光缆材料一般为二氧化硅或光纤增强复合材料,具有抗腐蚀性、耐高温性和强韧性,适用于恶劣环境下的测量和监测。

6.体积小、重量轻:由于光纤传感器使用光学器件作为传感元件,所以整个传感器可以做得非常小巧轻便,便于安装和携带。

7.高精度:光纤传感器可以实现高精度的测量和检测,可以满足高要求的科研和工业应用。

二、光纤传感器的工作原理:1.光源:光源一般采用激光器、发光二极管或白炽灯,产生一束光信号。

2.传输介质:传输介质即为光纤,光纤由高折射率的芯心和低折射率的包层组成。

光信号会在光纤中以全内反射的方式传输。

3.光接收器:光接收器一般采用光电二极管或光电倍增管,用于接收光信号并将其转换为电信号输出。

当光纤传感器用于测量物理量时,会根据物理量的不同使用不同的传感技术。

例如,当光纤传感器用于温度测量时,可以使用基于热敏特性的传感技术,即通过测量光纤材料的热传导特性来推断温度的变化。

当光纤传感器用于压力测量时,可以使用基于光纤的布拉格光栅技术,即通过载荷的作用使光纤纳米尺度的周期结构发生畸变,进而引起光纤波导特性的变化,从而实现压力的测量。

总之,光纤传感器的工作原理是利用光学原理将待测物理量转化为光信号,然后通过光接收器将光信号转化为电信号输出,从而实现对物理量的测量和检测。

由于光纤传感器具有高灵敏度、多功能性、抗干扰性强、远距离传输、抗腐蚀性强、体积小、重量轻和高精度等特点,因此在各个领域都得到了广泛的应用。

光纤传感器的分类PPT课件全

光纤传感器的分类PPT课件全
NA sini n12 n22
反映纤芯接收光量的多少,标志光纤接收性能。 意义:无论光源发射功率有多大,只有2θi张角
之内的光功率能被光纤接受传播。 大的数值孔径:有利于耦合效率的提高。 但数值孔径太大,光信号畸变也越严重。
2. 光纤模式
按传输模式分为单模光纤和多模光纤。
阶跃型的圆筒波导内传播的模式数量表示为
4.4 光纤传感器
4.4.1 光导纤维的结构和导光原理 4.4.2 光导纤维的主要参数 4.4.3 光纤传感器结构原理 4.4.4 光纤传感器的分类 4.4.5 光纤传感器的特点 4.4.6 光纤传感器的应用
4.4.1 光导纤维的结构和导光原理
圆柱形内芯和包层组成,而且内芯的折射率略 大于包层的折射率(n2<n1)
利用光弹效应的声、压力或振动传感器; 利用磁致伸缩效应的电流、磁场传感器; 利用电致伸缩的电场、电压传感器
利用Sagnac效应的旋转角速度传感器(光纤陀 螺)
优点:灵敏度很高, 缺点:特殊光纤及高精度检测系统,成本高。
4.4 光纤传感器
4.4.1 光导纤维的结构和导光原理 4.4.2 光导纤维的主要参数 4.4.3 光纤传感器结构原理 4.4.4 光纤传感器的分类 4.4.5 光纤传感器的特点 4.4.6 光纤传感器的应用
4.4.4 光纤传感器的分类
传感器
光学现象
被测量
光纤
分类

光纤传感器相位调制
干涉(磁致伸缩)

干涉(电致伸缩)

