假设检验与指数练习题讲解【精选】
第8章假设检验习题及答案
第8章假设检验习题及答案第8章假设检验一、填空题1、对正态总体的数学期望μ进行假设检验,如果在显著性水平0.05下,接受假设00:μμ=H ,那么在显著性水平0.01下,必然接受0H 。
2、在对总体参数的假设检验中,若给定显著性水平为α,则犯第一类错误的概率是α。
3、设总体),(N ~X2σμ,样本n 21X ,X ,X ,2σ未知,则00:H μ=μ,01:H μ<μ的拒绝域为 )}1(/{0--<-n t nS X αμ,其中显著性水平为α。
4、设n 21X ,X ,X 是来自正态总体),(N 2σμ的简单随机样本,其中2,σμ未知,记∑==n 1i i X n 1X ,则假设0:H 0=μ的t 检验使用统计量=T Q n n X )1(- .二、计算题1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常?解:设重量),(~2σμN X05.016==αn 4252==S X (1)检验假设250:0=μH 250:1≠μH ,因为2σ未知,在0H 成立下,)15(~/250t n S X T -=拒绝域为)}15(|{|025.0t T >,查表得1315.2)5(025.0=≠t由样本值算得1315.22<=T ,故接受0H(2)检验假设9:20=σH 9:201>σH 因为μ未知,选统计量2022)1(σS n x -= 在0H 成立条件下,2x 服从)15(2x 分布,拒绝域为)}15({205.02x x >,查表得996.24)15(205.0=x ,现算得966.24667.26916152>=?=x ?拒绝0H ,综合(1)和(2)得,以为机器工作不正常2、一种电子元件,要求其使用寿命不得低于1000小时,现在从一批这种元件中随机抽取25 件,测得其寿命平均值为950小时,已知该种元件寿命服从标准差100=σ小时正态分布,试在显著性水平0.05下确定这批产品是否合格.解:设元件寿命),(~2σμN X ,2σ已知10002=σ,05.0,950,25===αX n检验假设1000:0=μH1000:1<μH 在2σ已知条件下,设统计量)1,0(~/1000N n X σμ-= 拒绝域为}{05.0μμ<,查表得645.195.005.0-=-=μμ 而645.15.2205025/1001000950-<-=-=-=μ 拒绝假设0H 选择备择假设1H ,所以以为这批产品不合格.3. 对显著水平α,检验假设H 0 ; μ = μ0,H 1 ; μ ≠ μ0,问当μ0,μ,α一定时,增大样本量 n 必能使犯第二类错误概率β 减少对吗?并说明理由。
假设检验习题及答案
第三章 假设检验3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
{}0100001:1000, H :1000X u=950 100 n=25 1000950-1000u= 2.510025 V=u 0.05H nx u αμμμσσμα-≥<-====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为01011020: 3.25 H :t X t=13.252, S=0.0117, n=53.252-3.25t= 0.34190.011751H S n x μμμμσμ==≠--==-提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴ 本题中,接受认为这批矿砂的镍含量为。
3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}00.95()10.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t S n X n ασμα--==-==1-构造统计量:本文中未知,可用检验。
第八章假设检验习题讲解
第八章假设检验习题讲解第八章假设检验假设检验的基本步骤:1)由实际问题提出原假设H0与备择假设H1;2)选取适当的统计量,并在H0为真的条件下确定该统计量的分布;3)根据问题要求明确显著性水平α(一般题目会直接给),从而得到拒绝域;4)由样本观测值计算统计量的观测值,看是否属于拒绝域,从而对H0做出判断。
