计量经济学 回归分析案例
最新计量经济学案例分析一元回归模型实例分析
案例分析1— 一元回归模型实例分析依据1996-2005年《中国统计年鉴》提供的资料,经过整理,获得以下农村居民人均消费支出和人均纯收入的数据如表2-5:表2-5 农村居民1995-2004人均消费支出和人均纯收入数据资料 单位:元 年度 1995199619971998199920002001200220032004人均纯收入1577.7 1926.1 2090.1 2161.1 2210.3 2253.4 2366.4 2475.6 2622.2 2936.4人均消费支出1310.4 1572.1 1617.2 1590.3 1577.4 1670.1 1741.1 1834.3 1943.3 2184.7一、建立模型以农村居民人均纯收入为解释变量X ,农村居民人均消费支出为被解释变量Y ,分析Y 随X 的变化而变化的因果关系。
考察样本数据的分布并结合有关经济理论,建立一元线性回归模型如下:Y i =β0+β1X i +μi根据表2-5编制计算各参数的基础数据计算表。
求得:082.1704035.2262==Y X∑∑∑∑====3752432495.1986.788859011.516634423.1264471222ii i i iX y x y x 根据以上基础数据求得:623865.0423.126447986.788859ˆ21===∑∑iii xyx β8775.292035.2262623865.0082.1704ˆˆ10=⨯-=-=X Y ββ 样本回归函数为:ii X Y 623865.08775.292ˆ+= 上式表明,中国农村居民家庭人均可支配收入若是增加100元,居民们将会拿出其中的62.39元用于消费。
二、模型检验1.拟合优度检验952594.0011.516634423.1264471986.788859))(()(22222=⨯==∑∑∑iii i yx y x r2.t 检验525164.3061 210423.12644710.623865011.166345 2ˆˆ222122=-⨯-=--=∑∑n x y iiβσ049206.0423.1264471525164.3061ˆ)ˆ()ˆ(2211====∑ie xVar S σββ6717.112525164.3061423.126447110137.52432495ˆ)ˆ()ˆ(22200=⨯===∑∑σββii e xn X Var S 在显著性水平α=0.05,n-2=8时,查t 分布表,得到:306.2)2(2=-n t α提出假设,原假设H 0:β1=0,备择假设H 1:β1≠067864.12049206.0623865.0)ˆ(ˆ)ˆ(111==-=ββββe S t)2(67864.12)ˆ(21->=n t t αβ,差异显著,拒绝β1=0的假设。
计量经济学课程第4章(多元回归分析)
§4.1 多元线性回归模型的两个例子
一、例题1:CD生产函数
Qt AKt 1 Lt 2 et
这是一个非线性函数,但取对数可以转变为一个 对参数线性的模型
ln Qt 0 1 ln Kt 2 ln Lt t
t ~ iid(0, 2 )
注意:“线性”的含义是指方程对参数而言是线 性的
R 2 1 RSS /(N K 1) TSS /(N 1)
调整思想: 对 R2 进行自由度调整。
Page 20
基本统计量TSS、RSS、ESS的自由度:
1.
TSS的自由度为N-1。基于样本容量N,TSS
N i1
(Yi
Y
)2
因为线性约束 Y 1 N
Y N
i1 i
而损失一个自由度。
分布的多个独立统计量平方加总,所得到的新统计量就服从
2 分布。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 23
双侧检验
概 率 密 度
概率1-
0
2 1 / 2
2 /2
图4.3.1
2
(N-K-1)的双侧临界值
双侧检验:统计值如果落入两尾中的任何一个则拒绝原假设
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 24
单侧检验
概 率 密 度
概率 概率
0
2 1
2
图4.3.2 (2 N-K-1)的单侧临界值
H0:
2
2,
0
HA :
2
2 0
《计量经济学》案例:用回归模型预测木材剩余物(一元线性回归)
案例:用回归模型预测木材剩余物(一元线性回归)伊春林区位于黑龙江省东北部。
全区有森林面积2189732公顷,木材蓄积量为23246.02万m 3。
森林覆盖率为62.5%,是我国主要的木材工业基地之一。
1999年伊春林区木材采伐量为532万m 3。
按此速度44年之后,1999年的蓄积量将被采伐一空。
所以目前亟待调整木材采伐规划与方式,保护森林生态环境。
为缓解森林资源危机,并解决部分职工就业问题,除了做好木材的深加工外,还要充分利用木材剩余物生产林业产品,如纸浆、纸袋、纸板等。
因此预测林区的年木材剩余物是安排木材剩余物加工生产的一个关键环节。
下面,利用简单线性回归模型预测林区每年的木材剩余物。
显然引起木材剩余物变化的关键因素是年木材采伐量。
给出伊春林区16个林业局1999年木材剩余物和年木材采伐量数据如表2.1。
散点图见图2.14。
观测点近似服从线性关系。