Sagnac效应
光弹效应
干涉
电流、磁场 电场、电压 角速度 振动、压力、加速度、位移 温度
SM、PM
a
SM、PM
a
SM、PM

光纤传感器ppt讲解可修改文字

光纤传感器ppt讲解可修改文字
NA n12 n22
n n 1为纤芯折射率 , 2 为包层折射率
arcsinNA是一个临界角,
θ> arcsinNA,光线进入光纤后都不能传播而在包层消失;
θ< arcsinNA,光线才可以进入光纤被全反射传播。
数值孔径的意义是无论光源发射功率有多大,只有2 张角之内的光被
光纤接受传播。一般希望光纤有大的数值孔径,这样有利于耦合效率的提高。 但数值孔径越大,光信号将产生大的“模色散”,入射光能分布在多个模式 中,各模式速度不同,因此到达光纤远端的时间不同,信号将发生严重的畸
非功能型光纤传感器
传光型光纤传感器的 光纤只当作传播光的媒介, 待测对象的调制功能是由其它光电转换元件实现的, 光纤的状态是不连续的,光纤只起传光作用。
三 介绍几种光纤传感器
1,光纤压力传感器
Y形光纤束的膜片反射型光纤压力传感器如 图。在Y形光纤束前端放置一感压膜片,当膜片 受压变形时,使光纤束与膜片间的距离发生变化, 从而使输出光强受到调制。
6 光纤传感器的类型
光纤传感器按其作用方式一般分为两种类型: 一 功能型光纤传感器, 二 非功能型光纤传感器。
功能型光纤传感器
这类传感器利用光纤本身对外界被测对象具有敏 感能力和检测功能,光纤不仅起到传光作用,而且 在被测对象作用下,如光强、相位、偏振态等光学 特性得到调制,调制后 的信号携带了被测信息。
(3)传输损耗
由于光纤纤芯材料的吸收、散射、光纤弯曲处的辐射损耗等 的影响,光信号在光纤中的传播不可避免地要有损耗,光纤的传输 损耗A可用下式表示
-10 lg I0
A=
I
L
式中 L ——光纤的长度 I0——光纤入射端的光强 I——光纤输出端的光强

光纤传感器基本原理

光纤传感器基本原理

光纤传感器基本原理光纤传感器是一种利用光纤作为传感元件的传感器,它通过光纤中的光信号的强度、频率或相位的变化来感知和测量环境参数的传感器装置。

光纤传感器具有高可靠性、抗干扰能力强、响应速度快等优点,广泛应用于测量、通信、工业自动化等领域。

首先是光源部分:光源可以是激光器、LED等产生光信号的装置。

光源通过光纤传输光信号到目标位置,其中包括了传感器测量的环境参数。

然后是光纤部分:光纤是光信号传输的介质,通常由一根或多根光纤组成。

光纤可以是单模光纤或多模光纤,其核心材料通常是高纯度玻璃或塑料。

光信号通过光纤的内部反射来传输,通过改变光纤的长度、形状或者在光纤表面附加外界物质等方式,可以实现对环境参数的测量。

最后是光电检测器部分:光电检测器用于接收光信号并将其转化为电信号。

光电检测器可以是光电二极管、光电转换器等。

当光信号到达光电检测器时,光信号激发光电检测器产生电流变化,进而将光信号转化为电信号。

通过测量电信号的特征,如电流的强度、频率或相位的变化,可以获得环境参数的信息。

光纤传感器的工作原理有很多种,最常见的是基于光强度的测量。

当环境参数发生变化时(如温度、湿度、压力等),这些变化会导致光信号的强度发生变化。

光纤传感器通过测量光信号的强度变化来确定环境参数的变化情况。

另外一种常见的光纤传感器工作原理是基于光频率的测量。

当环境参数变化时,这些变化会引起光信号的频率移动。

通过测量光信号频率的变化,可以确定环境参数的变化情况。

还有一种光纤传感器工作原理是基于光相位的测量。

当环境参数变化时,这些变化会导致光信号的相位变化。

通过测量光信号相位的变化,可以确定环境参数的变化情况。

总之,光纤传感器利用光的传导性能来实现环境参数的测量和检测。

通过光源产生光信号,光信号经过光纤传输并最终转化为电信号。

根据光信号的强度、频率或相位的变化,可以获得环境参数的变化情况。

光纤传感器具有高可靠性、抗干扰能力强、响应速度快等优点,在各个领域得到广泛应用。

光纤传感器原理与应用

光纤传感器原理与应用

光纤传感器原理与应用光纤传感器是一种基于光学原理的传感器,利用光的散射、干涉、吸收等特性来测量目标物理量。

它具有高灵敏度、快速响应、无电磁干扰等优点,在各个领域得到广泛应用。

本文将介绍光纤传感器的原理、分类以及在不同领域的应用。

一、光纤传感器的原理光纤传感器的工作原理基于光的传输和光与物质的相互作用。

其基本结构由光源、光纤和光检测器组成。

光源发出光信号经光纤传输到目标位置,通过光与目标物理量的相互作用,改变光信号的特性,最后被光检测器接收并转换成电信号进行处理。

光纤传感器的原理主要有散射原理、干涉原理和吸收原理。

散射原理是利用目标物质对光的散射程度与目标物理量之间的关系来进行测量;干涉原理利用光的相位干涉来测量目标物理量;吸收原理则是利用目标物质对光的吸收程度与目标物理量之间的关系来进行测量。