两类错误:第一类(弃真),第二类(纳伪)错误概率α和β分别称为厂方风险和用户风险。
1)拟合优度以否定域(拒绝域)的形式构造的显著性检验,只有“否定”合“不否定”两个可能的决定。
然而,这种“非此即彼”的做法往往显得过分绝对和牵强。
实际中的许多现象或事物,往往并非与某项假设截然相符或截然不同。
因此,统计假设检验,有时不是采用简单回答“是”与“否”的处理方法,而是给出“所作假设与抽样或观测结果吻合程度”的一个度量——拟合优度。
通常用介于0和1 之间的数p (0<="">2)p 值假定关于总体X 的假设H 0的拒绝域V ,由检验的统计量T 和显著性水平α确定的临界值λα构成,如}{αλ≥=T V 。
假如由来自总体X 的样本值测得统计量T 的值为c ,则当c ≥ λα时否定H 0,而当c < λα时不否定H 0。
当c 和λα相差较多时,往往使“否定H 0”或者“不否定H 0”都显得勉强。
设p = p (c ) = P {T ≥ c },它表示根据所得样本值能否定假设H 0的实际水平,称为p 值。
对于规定的显著性水平α,若p ≤ α,否定假设H 0,若p > α,不否定假设H 0。
在统计假设检验的应用中,有时事先不规定显著性水平,而是用p 的值做所作假设与实际抽样结果吻合程度的度量——拟合优度。
一般,当p 值不大于0.05或者0.10时否定假设H 0,当p 值大于0.30时接受假设H 0,而当p 值介于0.10和0.30之间时,“否定”和“接受”的根据都显得不足。
《统计学》第13讲:假设检验(续2+习题) (1)
net
1
net
2
H0 :P1- P2 ≤ 0 H1 :P1- P2 > 0 = 0.05 n1=200 , n2=200 临界值(c):
p1n1 p2 n2 0.27*2001 0.35*200 p = =0.31 n1 n2 200 200
检验统计量:
z
0 .27 0 .35
F F1 (n1 1, n2 1)
F F (n1 1, n2 1)
5.6 总体比率假设检验
一、单样本总体比率假设检验 1. 假定条件
总体服从二项分布 可用正态分布来近似(大样本)
2. 检验的 z 统计量
z pP 0 ~ N (0,1) P 0 (1 P 0) n
2 s2 或 F 2 ~ F ( n 2 1, n1 1) s1
拒绝H0
拒绝H0
F1 2
方差比F检验示意图
F 2
F
两独立样本方差比例题(单侧检验)
【例14】为比较生产同一种 假设检验过程如下: 2 产品的两条生产线的技术状 H 0 : 12 2 1 2 况,分别从两条生产线上随 H1 : 12 2 1 机 抽 取 容 量 分 别 为 41 件和 计算检验统计量的值: 31件两个产品重量的样本, 2 s 120 并计算出样本方差分别为 1 F 2 1.50 s2 80 120 和 80 。 现 以 0.05 的 显 著性水平,比较两条生产线 临界值为 产品重量的方差。 F n1 1, n2 1 F0.05 40,30 1.79
所以没有理由拒绝原假设
两个独立样本总体方差比检验
假设
假设形式
双侧检验
H0:12/22=1 H1 :12/221
(完整版)假设检验习题及答案
第三章 假设检验3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为0101102: 3.25 H :t X 3.252, S=0.0117, n=50.3419H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴Q 本题中,接受认为这批矿砂的镍含量为。
3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}0.95()0.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。