建立一元线性回归模型如下:y t = β0 + β1 x t + u t表2.1 年剩余物y t 和年木材采伐量x t 数据林业局名 年木材剩余物y t (万m 3) 年木材采伐量x t(万m 3) 乌伊岭 26.1361.4 东风 23.49 48.3 新青 21.97 51.8 红星 11.53 35.9 五营 7.18 17.8 上甘岭 6.80 17.0 友好 18.43 55.0 翠峦 11.69 32.7 乌马河 6.80 17.0 美溪 9.69 27.3 大丰 7.99 21.5 南岔 12.15 35.5 带岭 6.80 17.0 朗乡 17.20 50.0 桃山 9.50 30.0 双丰 5.52 13.8 合计202.87532.005101520253010203040506070yx图2.14 年剩余物y t 和年木材采伐量x t 散点图图2.15 Eviews 输出结果Eviews 估计结果见图2.15。
建立Eviews 数据文件的方法见附录1。
计量经济学实际案例
二、均值分析1、分性别对身高进行的比较假设男女身高相等,否定假设可认为男生身高明显高于女生。
2、分南北地区进行比较(1)身高假设两者均值相等,检验结果不能否定原假设,因而不能认为南北方身高有显著差异。
(2)体重通过假设两者均值相等,检验结果无法否定原假设,因而认为南北方体重没有明显差异。
3、分出生年份月份进行比较年份性别身高体重84 男均值172.00 56.00N 1 1总计均值172.00 56.00N 1 185 男均值180.33 70.67N 3 3女均值161.00 51.00N 2 2总计均值172.60 62.80N 5 586 男均值174.20 65.40N 20 20女均值162.11 52.28N 18 18总计均值168.47 59.1887 男均值178.50 66.58N 6 6女均值164.83 52.83N 18 18总计均值168.25 56.27N 24 2488 男均值170.50 65.00N 2 2女均值167.00 53.50N 2 2总计均值168.75 59.25N 4 489 女均值165.00 50.00N 1 1总计均值165.00 50.00N 1 1总计男均值175.28 65.80N 32 32女均值163.56 52.46N 41 41总计均值168.70 58.31N 73 73ANOVA 表由表可看出,各年份出生的人身高体重无显著性差异。
总计均值171.00 64.00N 6 6 3 男均值174.50 69.50N 4 4 女均值160.25 50.75N 4 4 总计均值167.38 60.13N 8 8 4 男均值181.25 68.50N 4 4 女均值162.25 52.00N 4 4 总计均值171.75 60.25N 8 8 5 男均值169.50 65.25N 2 2 女均值156.00 43.00N 1 1 总计均值165.00 57.83N 3 3 6 男均值175.00 63.00N 1 1 女均值171.50 57.50N 4 4 总计均值172.20 58.60N 5 5 7 男均值171.00 64.33N 3 3 女均值167.00 50.50N 2 2 总计均值169.40 58.80N 5 5 8 男均值179.20 64.90N 5 5 女均值161.50 52.50N 2 2 总计均值174.14 61.36N 7 7 9 男均值171.67 58.00N 3 3 女均值163.33 54.33N 3 3 总计均值167.50 56.1710 男均值174.67 61.83N 3 3总计均值174.67 61.83N 3 311 女均值162.50 51.67N 12 12总计均值162.50 51.67N 12 1212 男均值171.00 66.50N 2 2女均值167.00 57.00N 1 1总计均值169.67 63.33N 3 3总计男均值175.28 65.80N 32 32女均值163.56 52.46N 41 41总计均值168.70 58.31N 73 73ANOVA 表由表同样可得出,各月出生的人身高体重无显著性差异。
计量经济学 综合案例1 我国农民收入影响因素的回归分析
综合案例1 我国农民收入影响因素的回归分析自改革开放以来,虽然中国经济平均增长速度为9.5 % ,但二元经济结构给经济发展带来的问题仍然很突出。
农村人口占了中国总人口的70 %多,农业产业结构不合理,经济不发达,以及农民收入增长缓慢等问题势必成为我国经济持续稳定增长的障碍。
正确有效地解决好“三农”问题是中国经济走出困境,实现长期稳定增长的关键。
其中,农民收入增长是核心,也是解决“三农”问题的关键。
本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,寻找其根源,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。
农民收入水平的度量,通常采用人均纯收入指标。
影响农民收入增长的因素是多方面的,既有结构性矛盾因素,又有体制性障碍因素。
但可以归纳为以下几个方面:一是农产品收购价格水平。
目前农业收入仍是中西部地区农民收入的主要来源。
二是农业剩余劳动力转移水平。
中国的农业目前仍以农户分散经营为主,农业比较效益低,尽快地把农业剩余劳动力转移出去是有效改善农民收入状况的重要因素。
三是城市化、工业化水平。
中国多数地区城市化、工业化水平落后于世界平均水平,这种状况极大地影响了农民收入的增长。
四是农业产业结构状况。
农林牧渔业对农民收入增长贡献率是不同的。
随着我国“入世”后农产品市场的开放和人民生活水平的提高、农产品需求市场的改变,农业结构状况直接影响着农民收入的增长。
五是农业投入水平。
农民收入与财政农业支出、农村集体投入、农户个人投入以及信贷投入都有显著的正相关关系。
农业投入是农民收入增长的重要保证。
但考虑到农业投入主体的多元性,既有国家、集体和农户的投入,又有银行、企业和外资的投入,考虑到复杂性和可行性,所以对农业投入与农民收入,本文暂不作讨论。