根据不同的原理,可以设计出不同类型的光纤传感器。

二、光纤传感器的分类光纤传感器根据测量方式的不同,可以分为直接测量型和衍射测量型。

1. 直接测量型直接测量型光纤传感器是通过测量光的散射、干涉或吸收来间接测量目标物理量的。

根据光的散射、干涉或吸收特性的不同,直接测量型光纤传感器又可以分为散射型、干涉型和吸收型。

散射型光纤传感器是通过测量光信号在光纤中由于目标物质散射导致的光功率、频谱或相位的变化来进行测量的。

常见的散射型光纤传感器有拉曼散射和布里渊散射传感器。

干涉型光纤传感器是通过测量光信号在光纤中由于目标物质引起的干涉引起的相位差变化来进行测量的。

干涉型光纤传感器可以实现高灵敏度的测量,常见的干涉型光纤传感器有光纤干涉仪和弗罗伊德森干涉仪。

吸收型光纤传感器是通过测量光信号在光纤中由于目标物质吸收导致的光功率变化来进行测量的。

吸收型光纤传感器可用于测量目标物质的浓度、温度和压力等。

常见的吸收型光纤传感器有光纤光栅传感器和吸收型光纤传感器。

2. 衍射测量型衍射测量型光纤传感器是通过测量目标物质对光的衍射现象来直接测量目标物理量的。

光纤传感器原理及应用课件

光纤传感器原理及应用课件
光纤通过全反射原理传递 光信号,具有低衰减、低 色散等优点。
光的干涉与衍射
光纤中光的干涉与衍射现 象可用于传感和调制。
光纤传感器的原理
光纤传感器通过检测光纤中光信号的 变化来感知外界物理量的变化。
外界物理量如温度、压力、磁场等作 用于光纤,导致光纤中光信号的相位 、频率、强度等发生变化,从而感知 外界物理量的变化。
水质监测
光纤传感器可用于监测水体中的化学 物质、温度、浊度和流速等参数,确 保水质安全和生态平衡。
医疗领域
生物医学
光纤传感器可以用于监测生物体内的生理参数,如血压、血氧饱和度和体温等 ,为医疗诊断和治疗提供重要信息。
光学成像
光纤传感器结合光学成像技术,可用于内窥镜、显微镜等领域,提高医疗诊断 的准确性和效率。
光纤传感器原理及应用课件
目 录
• 光纤传感器原理 • 光纤传感器的应用领域 • 光纤传感器的优势与挑战 • 光纤传感器的发展趋势与前景 • 实际应用案例分析
01
光纤传感器原理
光纤的结构与特性
01
02
03
光纤的结构
光纤由中心纤芯、包层和 涂覆层组成,具有低损耗 、高透明度、高带宽等特 性。
光的全反射
成本较高
光纤传感器制造工艺复杂,导致其成 本相对较高。
小型化与集成化难度大
实现小型化与集成化的光纤传感器制 造技术有待突破。
交叉敏感问题
部分光纤传感器可能对不同参数敏感 ,导致测量结果不准确。
04
光纤传感器的发展趋势与 前景
技术创新
光纤传感器的技术不断创新,以 提高其灵敏度、精度和稳定性。
新型光纤材料和制造工艺的应用 ,将进一步优化光纤传感器的性
光纤压力传感器在石油工业中主要用于监测井下压力,具有高精度和高可靠性的特点。它们能够实时传输数据, 帮助工程师及时了解井下情况,优化开采过程,提高石油产量。