取检验统计量为X 本题中,代入上式得: 0.452%-0.5%拒绝域为:V=t >t 本题中,01 4.1143H <=∴t 拒绝{}22200222212210.952()nS S 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919ii n n ααμχσσχχχχχχ--===*==>--==Q 2构造统计量:未知,可选择统计量本题中,代入上式得:()()否定域为:本题中, 210(1)n H αχ-<-∴接受3.9设总体116(,4),,,X N X X μ:K 为样本,考虑如下检验问题:{}{}01123:0 H :1() =0.05 V ={2X -1.645}V = 1.502X 2.125V =2X 1.962X 1.96(ii)H i μμα==-≤≤≤≤-≥试证下述三个检验(否定域)犯第一类错误的概率同为或通过计算他们犯第二类错误的概率,说明哪个检验最好?解:{}{}{}{}00.97512012()0.050.05:02*1.960.052 1.64502 1.645 1.645( 1.645)1(1.645)=1-0.95=0.05V 1.502 2.i P x V H X U U H X V X X P X P X ααμσμσ-=∈=⎧⎫-⎪⎪=>==⎨⎬⎪⎪⎩⎭=∴>==≤-⎧⎫⎪⎪-⎪⎪≤-=≤-=Φ-=-Φ⎨⎬⎪⎪⎪⎪⎩⎭=≤≤即,P U 这里P {}{}{}{}{}{}203301110125 1.50 2.120(2.215)(1.50)0.980.930.052 1.962 1.962 1.96 1.96P(V H )=1-P 2 1.962(1(1.96))0.05ii :2 1.645X P V H V X X X X H V X σββ⎧⎫⎪⎪-⎪⎪=≤≤⎨⎬⎪⎪⎪⎪⎩⎭=Φ-Φ=-=⎫⎪⎪=≤-≥=≥=≥⎬⎪⎪⎭<=-Φ=X ≥-或()犯第二类错误的概率 =P -V =P {}1μ=-{}{}223310.3551(0.355)0.36:1 1.502 2.12511 4.125:2 1.96110.04 3.96V P X V P X σβμσβμσ⎧⎫⎪⎪+⎪⎪≥=-Φ=⎨⎬⎪⎪⎪⎪⎩⎭=-≤≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎪⎩⎭ΦΦ=≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎩⎭X =P X =1-P 3.50 =1-(4.125)+(3.50)=1X =P ⎪ΦΦ∴11 =(3.96)-(0.04)=0.99996092-0.516=0.48396092V 出现第二类错误的概率最小,即V 最好。
第4章假设检验习题解答
B. ( n − 1) S ~
2
χ 2 (n − 1) .
C.
X ~ t (n − 1) . S/ n
D.
n X ~ N (0, 1) .
) .
14.假设 H 0 : µ = µ0 , H1 : µ < µ0 ,采用 t 法检验,则拒绝域是( C A.
x − µ0 > tα (n − 1) . s/ n x − µ0 < −tα (n − 1) . s/ n
2 2 ,采用统计量 χ 2 = 对于假设 H 0 : σ 2 = σ 0 , H1 : σ 2 > σ 0
1
σ
2 0 i =1
∑(X
n
i
− X ) 2 ,则其拒绝
域为
(n − 1) s 2
σ
2 0
2 > χα (n − 1)
.
2 2 28.若取显著水平为 α , 对于待检验的原假设 H 0 : σ 2 = σ 0 , 备择假设 H 1 : σ 2 ≠ σ 0 ,
B. −tα / 2 (n − 1) <
x − µ0 < tα / 2 (n − 1) . s/ n
C.
D.
x − µ0 x − µ0 < −tα / 2 (n − 1)或 > tα / 2 (n − 1) . s/ n s/ n
二.填空题 15.概率很小的事件,在一次试验中几乎是不可能发生的,这个原理称为 小概率原理 . 16. 在假设检验中, 把符合 H 0 的总体判为不符合 H 0 加以拒绝, 这类错误称为第 一
第 4 章假设检验习题解答
一.选择题 . 1. 假设检验中,显著性水平 α 用来控制( A ) A. H 0 为真,经检验拒绝 H 0 的概率. C. H 0 不真,经检验拒绝 H 0 的概率. B. H 0 为真,经检验接受 H 0 的概率. D. H 0 不真,经检验接受 H 0 的概率. ) .