因此,以全国为例,把农民收入与各影响因素关系进行线性回归分析,并建立数学模型。
一、计量经济模型分析(一)、数据搜集根据以上分析,我们在影响农民收入因素中引入7个解释变量。
计量经济学试题线性回归分析与
计量经济学试题线性回归分析与计量经济学试题线性回归分析与应用一、简介线性回归分析是计量经济学中常用的统计方法之一,用于探究因变量和一个或多个自变量之间的关系。
本文将通过解答计量经济学试题来讨论线性回归分析的理论和应用。
二、理论基础1. 线性回归模型线性回归模型可表示为Y = α + βX + ε,其中Y是因变量,X是自变量,α和β是待估参数,ε是误差项。
线性回归模型的核心在于确定待估参数的估计值。
2. 估计参数通常使用最小二乘法估计回归模型中的参数。
最小二乘法的原理是最小化残差平方和,即使得观测值与模型估计值之间的差异最小。
三、实例分析假设一个研究者对某城市的住房价格进行研究,选取了以下两个自变量:房屋面积(X1)和楼层高度(X2)。
通过收集一定数量的样本数据,可以进行线性回归分析来探究自变量对住房价格的影响。
1. 数据收集首先,该研究者需要收集一定数量的样本数据,包括房屋面积、楼层高度和住房价格。
这些数据将用于构建线性回归模型。
2. 模型建立在收集到足够的样本数据后,可以通过最小二乘法估计线性回归模型中的参数。
假设模型为Y = α + β1X1 + β2X2 + ε,其中Y表示住房价格,X1表示房屋面积,X2表示楼层高度。
3. 参数估计利用最小二乘法估计模型中的参数α、β1和β2。
通过计算残差平方和最小化的方法,可以得到参数的估计值,并进一步进行假设检验和推断。
4. 模型评估在得到参数的估计值后,需要对模型进行评估。
常用的评估指标包括决定系数(R^2)、调整后的决定系数(adjusted R^2)、F统计量、t统计量等。
5. 假设检验通过进行显著性检验,判断自变量对因变量的影响是否显著。
常见的假设检验包括零假设(自变量对因变量无显著影响)和备择假设(自变量对因变量有显著影响)。
6. 拟合优度拟合优度是评价模型拟合程度的指标,通常用R方来表示。
R方越接近1,说明模型对样本数据的拟合程度越好。
四、应用案例1. 经济增长与教育投入关系分析通过线性回归分析,可以探究教育投入对于经济增长的影响。
计量经济学_三元线性回归模型案例分析
选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。
由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。
所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数”一,数理经济学方程Y = C(1) + C(2)*XY i=β0+β2X2+β3X3+β4X4二,计量经济学方程设定线性回归模型为:Y i=β0+β2X2+β3X3+β4X4+μ三,数据收集从《国家统计局》获取以下数据:年份财政收入(亿元)Y 国内生产总值(亿元)X2财政支出(亿元)X3商品零售价格指数(%)X41978 519.28 3624.1 1122.09 100.7 1979 537.82 4038.2 1281.79 102 1980 571.7 4517.8 1228.83 106 1981 629.89 4862.4 1138.41 102.4 1982 700.02 5294.7 1229.98 101.9 1983 775.59 5934.5 1409.52 101.5 1984 947.35 7171 1701.02 102.8 1985 2040.79 8964.4 2004.25 108.8 1986 2090.73 10202.2 2204.91 106 1987 2140.36 11962.5 2262.18 107.3 1988 2390.47 14928.3 2491.21 118.5 1989 2727.4 16909.2 2823.78 117.81990 2821.86 18547.9 3083.59 102.1 1991 2990.17 21617.8 3386.62 102.9 1992 3296.91 26638.1 3742.2 105.4 1993 4255.3 34636.4 4642.3 113.2 1994 5126.88 46759.4 5792.62 121.7 1995 6038.04 58478.1 6823.72 114.8 1996 6909.82 67884.6 7937.55 106.1 1997 8234.04 74462.6 9233.56 100.8 1998 9262.8 78345.2 10798.18 97.4 1999 10682.58 82067.5 13187.67 97 2000 12581.51 89468.1 15886.5 98.5 2001 15301.38 97314.8 18902.58 99.2 2002 17636.45 104790.6 22053.15 98.7四,参数估计利用eviews软件可以得到Y关于X2的散点图:可以看出Y和X2成线性相关关系Y关于X3的散点图:可以看出Y和X3成线性相关关系Y关于X1的散点图:Dependent Variable: YMethod: Least SquaresDate: 01/09/10 Time: 13:16Sample: 1978 2002Included observations: 25Variable Coefficient Std. Error t-Statistic Prob.C -2582.755 940.6119 -2.745825 0.0121X2 0.022067 0.005577 3.956633 0.0007X3 0.702104 0.033236 21.12474 0.0000X4 23.98506 8.738296 2.744821 0.0121R-squared 0.997430 Mean dependent var 4848.366Adjusted R-squared 0.997063 S.D. dependent var 4870.971S.E. of regression 263.9591 Akaike info criterion 14.13511Sum squared resid 1463163. Schwarz criterion 14.33013Log likelihood -172.6889 F-statistic 2717.254Durbin-Watson stat 0.948521 Prob(F-statistic) 0.000000模型估计的结果为:Y i=-2582.755+0.022067X2+0.702104X3+23.98506X4(940.6119) (0.0056) (0.0332) (8.7383)t={-2.7458} {3.9567} {21.1247} {2.7449}R2=0.997 R2=0.997 F=2717.254 df=21五,相关检验1.经济意义检验模型估计结果说明,在假定其他变量不变的情况下,当年GDP 每增长1亿元,税收收入就会增长0.02207亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长0.7021亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长23.985亿元。
计量经济学案例
计量经济学案例计量经济学是经济学的一个重要分支,它运用数理统计和数学工具来分析经济现象,验证经济理论和检验经济政策的有效性。
在实际应用中,计量经济学常常通过案例研究来展示其理论和方法在解决实际问题中的应用。
下面,我们将通过一个实际的案例来说明计量经济学的应用。
某国家的一家汽车制造商希望了解汽车价格与销量之间的关系,以便制定合理的定价策略。
为了研究这一问题,他们收集了过去几年的汽车价格和销量数据,并进行了分析。
首先,他们利用计量经济学中的回归分析方法,建立了汽车价格和销量之间的数学模型。
在这个模型中,销量是因变量,而价格是自变量。
通过回归分析,他们得到了汽车价格对销量的影响程度,以及其他可能影响销量的因素。
接着,他们进行了统计检验,验证了他们建立的数学模型的有效性。
通过检验结果,他们确认了汽车价格对销量的影响,并排除了其他因素对销量的影响。
这为他们制定合理的定价策略提供了重要的依据。
最后,他们利用建立的数学模型,进行了一系列的预测和模拟。
他们可以通过调整汽车价格,来预测不同定价策略对销量的影响,以及对企业利润的影响。
这些预测和模拟结果为企业提供了重要的决策参考。
通过这个案例,我们可以看到计量经济学在实际应用中的重要性和价值。
它不仅可以帮助企业了解市场和消费者行为,还可以为企业决策提供科学的依据。
当然,计量经济学的方法和工具不仅局限于汽车制造业,它在其他行业和领域也有着广泛的应用。
总之,计量经济学案例的研究对于理论的验证和实证分析都具有重要的意义。
通过实际案例的研究,我们可以更好地理解计量经济学的方法和工具,以及它们在解决实际问题中的应用。
希望这个案例能够给大家带来一些启发,也希望大家能够更加重视计量经济学的学习和研究。
计量经济学多元回归分析案例.pdf
计量经济学多元回归分析案例引言计量经济学是运用数理统计和经济学方法研究经济现象的一门学科。
在实际研究中,多元回归分析是一种常用的方法。
本文将通过一个实际案例来介绍计量经济学中的多元回归分析方法和应用。
研究背景单因素回归分析在计量经济学中,单因素回归分析是最基本的方法之一。
它通过确定一个因变量和一个自变量之间的关系,来解释因变量的变化。
然而,在现实世界中,经济现象往往受到多个因素的影响,因此需要使用多元回归分析来更全面地解释经济现象的变化。
问题陈述本研究的问题是探究某个城市的房价与多个因素之间的关系。
具体来说,我们感兴趣的因变量是房价,自变量包括房屋面积、地理位置、周边设施等。
我们希望通过建立一个多元回归模型来解释房价的变化,并分析不同因素对房价的影响程度。
数据收集为了进行多元回归分析,我们需要收集相关的数据。
在本案例中,我们采集了以下数据:1.房价:通过不同的房地产网站获取该城市的房屋销售数据,包括每个房屋的售价信息。
2.房屋面积:通过购房广告或房产中介提供的信息收集每个房屋的面积数据。
3.地理位置:通过经纬度或邮政编码信息获取每个房屋的地理位置信息。
4.周边设施:通过地图应用或开放的公共数据接口获取每个房屋周边设施(如学校、医院、商场等)的数量和距离信息。
数据预处理在进行多元回归分析前,我们需要对收集到的数据进行预处理。
缺失值处理在数据收集过程中,可能会出现数据缺失的情况。
对于缺失的数据,我们可以选择删除相应的样本,或者通过插补方法进行填充。
在本案例中,我们选择使用均值填充的方法。
数据转换由于多元回归模型要求变量之间具有线性关系,因此我们需要对非数值型数据进行转换。
在本案例中,地理位置可以通过编码转换为数值型变量。
模型建立在进行多元回归分析时,我们需要选择适当的模型来描述因变量和自变量之间的关系。
在本案例中,我们选择使用普通最小二乘法(OLS)来估计回归模型的参数。
模型表达式我们将房价作为因变量(Y),房屋面积、地理位置和周边设施作为自变量(X)。