光纤传感器的原理和应用

光纤传感器的原理和应用

光纤传感器的原理和应用光纤传感器是一种利用光纤作为传感器的基础元件,通过光的波导和传输特性来感知和测量环境参数的器件。

它具有高灵敏度、宽测量范围、抗干扰能力强等特点,在工业、医疗、环境监测等领域有广泛的应用。

本文将详细介绍光纤传感器的工作原理以及其在不同应用领域中的具体应用。

一、光纤传感器的工作原理光纤传感器的工作原理基于光的传输和波导特性。

它利用光纤的高折射率和内部的光波导效应,将入射的光信号沿着光纤进行传输,并通过测量光信号的改变来获得环境参数的相关信息。

1. 光纤传感器的结构光纤传感器由光纤、光源、检测器和信号处理器组成。

光源产生光信号,通过光纤传输到检测器上,检测器接收到光信号并转换为电信号,再经过信号处理器进行放大、滤波和数字化处理。

2. 光纤的传输特性光纤传感器利用光纤的传输特性进行环境参数测量。

一般来说,光纤的折射率会随着环境参数的变化而改变,例如温度、压力、应变等。

通过测量光信号在光纤中的传播时间、相位差、幅度变化等参数,可以确定环境参数的数值。

3. 光纤传感器的工作原理光纤传感器根据不同的测量原理可以分为多种类型,例如光纤布拉格光栅传感器、光纤衍射光栅传感器、光纤受限传感器等。

这些传感器利用光纤的特殊结构和波导特性,通过测量光信号的衰减、干涉、散射等变化来获得环境参数的相关信息。

二、光纤传感器的应用光纤传感器具有高灵敏度、快速响应、抗干扰能力强等优势,在多个领域中得到了广泛的应用。

1. 工业应用光纤传感器在工业领域中被广泛应用于压力、温度、湿度等参数的测量。

例如,光纤布拉格光栅传感器可以用于监测桥梁、管道等结构的应变变化,以及测量机械设备中的应力分布情况。

光纤传感器还可以用于燃气、液体等介质的检测和监测。

2. 医疗应用光纤传感器在医疗领域中的应用较多,例如用于血氧饱和度监测、生物体内脉搏测量、呼吸检测等。

由于光纤传感器具有非接触式测量的特点,可以大大提高患者的舒适度和安全性。

3. 环境监测光纤传感器在环境监测中起到重要的作用。

光纤温度传感器原理

光纤温度传感器原理

光纤温度传感器原理光纤温度传感器是一种利用光纤材料的热敏特性来测量温度的传感器。

它利用光纤的光学特性和热学特性,将温度转换成光学信号,并通过光纤传输到检测端,最终实现温度的测量。

光纤温度传感器的原理主要基于两个基本原理:热敏效应和光纤传输。

热敏效应是指材料的电阻、电容、电导率等在温度变化下发生变化的现象。

光纤温度传感器中常用的热敏材料有热敏电阻、热敏电容和热敏电导率等。

当温度发生变化时,热敏材料的阻值、电容或电导率也会相应变化。

通过测量这些变化,就可以得到温度的信息。

光纤传输是指利用光纤的光学特性进行信息传输的过程。

光纤具有折射率高、传输损耗小、抗干扰能力强等优点。

光纤温度传感器利用光纤的这些特性,将温度信息转换成光学信号,并通过光纤进行传输。

在光纤的一端,通过光源产生一束光信号,经过光纤传输到另一端的检测器。

当光信号经过热敏材料时,由于温度的变化,光信号的强度、频率或相位也会发生变化。

通过检测器对光信号的变化进行测量,就可以得到温度的信息。

光纤温度传感器的工作原理可以简述为:首先,光源产生一束光信号,并通过光纤传输到待测温区域。

在待测温区域,光信号经过热敏材料,由于温度的变化,光信号的强度、频率或相位发生变化。

然后,光信号再经过光纤传输到检测端,通过检测器对光信号的变化进行测量。

最后,根据光信号的变化,利用预先确定的光学特性-温度曲线,就可以得到温度的信息。

光纤温度传感器具有很多优点。

首先,由于光纤本身是绝缘材料,能够在高电压、高电流等环境下工作,具有较好的电磁兼容性和抗干扰能力。

其次,光纤传输的光信号不受电磁场的影响,能够在较恶劣的环境下工作。

再次,光纤温度传感器具有快速响应、高精度和长测距等优点。

最后,光纤温度传感器适用于各种温度测量场合,如石油、化工、医疗、冶金等领域。

光纤温度传感器利用光纤的光学特性和热学特性,通过光纤传输温度信息,实现温度的测量。

其原理是基于热敏效应和光纤传输的。

光纤温度传感器具有快速响应、高精度和抗干扰能力强等优点,适用于各种温度测量场合。

光纤传感器使用方法

光纤传感器使用方法

光纤传感器使用方法一、光纤传感器的基本原理光纤传感器使用的是光纤传输信号的原理:本质上是利用光来进行信号的传递和检测。

在光纤传感器中,光源发出的光通过光纤传输到目标位置,目标位置的变化会引起光的散射或吸收,再通过光纤传回到光纤接收器,通过接收器检测到光的强度、频率等变化,从而实时掌握目标位置的信息。