(完整版)统计学假设检验习题答案
1.假设某产品的重量服从正态分布,现在从一批产品中随机抽取16件,测得平均重量为820克,标准差为60克,试以显著性水平α=0.01与α=0.05,分别检验这批产品的平均重量是否是800克。
解:假设检验为800:,800:0100≠=μμH H (产品重量应该使用双侧 检验)。
采用t 分布的检验统计量nx t /0σμ-=。
查出α=0.05和0.01两个水平下的临界值(df=n-1=15)为2.131和2.947。
667.116/60800820=-=t 。
因为t <2.131<2.947,所以在两个水平下都接受原假设。
2.某牌号彩电规定无故障时间为10 000小时,厂家采取改进措施,现在从新批量彩电中抽取100台,测得平均无故障时间为10 150小时,标准差为500小时,能否据此判断该彩电无故障时间有显著增加(α=0.01)?解:假设检验为10000:,10000:0100>=μμH H (使用寿命有无显著增加,应该使用右侧检验)。
n=100可近似采用正态分布的检验统计量nx z /0σμ-=。
查出α=0.01水平下的反查正态概率表得到临界值2.32到2.34之间(因为表中给出的是双侧检验的接受域临界值,因此本题的单侧检验显著性水平应先乘以2,再查到对应的临界值)。
计算统计量值3100/5001000010150=-=z 。
因为z=3>2.34(>2.32),所以拒绝原假设,无故障时间有显著增加。
3.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?解: 01:1600, :1600,H H μμ=≠标准差σ已知,拒绝域为2Z z α>,取0.05,α=26,n =0.0250.9752 1.96z z z α===,由检验统计量1.25 1.96Z ===<,接受0:1600H μ=, 即,以95%的把握认为这批产品的指标的期望值μ为1600.4.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量3.33 1.96Z ===>,接受1: 2.64H μ≠, 即, 以95%的把握认为新工艺对此零件的电阻有显著影响.5.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
假设检验练习题 答案
假设检验练习题1、简单回答下列问题:1)假设检验的基本步骤?答:第一步建立假设(通常建立两个假设,原假设H0 不需证明的命题,一般就是相等、无差别的结论,备择假设H1,与H0对立的命题,一般就是不相等,有差别的结论)有三类假设第二步选择检验统计量给出拒绝域的形式。
根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分: 拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1:W为双边H1:W为单边H1:W为单边第三步:给出假设检验的显著水平第四步给出零界值C,确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。
例如:对于=0、05有的双边W为的右单边W为的右单边W为第五步根据样本观测值,计算与判断计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝, 否则接受(计算P值227页p值由统计软件直接得出时拒绝,否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)2)假设检验的两类错误及其发生的概率?答:第一类错误:当为真时拒绝,发生的概率为第二类错误:当为假时,接受发生的概率为3)假设检验结果判定的3种方式?答:1、计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝, 否则接受2、计算P值227页p值由统计软件直接得出时拒绝,否则接受3、计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受4)在六西格玛A阶段常用的假设检验有那几种?应用的对象就是什么?答:连续型(测量的数据): 单样本t检验-----比较目标均值双样本t检验-----比较两个均值方差分析-----比较两个以上均值等方差检验-----比较多个方差离散型(区分或数的数据): 卡方检验-----比较离散数2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。
假设检验例题与习题
检验统计量:
在 = 0.05的水平上不拒绝H0
该市老年人口比重为14.7%
决策:
结论:
Z
0
1.96
-1.96
.025
拒绝 H0
拒绝 H0
.025
一个总体比例的检验 (例题分析)
总体方差的检验 (2 检验)