计量经济学多元回归分析案例
计量经济学案例分析多元回归分析案例财政收入规模的影响因素被解释变量:财政收入(亿元)解释变量:税收(亿元),经济活动人口(亿元),国内生产总值(亿元)样本:2000年—2011年的财政收入,税收(亿元),经济活动人口(亿元),国内生产总值(亿元)数据来源:中华人民共和国国家统计局(单位:亿元)财政收入Y 各项税收X1经济活动人口X2国民生产总值X31990 2,937.10 2,821.86 65,323.00 18,668.00 1991 3,149.48 2,990.17 66,091.00 21,618.00 1992 3,483.37 3,296.91 66,782.00 26,924.00 1993 4,348.95 4,255.30 67,468.00 35,334.00 1994 5,218.10 5,126.88 68,135.00 48,198.00 1995 6,242.20 6,038.04 68,855.00 60,794.00 1996 7,407.99 6,909.82 69,765.00 71,177.00 1997 8,651.14 8,234.04 70,800.00 78,973.00 1998 9,875.95 9,262.80 72,087.00 84,402.00 1999 11,444.08 10,682.58 72,791.00 89,677.00 2000 13,395.23 12,581.51 73,992.00 99,215.00 2001 16,386.04 15,301.38 73,884.00 109,655.00 2002 18,903.64 17,636.45 74,492.00 120,333.00 2003 21,715.25 20,017.31 74,911.00 135,823.00 2004 26,396.47 24,165.68 75,290.00 159,878.00 2005 31,649.29 28,778.54 76,120.00 183,085.00 2006 38,760.20 34,804.35 76,315.00 211,923.00 2007 51,321.78 45,621.97 76,531.00 257,306.00 2008 61,330.35 54,223.79 77,046.00 307,064.00 2009 68,518.30 59,521.59 77,510.00 335,353.00 2010 83,101.51 73,210.79 78,388.00 362,181.00 2011 103,874.43 89,738.39 78,579.00 471,564.00对数据进行回归,得出回归模型:变量间的关系:OLS估计结果:ML估计结果:MM估计结果:根据回归结果进行模型检验:Y:财政收入(亿元)X1:税收(亿元), X2:经济活动人口(人) X3:国民生产总值(亿元) 1、 系数的显著性水平检验Y = 1.0739********X1 - 0.271936276384*X2 + 0.0237723014946*X3 + 17296.8669142 t 值 (34.57) (-7.10) (3.39) (6.90) 从上面的t 值来看:“税收”系数的t 统计值大于4,p<0.01, 表示拒绝在此模型中“税收”与“财政收入”无关的原假设,而得出二者间有明显关系存在的结论。
计量经济学-四元线性回归模型案例分析
计量经济学课程设计班级:学号:姓名:2011年月一、引言财政收入是衡量一国政府财力的重要指标,国家在社会活动中提供公共物品和服务,很大程度上需要财政收入的鼎力相助。
财政收入既是国家的集中性分配活动,又是国家进行宏观调控的重要工具。
税收是国家为实现其职能的需要,凭借其政治权利并按照特定的标准,强制、无偿的取得财政收入的一种形式,它是现代国家财政收入最重要的收入形式和最主要的收入来源。
本课题跟据我国最近几年的经济发展水平和税收收入并结合我国各地区在2008年的实际情况,利用《中国统计年鉴2009》做出了税收收入的计量模型,比较分析了职工工资总额、财政支出和人均家庭总收入等变量对税收收入的不同影响,得出了几个重要的结论。
税收是国家在社会经济活动中为提供公共物品和服务的主要收入来源,在很大程度上决定于财政收入的充裕状况。
税收是国家集中性分配活动,又是国家进行宏观调控的重要工具。
我国自改革开放以来税收一直随经济的增长在快速的增长,尤其是进入21世纪以来成高速发展趋势。
由1999年的10682.58亿元到2008年的54233.79亿元,十年来增加了5.08倍(见表1)。
近几年以来,尤其是2008年以来社会不公平和贫富差距进一步了大,造成了社会的不稳定。
2010年两会期间温家宝总理提出调整税收基数,从而来缩小贫富差距和社会公平问题。
表1 我国十年来税收一览表年份1999 2000 2001 2002 2003 2004 2005 2006 2007 2008税收收入10682.58 12581.51 15301.51 17636.38 20017.31 24165.68 28778.54 34804.35 45621.97 54223.79 (亿元)二、理论基础税收是国家为了实现其职能,以政治权利为基础,按规定标准以政治权力为基础,按预定标准像经济组织和居民无偿课征而取得的一种财政收入。
税收的影响因素有很多包括一国的经济实力,经济发展水平,劳动者的素质,职工工资总额,财政支出,家庭总收入,生产总值,商品零售价格指数等。
计量经济学案例分析
Durbin-Watson stat 0.586840 Prob(F-statistic)
0.000000
.