二、光纤传感器的安装步骤1.确定光纤传感器的使用环境和实际需求,包括测量范围、测量对象的特性以及环境条件等。

2.根据需求选择合适的光纤传感器型号,并检查设备的完整性。

3.在安装光纤传感器之前,需要进行一些准备工作,如清洁安装位置、测量对象的准备等。

4.确定光纤传感器的安装位置,并使用固定装置将光纤传感器固定在合适的位置上,以确保其稳定性和准确性。

5.将光纤传感器与相关的控制设备连接,确保信号的稳定传输。

三、光纤传感器的使用注意事项1.在安装和使用光纤传感器时,要注意保护光纤的完整性,避免弯曲、挤压等损坏光纤的情况发生。

2.光纤传感器的工作环境应避免过高、过低的温度和湿度,以免影响传感器的性能。

3.避免将光纤传感器长时间放置在强光下,以免光线的干扰影响传感器的准确性。

4.定期对光纤传感器进行检查和维护,清理可能影响传感器性能的杂质,并注意防尘、防潮、防震等措施。

四、光纤传感器的应用举例1.工业生产中,光纤传感器常用于测量物体的位置、速度、压力等参数,以及检测机械设备的运行状态。

2.在环境监测领域,光纤传感器可以用于测量大气中的污染物浓度、土壤湿度、水质等指标。

3.医疗领域中,光纤传感器常应用于体温测量、心率监测等医疗设备中。

4.通信领域中,光纤传感器可以用于信号传输的检测和控制,提高通信的稳定性和可靠性。

总结:光纤传感器是一种基于光纤传输信号的设备,在实际应用中具有广泛用途。

使用光纤传感器时,需要注意安装和连接的步骤,及时进行维护和检查,并对光纤传感器进行正确的应用和调试。

通过合理的使用光纤传感器,可以实现高灵敏度、高精度的信号检测和控制,提高工业生产效率、环境监测质量等。

光纤传感器ppt课件

光纤传感器ppt课件
第9章 光纤传感器
光纤传感器的原理结构及种类
光的传输原理
光导纤维传感器的类型
功能型光纤传感器
非功能型光纤传感器
光纤传感器的应用
光纤即光导纤维是20世纪70年代的重要发明之一,它与激光器、半导体探测器一起构成新的光学技术,创造了光电子学新领域。光纤的出现产生了光纤通讯技术,特别是光纤在有线通讯网的优势越来越突出,它为人类21世纪的通讯基础------信息高速公路奠定了基础,为多媒体(符号、数字、语言、图形和动态图象)通信提供了实现的必须条件。
光导纤维传感器的类型
光纤传感器的分类
按测量对象分类 :分为光纤温度传感器、光纤浓度传感器、光纤电流传感器、光纤流速传感器。
按光纤中光波调制的原理分类 :分为强度调制型光纤传感器、相位调制型光纤传感器、偏振调制型光纤传感器、频率调制型光纤传感器、波长调制型光纤传感器。
按光纤在传感器中的作用分类 :分为功能型光纤传感器(FF型,function fiber)和非功能型光纤传感器(NFF型,non function fiber)
高纯度石英(sio2)玻璃纤维,这种材料的光损耗比较小。
多组分玻璃纤维,用常规玻璃制成,损耗较小。
塑料光纤,用人工合成导光塑料制成,其损耗较大,但质量轻,成本低,柔软性好,适用于短距离导光。
2、按折射率分布分类,有阶跃折射率型和梯度折射率型 1)阶跃型光纤(折射率固定不变):指纤芯和包层折射率不连续的光纤。 2)梯度型光纤(纤芯折射率近似呈平方分布):在中心轴上折射率最大,沿径向逐渐变小,界面处 n1=n2,n1的分布大多按抛物线规律,其关系式为: n1=n.(1-A.r2/2) n为纤芯中心折射率,如1.525 A为常数,如A=0.5mm-2 r为径向坐标 采用梯度折射率光纤时,光射入光纤后会自动从界面向轴心会聚,故也称为自聚焦光纤。