0.3
-0.4
-0.7
1.4
-0.6
-0.3
-1.5
0.6
-0.9
1.3
-1.3
0.7
1
-0.5
0
-0.6
0.7
-1.5
-0.2
-1.9
-0.5
1
-0.2
-0.6
1.1
绿色 健康饮品
绿色 健康饮品
双侧检验
方差的卡方 (2) 检验 (例题分析)
H0: 2 = 1 H1: 2 1 = 0.05 df = 25 - 1 = 24 临界值(s):
H0: 40000 H1: < 40000 = 0.05 df = 20 - 1 = 19 临界值(s):
检验统计量:
在 = 0.05的水平上不拒绝H0
不能认为制造商的产品同他所说的标准不相符
决策:
结论:
-1.7291
t
0
拒绝域
.05
均值的单尾 t 检验 (计算结果)
总体比例的检验 (Z 检验)
用置信区间进行检验 (例题分析)
【例】一种袋装食品每包的标准重量应为1000克。现从生产的一批产品中随机抽取16袋,测得其平均重量为991克。已知这种产品重量服从标准差为50克的正态分布。试确定这批产品的包装重量是否合格?( = 0.05) 双侧检验! 香脆蛋卷
假设检验的习题及详解包括典型考研真题
§假设检验基本题型Ⅰ 有关检验统计量和两类错误的题型【例8.1】u 检验、t 检验都是关于 的假设检验.当 已知时,用u 检验;当 未知时,用t 检验.【分析】 由u 检验、t 检验的概念可知,u 检验、t 检验都是关于均值的假设检验,当方差2σ为已知时,用u 检验;当方差2σ为未知时,用t 检验. 【例8.2】设总体2(,)XN u σ,2,u σ未知,12,,,n x x x 是来自该总体的样本,记11ni i x x n ==∑,21()ni i Q x x ==-∑,则对假设检验0010::H u u H u u =↔≠使用的t 统计量t = (用,x Q 表示);其拒绝域w = . 【分析】2σ未知,对u 的检验使用t 检验,检验统计量为(1)x t t n ==-对双边检验0010::H u u H u u =↔≠,其拒绝域为2{||(1)}w t t n α=>-.【例8.3】设总体211(,)XN u σ,总体222(,)Y N u σ,其中2212,σσ未知,设112,,,n x x x 是来自总体X 的样本,212,,,n y y y 是来自总体Y 的样本,两样本独立,则对于假设检验012112::H u u H u u =↔≠,使用的统计量为 ,它服从的分布为 .【分析】记1111n i i x x n ==∑,2121n i i y y n ==∑,因两样本独立,故,x y 相互独立,从而在0H 成立下,()0E x y -=,221212()()()D x y D x D y n n σσ+=+=+,故构造检验统计量(0,1)x yu N =.【例8.4】设总体2(,)XN u σ,u 未知,12,,,n x x x 是来自该总体的样本,样本方差为2S ,对2201:16:16H H σσ≥↔<,其检验统计量为 ,拒绝域为 .【分析】u 未知,对2σ的检验使用2χ检验,又由题设知,假设为单边检验,故统计量为222(1)(1)16n S n χχ-=-,从而拒绝域为221{(1)}n αχχ-<-.【例8.5】某青工以往的记录是:平均每加工100个零件,由60个是一等品,今年考核他,在他加工零件中随机抽取100件,发现有70个是一等品,这个成绩是否说明该青工的技术水平有了显著性的提高(取0.05α=)?对此问题,假设检验问题应设为 【 】()A 01:0.6:0.6H p H p ≥↔<. ()B 01:0.6:0.6H p H p ≤↔>. ()C 01:0.6:0.6H p H p =↔≠. ()D 01:0.6:0.6H p H p ≠↔=.【分析】一般地,选取问题的对立事件为原假设.在本题中,需考察青工的技术水平是否有了显著性的提高,故选取原假设为0:0.6H p ≤,相应的,对立假设为1:0.6H p >,故选()B .【例8.6】某厂生产一种螺钉,标准要求长度是68mm ,实际生产的产品,其长度服从2(,3.6)N u ,考察假设检验问题01:68:68H u H u =↔≠.设x 为样本均值,按下列方式进行假设检验:当|68|1x ->时,拒绝原假设0H ;当|68|1x -≤时,接受原假设0H . (1)当样本容量36n =时,求犯第一类错误的概率α; (2)当样本容量64n =时,求犯第一类错误的概率α;(3)当0H 不成立时(设70u =),又64n =时,按上述检验法,求犯第二类错误的概率β. 【解】(1)当36n =时,223.6(,)(,0.6)36xN u N u =,000{|68|1|}{67|}{69|}P x H P x H P x H α=->=<+>成立成立成立67686968()[1()]( 1.67)[1(1.67)]0.60.6--=Φ+-Φ=Φ-+-Φ 2[1(1.67)]2[10.99575]0.095=-Φ=-=.