根据模型结果可得:
Y=12903.68+0.847142X1+ 5.433156X2+(6.369574)X3 +(-5.662943)X4
标准差se =(6950.472) (0.195330) (1.773206) (1.509316) (22.90956)
-1.74E-11 10099.81 20.61520 20.96235 6.252598 0.001875
.
可以看出,n=22*0.714371=15.716162, 相伴概率为p=0.000387,因此在显著水 平α=0.05的条件下,拒绝无自相关的原 假设,即随机干扰项存在自相关。又因 为的回归系数显著不为0(P值为 0.0062),表明存在一阶自相关。又的 回归系数不为0,但是对应的P值 =0.1363>0.05,所以表明不存在二阶自 相关。
Variable
Coefficien t Std. Error t-Statistic Prob.
C
-12903.68 6950.472 -1.856518 0.0808
X1
0.847142 0.195330 4.336977 0.0004
X2
5.433156 1.773206 3.064029 0.0070
财政支出 (亿元) 3083.59 3386.62 3742.20 4642.30 5792.62 6823.72 7937.55 9233.56 10798.18 13187.67 15886.50 18902.58 22053.15 24649.95 28486.89 33930.28 40422.73 49781.35 62592.66 76299.93 89874.16
计量经济学 第二章 简单线性回归模型案例分析 PPT
3. 用P值检验 α=0.05 >> p=0.0000
表明,城镇居民人均总收入对城镇居民每百户计算机拥有量确 有显著影响。
4. 经济意义检验:
所估计的参数
,说明城镇
居民家庭人均总收入每增加1元,平均说来城变量选择:被解释变量选择能代表城乡所有居民消费的 “城镇居民家庭平均每百户计算机拥有量”(单位:台) ; 解释变量选择表现城镇居民收入水平的“城镇居民平均每 人全年家庭总收入”(单位:元) 研究范围:全国各省市2011年底的城镇居民家庭平均每 百户计算机拥有量和城镇居民平均每人全年家庭总收入数 据。
3、总体回归函数(PRF)是将总体被解释变量Y的条件 均值表现为解释变量X的某种函数。 样本回归函数(SRF)是将被解释变量Y的样本条件 均值表示为解释变量X的某种函数。 总体回归函数与样本回归函数的区别与联系。
4、随机扰动项是被解释变量实际值与条件均值的偏差, 代表排除在模型以外的所有因素对Y的影响。
Yt 12Xt ut
估计参数
假定模型中随机扰动满足基本假定,可用OLS法。 具体操作:使用EViews 软件,估计结果是:
用规范的形式将参数估计和检验的结果写为: Y ˆt11.95800.002873X t
(5.6228) (0.00024) t= (2.1267) (11.9826) R2 0.8320 F=143.5836 n=31
即是说:当地区城镇居民人均总收入达到25000元时,城镇居 民每百户计算机拥有量 平均值置信度95%的预测区间为 (80.6219,86.9473)台。
12
个别值区间预测:
计量经济学虚拟回归实验例题三
计量经济学虚拟回归实验例题三一、实验背景嘿呀,咱在计量经济学的学习过程中呀,虚拟回归实验可是个挺重要的部分呢。
它能帮助咱们更好地理解各种经济现象背后的关系,就像是给咱们打开了一扇通往经济世界奥秘的小窗户。
通过虚拟回归实验,咱能模拟出各种经济场景,看看不同因素之间是怎么相互影响的,这多有趣呀!二、实验目的咱做这个虚拟回归实验,主要就是想更熟练地掌握回归分析的方法和技巧啦。
比如说,学会怎么选择合适的变量,怎么构建回归模型,还有怎么解读回归结果。
而且呀,通过这个实验,咱还能锻炼自己的数据处理能力和分析问题的能力呢,以后碰到实际的经济问题,咱就有办法去解决啦。
三、实验数据准备咱得先准备好实验数据呀。
这里呢,咱假设研究的是消费者的消费支出和收入、价格等因素之间的关系。
咱可以通过一些统计软件或者在线数据库,找到相关的数据。
比如说,收集不同地区、不同年龄段消费者的收入水平、消费支出以及各种商品的价格数据。
收集好数据之后呢,还得对数据进行清洗和整理,把那些异常的数据或者缺失的数据处理掉,这样才能保证咱们的实验结果更准确。
四、模型设定接下来就是设定回归模型啦。
咱假设消费支出(Y)是因变量,收入(X1)和价格(X2)是自变量,那么可以设定一个简单的线性回归模型:Y = β0 + β1X1 + β2X2 + ε。
这里的β0是截距项,β1和β2是回归系数,ε是随机误差项。
这个模型表示消费支出和收入、价格之间存在着线性关系,咱通过实验就是要估计出这些回归系数的值,看看收入和价格对消费支出的影响到底有多大。
五、实验步骤1. 数据导入把整理好的数据导入到统计软件中,比如说Stata或者Eviews。
这就像是把原材料放进了加工厂,接下来就可以开始加工啦。
2. 模型估计在软件中选择合适的回归方法,对设定好的模型进行估计。
软件会根据数据计算出回归系数的估计值、标准误差、t统计量和p 值等统计量。
咱就可以根据这些统计量来判断模型的拟合效果和回归系数的显著性啦。
回归分析应用实例讲解