光纤式光电传感器用法

光纤式光电传感器用法

光纤式光电传感器用法
光纤式光电传感器(Fiber Optic Sensors)是一种基于光纤技术的传感器,可以用于检测光信号的变化以实现各种测量和监测功能。

以下是光纤式光电传感器的常见用法:
1. 温度测量:使用光纤式光电传感器可以测量温度的变化。

传感器的光纤部分通过热敏元件加热或与待测物体热耦合,通过测量光纤的光信号的变化来计算温度值。

2. 压力监测:光纤式光电传感器可以通过测量光纤的压力引起的形变来监测压力变化。

3. 液位检测:通过浸入液体中的光纤,可以通过测量液位对光信号的吸收或反射来检测液位的变化。

4. 振动测量:将光纤固定在结构上,通过测量光纤的位移或形变来监测结构的振动。

5. 气体检测:通过与特定气体反应的化学或生物传感材料修饰光纤,可以用于检测特定气体的存在或浓度。

6. 位置测量:通过测量光纤的长度变化或光信号的时间延迟来测量物体的位置。

以上仅是光纤式光电传感器的一些常见应用,实际使用时还可以根据具体需求进行定制和扩展。

光纤传感器的工作原理

光纤传感器的工作原理

光纤传感器的工作原理
光纤传感器是一种利用光学原理进行测量的传感器,它能够通过光的传输和反
射来实现对环境参数的监测和测量。

光纤传感器的工作原理主要包括光的传输、光的衰减和光的检测三个方面。

首先,光纤传感器的工作原理涉及光的传输。

光纤是一种能够传输光信号的细
长光导纤维,它能够将光信号沿着光纤传输到需要监测的位置。

光纤的传输过程中,光信号会受到折射和反射的影响,从而实现对光信号的定向传输和控制。

其次,光纤传感器的工作原理还涉及光的衰减。

在光纤传输的过程中,光信号
会因为各种因素而逐渐衰减,比如光的散射、吸收和反射等。

通过对光信号衰减程度的测量,可以实现对环境参数的监测,比如温度、压力、湿度等。

最后,光纤传感器的工作原理还包括光的检测。

光纤传感器通常会在需要监测
的位置设置光检测器,用于接收经过光纤传输的光信号并将其转换成电信号。

通过对电信号的测量和分析,可以得到环境参数的具体数值,并实现对环境参数的实时监测和测量。

总的来说,光纤传感器的工作原理是基于光的传输、衰减和检测这三个基本过
程来实现的。

通过对这些过程的精确控制和测量,光纤传感器能够实现对环境参数的高精度监测和测量,具有灵敏度高、抗干扰能力强等优点,因此在工业、医疗、环境监测等领域有着广泛的应用前景。

传感器原理及其应用光纤传感器课件

传感器原理及其应用光纤传感器课件
传感器原理及其应用光纤传感器课 武汉理工大学件机电工程学院
第9章 光纤传感器
2.非功能型(传光型)光纤传感器
这类光纤传感器中光纤仅起导光
作用,只“传”不“感”,对外
界信息的“感觉”功能依靠其他
物理性质的功能元件完成,光纤
在系统中是不连续的。此类光纤
传感器无需特殊光纤及其他特殊
技术,比较容易实现,成本低; 非功能型光纤传感器使用的光
传感器原理及其应用光纤传感器课 武汉理工大学件机电工程学院
第9章 光纤传感器
光电转换器件采用光电二极管
传感器原理及其应用光纤传感器课 武汉理工大学件机电工程学院
第9章 光纤传感器
9.2 光纤传感器的分类及其工作原理
光纤传感器与电类传感器的对比


电源


电类传感器
电缆


电量检测



光源



可以证明,该入射角为
sin0
1 n0
n12 n22
光 纤 的 “ 数 值 孔 径 ” NA ,
NAsin0n10 n12n22
传感器原理及其应用光纤传感器课 武汉理工大学件机电工程学院
第9章 光纤传感器
9.1.3 光纤的种类 1.按材料分类
1) 高纯度石英(SiO2)玻璃纤维
这种材料的光损耗比较小,在波长时,最低损耗约为 0.47 dB/km 。 锗 硅 光 纤 , 包 层 用 硼 硅 材 料 , 其 损 耗 约 为 0.5 dB/km。
光纤传感器的特点:
①电绝缘性能好。 ②抗电磁干扰能力强。 ③非侵入性。 ④高灵敏度。 ⑤容易实现对被测信号的远距离监控。 光纤传感器可测量位移、速度、加速度、液位、应变、压力、 流量、振动、温度、电流、电压、磁场等物理量