(2)当64n =时,223.6(,)(,0.45)64xN u N u =000{|68|1|}{67|}{69|}P x H P x H P x H α=->=<+>成立成立成立67686968()[1()]0.450.45--=Φ+-Φ 2[1(2.22)]2[10.9868]0.0264=-Φ=-=.(3)当64n =,又70u =时,2(70,0.45)xN ,这时犯第二类错误的概率(70){|68|1|70}{6769|70}P x u P x u β=-≤==≤≤=69706770()()( 2.22)( 6.67)0.450.45--=Φ-Φ=Φ--Φ- (6.67)(2.22)10.98680.0132=Φ-Φ=-=.【评注】01(1)(2)的计算结果表明:当n 增大时,可减小犯第一类错误的概率α;02 当64n =,66u =时,同样可计算得到(66)0.0132β=.03 当64n =,68.5u =时,2(68.5,0.45)xN ,则(68.5){6769|68.5}P x u β=≤≤= 6968.56768.5()()(1.11)( 3.33)0.450.45--=Φ-Φ=Φ-Φ-0.8665[10.9995]0.8660=--=.这表明:当原假设0H 不成立时,参数真值越接近于原假设下的值时,β的值就越大. 【例8.7】设总体2(,)XN u σ,12,,,n x x x 是来自该总体的样本,对于检验01:0:0H u H u ≤↔>,取显著性水平α,拒绝域为:{}w u u α=>,其中u =,求:(1)当0H 成立时,求犯第一类错误的概率()u α; (2)当0H 不成立时,求犯第二类错误的概率()u β. 【解】(1)当0H 成立时,0u ≤,则(){|0}|0}u P u u u P u u ααα=>≤=>≤()|0}1()(0)P x u u u u u αα=->≤=-Φ≤因0u ≤,故()()1u u αααΦ≥Φ=-,从而()1()1(1)u u αααα≤-Φ=--=,即犯第一类错误的概率不大于α.(2)(){|0}()|0}u P u u u P x u u u ααβ=≤>=-≤>()(0)u u α=Φ>因0u >,故当u →+∞时,()0u β→,即u 与假设0H 偏离越大,犯第二类错误的概率越小;而当0u +→时,()1u βα→-,即当u 为正值且接近0时,犯第二类错误的概率接近1α-.基本题型Ⅱ 单个正态总体的假设检验【例8.8】某天开工时,需检验自动包装机工作是否正常,根据以往的经验,其包装的质量在正常情况下服从正态分布2(100,1.5)N (单位:kg ),先抽测了9包,其质量为: 99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.0,100.5 问这天包装机工作是否正常?【分析】 关键是将这一问题转化为假设检验问题.因检验包装机工作是否正常,化为数学问题应为双边检验01:100:100H u H u =↔≠.【解】由题意,提出假设检验问题:01:100:100H u H u =↔≠, 选取检验统计量(0,1)x u N =当0.05α=时,0.02521.96u u α==,又20.04 1.96u u α==<=,即接受原假设0H ,认为包装机工作正常.【例8.9】已知某种元件的寿命服从正态分布,要求该元件的平均寿命不低于1000h ,现从这批元件中随机抽取25知,测得平均寿命980X h =,标准差65S h =,试在水平0.05α=下,确定这批元件是否合格.【解】由题意,2σ未知,在水平0.05α=下检验假设0010:1000:1000H u u H u u ==↔<=属于单边(左边)t 检验.构造检验统计量 (1)x t t n =-,其中25,65,980n S X h ===,查t 分布表可得:0.05(1)(251) 1.7109t n t α-=-=,又0.05|| 1.538(24) 1.7109x t t ===<=.即接受原假设0H ,认为这批元件是合格的.【例8.10】某厂生产的一中电池,其寿命长期以来服从方差225000()σ=小时的正态分布,现有一批这种电池,从生产的情况来看,寿命的波动性有所改变,现随机地抽取26只电池,测得寿命的样本方差229200()S =小时,问根据这一数据能否推断这批电池寿命的波动性较以往有显著性的变化(取0.02α=).【解】 检验假设2201:5000:5000H H σσ=↔≠,选取统计量2222(1)(1)n S n χχσ-=-,由0.02α=,26n =,查2χ分布表可得220.012(1)(25)44.314n αχχ-==,220.0912(1)(25)11.524n αχχ--==, 又统计量2220.012(1)46(25)44.314n S χχσ-==>=,故拒绝原假设0H ,即认为这批电池寿命的波动性较以往有显著性的变化.