影响成品钢材量的多元回归分析故当原油产量为16225.86万吨,生铁产量为12044.54万吨,原煤产量为13.87万吨以及发电量为12334.89亿千瓦时时,成品钢材量预测值为10727.33875万吨;当原油产量为17453万吨,生铁产量为12445.96万吨,原煤产量为14.54万吨以及发电量为13457亿千瓦时时,成品钢材量预测值为10727.33875万吨。
钢材的需求量设为y,作为被解释变量,而原油产量治、生铁产量X2、原煤产量X3、发电量X4作为解释变量,通过建立这些经济变量的线性模型来研究影响成品钢材需求量的原因。
能源转换技术等因素。
在此,收集的数据选择与其相关的四个因素:原油产量、生铁产量、原煤产量、发电量,1980—1997的有关数据如下表。
理论上成品钢材的需求量的影响因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、原始数据(中国统计年鉴)将中国成品模型的设定设因变量y与自变量X i、X2、X3、X4的一般线性回归模型为y = -0 + i X i 2X2 3X3 4X4 ;;是随机变量,通常满足;;Var()= -2二参数估计aa.因变量成品钢材(万吨)再用spss做回归线性,根据系数表得出回归方程为:y =1 70.2 87 O X 0 4 1 X°「554 X 1 7.8 *8 0.389 再做回归预测,得出如下截图:y 1x1| x4 |PRE」RES 12716 2010595.003802.40 6.203006.2D2899.08766-182.887662670.1010122.003416.60 6.203092.702738.53110-68.431102902 0010212 003551.00B6G3277.002372.8151429.104063072.0010E07 00373BOO7 153514 003O43.G244328.375573372.0011461.304001.007.893770003240 51584131.484163693.0012489.504384.008.7241107.003526.63541166.364594050.0013068.805064.008.944495.004026.5661931.433814356.0013414 005503 009 284973004435.52677-79.526774689.0013704 605704.009 805452.004712.05819-23.058194859.0013754.105820 0010545848 004914.01371-56.013716163.0013330.606238.0010.806212.005280.70360-127.703605635.0014009.206765.0010.076775.005703.19465■145.194656697.00114209.707589 0011.167539 00G623.64790173.352107716.0014523.008739 0011.518395007474.80431241 195698482 0014608.209741.0012.409281.008355 43425126.565758979.8015004.9410529.2713.6110070.309061.44200-81.64200933S0215733,3910722.5013.9710813.109421 11147-83.091479978,9316074.141151141137311355.5310069.53741-30.6074116225 8612044.54138712334 8910727.33875--17453.0012445.9614.5413457.0011323.87164故当原油产量为16225.86万吨,生铁产量为12044.54万吨,原煤产量为13.87万吨以及发电量为12334.89亿千瓦时时,成品钢材量预测值为10727.33875万吨;当原油产量为17453万吨,生铁产量为12445.96万吨,原煤产量为14.54万吨以及发电量为13457亿千瓦时时,成品钢材量预测值为10727.33875万吨。
计量经济学第2章一元线形回归模型案例
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载计量经济学第2章一元线形回归模型案例地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容一元线形回归模型案例分析案例:下表的数据为2003年全国31个省市自治区的城镇居民年人均可支配收入X与年人均消费支出。
资料来源:《中国统计年鉴2004》,表中数据均以当年价格计算。
建立计量模型由经济理论知,消费支出受可支配收入的影响,两者之间具有正向同步变化的趋势。
除可支配收入之外,对消费支出有影响的其他因素均包含在随机误差项中。
模型中,解释变量为年人均可支配收入X,被解释变量为年人均消费支出Y。
模型形式可根据凯恩斯的边际消费倾向理论建立一元线形回归模型,也可通过散点图来选择合适的模型形式。