光纤传感器的原理和应用

光纤传感器的原理和应用

光纤传感器的原理和应用光纤传感器是一种基于光纤技术的传感器,通过光纤的传输和延时特性来实现对物理量的测量和检测。

它具有高精度、快速响应、抗干扰能力强等优点,被广泛应用于工业、医疗、环境监测等领域。

本文将介绍光纤传感器的基本原理和常见的应用场景。

一、光纤传感器的基本原理光纤传感器是利用光纤波导结构的特性来实现物理量的测量和检测。

光纤波导是一种能够将光信号传送的导光器件,其核心部分是由折射率高于外部包层的光纤芯构成。

基于光的干涉、散射、吸收等特性,光纤传感器能够实现对温度、压力、位移、浓度等多种物理量的测量。

1. 光纤干涉型传感器光纤干涉型传感器是利用光的干涉效应来测量物理量的一种传感器。

光信号在光纤中传播时,受到温度、应变等物理量的影响,使得光的相位发生改变。

通过测量光的相位差,可以确定物理量的大小。

常见的光纤干涉型传感器有光纤布拉格光栅传感器、光纤干涉仪传感器等。

2. 光纤散射型传感器光纤散射型传感器是利用光在光纤中的散射效应来测量物理量的一种传感器。

光信号在光纤中传输时,会与光纤中的杂质或结构缺陷散射,通过测量散射光的特性来推断物理量的变化。

常见的光纤散射型传感器有光时域反射计传感器、拉曼散射光纤传感器等。

3. 光纤吸收型传感器光纤吸收型传感器是利用光在光纤中的吸收效应来测量物理量的一种传感器。

光信号在光纤中传输时,会被光纤材料吸收,通过测量吸收光的强度来判断物理量的变化。

常见的光纤吸收型传感器有红外光纤传感器、光纤化学传感器等。

二、光纤传感器的应用领域光纤传感器具有灵敏度高、抗干扰能力强等优点,被广泛应用于各个领域。

以下是几个典型的应用场景。

1. 工业自动化光纤传感器在工业自动化领域中,常用于测量温度、压力、液位等物理量,用于控制和监测生产过程。

例如,光纤温度传感器可以实时监测设备的温度变化,及时进行报警和控制;光纤压力传感器可以监测管道中的压力变化,用于流体控制和安全保护。

2. 医疗领域光纤传感器在医疗领域中,常用于生理参数的监测和诊断。

光纤式传感器工作原理

光纤式传感器工作原理

光纤式传感器工作原理
光纤式传感器是通过传感光纤将被测物理量(如温度、压力、湿度、光强等)转换为光信号,再经光学系统进行处理后输出的一种传感器。

这种传感器具有体积小、重量轻、不受电磁干扰、抗电磁干扰能力强等优点,可以对被测物理量进行远距离测量。

(1)干涉型光纤传感器。

当光纤中的光被反射或透射时,
会在光纤中产生干涉或衍射现象。

根据干涉原理,可将这种光信号转换为与之相对应的电信号,从而实现对被测物理量的测量。

(2)分布式光纤传感系统。

该系统由多个独立的光传感器
组成,各传感器都能独立地检测出被测物理量,并把它们送到一个计算机网络上进行信息交换。

当一个传感器受到破坏或故障时,其他传感器可以自动地检测出其故障并将其隔离开来,使整个系统仍然能够正常工作。

光纤式传感器具有以下特点:
(1)测量范围宽:可达10^8m/s~10^9m/s。

(2)可实现高精度测量:在-40~+80℃的温度范围内测量精度达到0.1℃。

—— 1 —1 —。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电传感器 二、光纤传感器
第一节
光电效应及光电元件
1 光纤传感器结构原理
光纤传感器是一种把被测量的状态转变为可测的光信号的装置。
由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处 理系统以及光纤构成。
由光发送器发出的光经源光纤引导至敏感元件。这时,光的某一
性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使 光信号变为电信号,最后经信号处理得到所期待的被测量。
光电传感器
第一节
光电效应及光电元件
光纤传感器
光电传感器
第一节
光电效应及光电元件
光导纤维传感器(简称光纤传感器)是20世纪七十年代迅速发 展起来的一种新型传感器。光纤最早用于通讯,随着光纤技术的
发展,光纤传感器得到进一步发展。
与其它传感相比较,光纤传感器有如下特点: 1)不受电磁干扰。光纤主要由电绝缘材料做成,工作时利用光子 传输信息,因而不怕电磁干扰;此外光波易于屏蔽,外界光的干 扰也很难进入光纤。
n1
)
光电传感器 二、光纤传感器
第一节
光电效应及光电元件
3 光强度调制型
光纤弯曲
原来光束以大于临界角的角度在纤芯中传播为全内反射,但在 弯曲处,光束以小于临界角的角度入射到界面。部分光逸出散 射到包层。 这种检测原理可以实现对力、位移和压强等物理量的测量
光电传感器 二、光纤传感器
第一节
光电效应及光电元件
2)可根据需要做成各种形状,可以弯曲; 可渗入机器内部或人
体弯曲的内脏等常规传感器不宜到达的部位进行探测 3)光纤传感器与信号传输于一体,利用它很容易构成分布式传感
测量。
光电传感器
第一节
光电效应及光电元件
光纤传感器优点突出,发展极快,自1977年以来,已研发出 测量位移、速度、加速度、压力、温度、流量、电场、磁场 等各种物理量的数百种光纤传感器。
C
则射入的光线在光纤的界面上发生全反射
n1
n0