【例8.11】 某种导线,要求其电阻的标准不得超过0.005(欧姆),今在生产的一批导线中取样品9根,测得0.007S =(欧姆),设总体为正态分布,问在水平0.05α=下,能否认为这批导线的标准差显著性地偏大?【解】本题属于总体均值未知,正态总体方差的单边检验问题0010:0.005:0.005H H σσσσ==↔>=选取统计量2222(1)(1)n S n χχσ-=-当0.05α=,9n =时,查2χ分布表可得:220.05(1)(8)15.507n αχχ-==,又题设0.007S =,则统计量22220.0522(1)80.00715.68(8)15.5070.005n S χχσ-⨯===>=. 故拒绝原假设0H ,认为这批导线的标准差显著性地偏大.【例8.12】 机器自动包装食盐,设每袋盐的净重服从正态分布,规定每袋盐的标准重量为500克,标准差不超过10克.某天开工以后,为了检查机器工作是否正常,从已包装好的食盐中随机抽取9袋,测得其重量(克)为:497,507,510,475,484,488,524,491,515问这天自动包装机工作是否正常(显著性水平0.05α=)? 【解】 设每袋盐重量为随机变量X ,则2(,)XN u σ,为了检查机器是否工作正常,需检验假设:01:500H u =及202:100H σ≤.下面现检验假设0111:500:500H u H u =↔≠ 由于2σ未知,故构造统计量(1)x t t n =-由于0.05α=,查t 分布表可得0.0252(1)(8) 2.306t n t α-==,又由题设计算可得499,16.03X S ==,故统计量取值0.025||0.187(8) 2.306x t t ===<=即接受原假设01H ,认为机器包装食盐的均值为500克,没产生系统误差.下面在检验假设220212:100:100H H σσ≤↔>选取统计量2222(1)(1)n S n χχσ-=-,由于0.05α=,查2χ分布表可得220.05(1)(8)15.5n αχχ-==,而统计量2220.052(1)20.56(8)15.5n S χχσ-==>=,故拒绝原假设02H ,接受12H ,即认为其标准差超过了10克.由上可知,这天机器自动包装食盐,虽没有产生系统误差,但生产不够稳定(方差偏大),从而认为这天自动包装机工作不正常.基本题型Ⅲ 两个正态总体的假设检验【例8.13】 下表给出了两个文学家马克·吐温(Mark Twain )的8偏小品文以及斯诺·特格拉斯(Snodgrass )的10偏小品文中由3格字母组成的词比例.马克·吐温: 0.225,0.262,0.217,0.240,0.230,0.229,0.235,0.217斯诺·特格拉斯:0.209,0.205,0.196,0.210,0.202,0.207,0.224,0.223,0.220,0.201 设两组数据分别来自正态分布,且两总体方差相等,两样本相互独立,问两个作家所写的小品文中包含由3格字母组成的词的比例是否有显著性的差异(0.05α=)?【分析】首先应注意题中的“比例”即“均值”的含义,因而本题应属于未知方差,却知其相等的两正态母体,考虑它们的均值是否相等的问题.【解】设题中两正态母体分别记为,X Y ,其均值分别为12,u u ,因而检验问题如下:012112::H u u H u u =↔≠选取统计量(2)X Y T t n m =+-,其中8,10n m ==,()()22122112wn S m S Sn m -+-=+-,在0.05α=时,查t 分布表可得()()/20.025216 2.1199t n m t α+-==由题设样本数据计算可得22120.2319,0.2097,0.00021,0.00009X Y S S ====,0.119w S ===.从而t统计量值为()0.025|| 3.964316 2.1199X Y T t ===>=,因而拒绝原假设0H ,认为两个作家所写的小品文中包含由3格字母组成的词的比例有显著性的差异.【例8.14】据专家推测:矮个子的人比高个子的人的寿命要长一些,下面给出了美国31个自然死亡的总统的寿命.