两变量的散点图如下:由散点图可以看出,两变量之间呈线性关系,因此可以建立一元线形回归模型:Yi= 0 + 1 Xi + ut估计参数应用计量经济学软件Eviews得到如下估计结果:得回归方程如下:(0.86)(23.27) R2=0.9491 F=541.26 DW=1.22括号中对应的是估计参数对应的t统计量的值。
参数检验经济检验(结构分析)是样本回归直线的斜率,表示城镇居民的边际消费倾向,说明年人均消费支出增加1元时,消费支出将增加0.75元;是样本回归直线的截距,它表示不受可支配收入影响的自发性消费支出。
显然,两参数的符号和大小均符合经济理论和实际情况。
统计检验R2=0.9491表示总离差的94.91%被样本回归直线解释,因此样本回归直线对样本点的拟合优度较高。
拟合效果图如下给定显著性水平α=0.05,查临界值表得t0.025(29)=2.05。
,故回归系数显著不为0。
但,即系数不显著,可以考虑略去从新估计回归模型,也可包含在模型中。
计量经济学第7章 含有定性信息的多元回归分析
第7章含有定性信息的多元回归分析:二值(或虚拟)变量在前面几章中,我们的多元回归模型中的因变量和自变量都具有定量的含义。
就像小时工资率、受教育年数、大学平均成绩、空气污染量、企业销售水平和被拘捕次数等。
在每种情况下,变量的大小都传递了有用的信息。
在经验研究中,我们还必须在回归模型中考虑定性因素。
一个人的性别或种族、一个企业所属的产业(制造业、零售业等)和一个城市在美国所处的地理位置(南、北、西等)都可以被认为是定性因素。
本章的绝大部分内容都在探讨定性自变量。
我们在第7.1节介绍了描述定性信息之后,又在第7.2、7.3和7.4节中说明了,如何在多元回归模型中很容易地包含定性的解释变量。
这几节几乎涵盖了定性自变量用于横截面数据回归分析的所有流行方法。
我们在第7.5节讨论了定性因变量的一种特殊情况,即二值因变量。
这种情形下的多元回归模型具有一个有趣的含义,并被称为线性概率模型。
尽管有些计量经济学家对线性概率模型多有中伤,但其简洁性还是使之在许多经验研究中有用武之地。
虽然我们在第7.5节将指出其缺陷,但在经验研究中,这些缺陷常常都是次要的。
7.1 对定性信息的描述定性信息通常以二值信息的形式出现:一个人是男还是女;一个人有还是没有一台个人计算机;一家企业向其一类特定的雇员提供还是不提供退休金方案;一个州实行或不实行死刑。
在所有这些例子中,有关信息可通过定义一个二值变量(binary variable)或一个0-1变量来刻画。
在计量经济学中,对二值变量最常见的称呼是虚拟变量(dummy variable),尽管这个名称并不是特别形象。
在定义一个虚拟变量时,我们必须决定赋予哪个事件的值为1和哪个事件的值为0。
比如,在一项对个人工资决定的研究中,我们可能定义female为一个虚拟变Array量,并对女性取值1,而对男性取值0。
这种情形中的变量名称就是取值1的事件。
通过定义male在一个人为男性时取值1并在一个人为女性时取值0,也能刻画同样的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、回归预测
将1990-2007改为1990-2008
四、回归预测
由X2008=8000 得 Y2008=700.18
四、回归预测
1、点预测 由题:2008年本市生产总值为8000亿元 可得:地方财政收入预测值为 20.46347+0.084965*8000=700.18347(亿元)
X和Y的描述统计结果
^
2
相关数据带入得最终结果为:[628.97,771.40]
预测值及标准误差:
3、统计检验 对回归系数的t检验: 假设 H 0::
0
=0 和 H 0:: 1 =0
查t分布表得: 自由度为n-2=18-2=16的临界值为2.120
ˆ )=2.073853< 2.120,所以不拒绝 因为t(
0
ˆ )=26.10378 > 2.120,所以拒绝 t(
1
表明:x对y有显著影响
1
说明本市生产总值x每增加1亿元,地方预算内 财政收入平均增加0.084965亿元,与经济意义 相符。
三、模型检验
2、拟合优度 建模型整体上对样本数据拟合较好,既解释变 量本市生产总值对被解释变量地方预算内财政 收入的绝大部分差异做出了解释。
R 0.977058 , 趋近与1,说明所
2
三、模型检验
t=
i
20.46347 0.084965
X
i
(9.867366) (0.003255) (2.073853) (26.10378) n=18
R2=0.977058
F=681.4076
二、估计参数
剩余项、实际值与拟合值的图形如下图:
三、模型检验
1、经济意义检验 所估计的参数
ˆ
0
ˆ 0.084965 20.46347
201ห้องสมุดไป่ตู้级物流一班第六小组 小组成员:
一、模型设定 二、估计参数 三、模型检验 四、回归预测
一、模型设定
1990-2007深圳市地方预算内财政收入与本市生产总值
假定模型:
Y 0 1 X u
二、估计参数
Eviews的回归结果如下表所示:
二、估计参数
参数估计和检验结果:
ˆ Y
四、回归预测
2、区间预测 平均值置信度95%的预测区间为:
Yf
^
t
2
^
( X f X )2 1 2 n x i
相关数据带入得最终结果为:[658.56,741.80]
四、回归预测
2、区间预测 个别值置信度95%的预测区间为:
Yf
^
1 (X f X ) t 2 1 2 n xi