B
0
φ

D C
n2
n1 d
θ
Θ A
光电传感器 一、 光纤的结构与传光原理 第一节
光电效应及光电元件
2 光纤的传光原理
光线会在光纤内部以同样的角度反复逐次反射,直至传播至 另一端面。实际工作时光纤可能弯曲,主要仍满足全反射定 律,光线仍继续前进。由于光纤具有一定的柔软性,很容易 使光线转弯,这给传感器的设计带来了很大的方便。
光电传感器 一、 光纤的结构与传光原理 第一节
光电效应及光电元件 尼龙外层
1 光纤的结构
基本采用石英玻璃, 主要由三部分组成 中心——纤芯; 外层——包层;
玻璃纤维 包层
外层直径1mm 100 ~200μm 纤芯 涂敷层
护套——尼龙料。
光导纤维的导光能力取决于纤芯和包层的性质, 纤芯折射率n1略大于包层折射率n2( n1 > n2 )。
n0

B
0
φ

D C
n2
n1 d
θ
Θ A
光电传感器 一、 光纤的结构与传光原理 第一节 由斯奈尔(Snell)定律:
光电效应及光电元件
n 0sin 0 n1sin n1cos n1 1 sin
2


1
2
设当Φ到达临界角ΦC时的入射角为θC,则:
n 0sin C n - n
光电传感器 二、光纤传感器
第一节
光电效应及光电元件
4 反射式光纤位移传感器
光纤只起传光作用。
光电传感器 二、光纤传感器
第一节
光电效应及光电元件
3 光强度调制型
光强度调制是光纤传感器最基本的调制形式。被测量通过 影响光纤的全内反射实现对输出光强度的调制。 从几何光学角度讲,调制的条件是:
arcsin(
n2
调制的具体途径: ① 改变光纤的几何形状,从而改变光线的传播入射角Φ; ② 改变光纤纤芯或者包层的折射率、
2 1
2 2
式中n0sinθC称为光纤的数值孔径,用NA表示。
它表示当入射光从折射率为n0的外部介质进入光纤时,只有入射
角小于θC的光才能在光纤中传播。否则,光线会从包层中逸出 而产生漏光。
光电传感器 一、 光纤的结构与传光原理 第一节
光电效应及光电元件
3 光纤的种类
光纤按纤芯和包层材料的性质分类,有玻璃光纤和塑料光纤两类; 按折射率分有阶跃型和梯度型二种 。 光纤的另一种分类方法是按光纤的传播模式来分,可分为多模光 纤和单模光纤两类。多模光纤多用于非功能型(NF)光纤传感 器;单模光纤多用于功能型(FF)光纤传感器。
光电传感器 二、光纤传感器
第一节
光电效应及光电元件
2 光纤传感器的类型
光纤传感器一般可分为两大类:一类是功能型传感器,又称FF型 光纤传感器;另一类是非功能型传感器又称NF型光纤传感器。
光电传感器 功能型光纤传感器 第一节 二、光纤传感器
光电效应及光电元件
2 光纤传感器的类型
功能型光纤传感器 这类传感器利用光纤
光电传感器 一、 光纤的结构与传光原理 第一节
光电效应及光电元件
2 光纤的传光原理
光纤传光的基础是光的全内反射。当光线以入射角θ进入光 纤的端面时,在端面发生折射,设折射角为θ’,然后光线以Φ角 入射至光纤与包层的界面。当Φ角大于纤芯与包层间的临界角 ΦC时,即 arcsin( n2 )
3 光强度调制型
折射率变化
改变光纤折射率实现调制的方法也很常用,对于不同的测量 对象可以采用不同的材料做包层,例如电光材料、磁光材料、 光弹材料等。 上图为光纤中光强度被油滴所调制的情况。
光电传感器 二、光纤传感器
第一节
光电效应及光电元件
4 反射式光纤位移传感器
Y形光纤束 被 测 目 标
光源
接收 反射式光纤位移传感器结构简单,设计灵活,性能稳定,造价低 廉,能适应恶劣的环境,在实际工作中得到了广泛的应用。由光 源发出的光经发射光纤束传输入射到被测目标表面,目标表面的 反射光由与发射光纤束扎在一起接收光纤束传输至光敏元件。根 据被测目标表面反射至接收光纤束的光强度变化来测量被测表面 距离的变化。
本身对外界被测对象
具有敏感能力和检测 功能,光纤不仅起到 传光作用,而且在被 测对象作用下,如光强、相位、偏振态等
光学特性得到调制,调制后 的信号携带了被测信息。
光电传感器 二、光纤传感器
第一节
光电效应及光电元件
2 光纤传感器的类型
传光型光纤传感器 传光型光纤传感器的
光纤只当作传播光的
媒介,待测对象的调 制功能是由其它光电 转换元件实现的,光 纤的状态是不连续的,
相关文档
最新文档