矮个子(身高小于5英尺8英寸)总统 Modison Van Buren B.Harrison J.Adams J.Q.Adams 身高 5’4” 5’6” 5’6” 5’7” 5’7” 寿命 85 79 67 90 80高个子(身高大于5英尺8英寸)总统 W.Harrison Plok Tayler Crant Hayes Truman Fillmore Pierce A.Johson 身高 5’8” 5’8” 5’8”5’8.5” 5’8.5” 5’9” 5’9” 5’10” 5’10” 寿命 68 53 65 63 70 88 74 64 66 总统 T.Roosevelt Coolidge Eisenhower Cleveland Wilson Hoover Monroe Tyler 身高 5’10” 5’10” 5’10” 5’11” 5’11” 5’11” 6’ 6’ 寿命 60 60 78 71 67 90 73 71 总统 Buchanan Taft Harding Jaskon Washington Arthur F.Roosevelt 身高 6’ 6’ 6’ 6’1” 6’2” 6’2” 6’2” 寿命77 72 57 78 67 56 63设两个寿命总体均为正态分布且方差相等,试问以上数据是否符合上述推测(0.05α=)? 【解】设矮个子总统寿命为X ,高个子总统寿命为Y ,需检验012112::H u u H u u =↔>.由于22212σσσ==未知,故选用统计量(2)X Y T t n m =+-,其中5,26n m ==,()()22122112wn S m S Sn m -+-=+-.由题设样本数据可得80.2,69.15,X Y ==22124294.8,252183.215S S ==,故()()221221185.4492wn S m S Sn m -+-==+-,从而统计量|| 2.448X Y T ==,又当0.05α=时,查t 分布表可得()()0.05229 1.6991t n m t α+-==,即()0.05|| 2.44829 1.6991T t =>=,故拒绝原假设0H ,即推测是正确的,认为矮个子的人比高个子的人的寿命要长一些 【例8.15】总体21(,)XN u σ,22(,)Y N u σ,112,,,n x x x 与212,,,n y y y 分别时来自总体,X Y 的样本,试讨论检验问题012112::H u u H u u δδ-≤↔->.【解】取统计量12(2)X Y T t n n =+-,其中()()221122212112wn S n S S n n -+-=+-, 则检验统计量为X Y T =,当1H 成立时,t 有偏大的趋势,故取拒绝域为12{(2)}w t t n n α=>+-.【例8.16】甲乙相邻地段各取了50块和25块岩心进行磁化率测定,算出两样本标准差分别是210.0139S =,220.0053S =,问甲乙两段的标准差是否有显著性差异(0.05α=)?【解】作假设001:H σσ=,由题设有250211501500.0139()0.01425014949i i S X X =⨯⨯-===-∑, 252221521520.0053()0.00545215151ii S Y Y =⨯⨯-===-∑ 从而统计量21112222(1)0.01422.630.0054(1)n S n F n S n -===-,当0.05α=,查F 分布表可得0.0252(501,521)(501,521) 1.7494F F α--=--=,0.97512(501,521)(501,521)0.5698FF α---=--=,因为0.0252.63(49,51) 1.7494F F =>=,故拒绝原假设0H ,即认为甲乙两段的标准差有显著性差异.【例8.17】在集中教育开课前对学员进行了测试,过来一段时间后,又对学员进行了与前一次同样程度的考查,目的是了解上次的学员与这次学员的考试分类是否有显著性差别(0.05α=),从上次与这次学员的考试中随机抽取12份考试成绩,如下表考试次数 考分 合计平均分 (1) 80.5,91.0,81.0,85.0,70.0,86.0,69.5,74.0,72.5,83.0,69.0,78.5940 78.5 (2)76.0,90.0,91.5,73.0,64.5,77.5,81.0,83.5,86.0,78.5,85.0,96080.073.5【解】此为双正态总体的假设检验,两总体均值未知,先检验假设2222012112::H H σσσσ=↔≠.选取统计量211222(1,1)S F F n n S =--,由题设可计算得221253.15,60.23S S ==,则统计量212253.150.882560.23S F S ===,取0.05α=,查F 分布表可得0.0252(11,11)(11,11) 3.43F F α==,0.97510.02521(11,11)(11,11)0.2915(11,11)FF F α-===.由于122(11,11)0.8825(11,11) 3.43FF F αα-<=<=,故在0.05α=下,接受0H ,即认为两次考试中学员的成绩的方差相等. 再假设012112::H u u H u u =↔≠.构造统计量12(2)X YT t n n =+-,其中()()221122212112wn S n S S n n -+-=+-,1212,12n n ==.由样本数据可得78.5,80.0,X Y ==221253.1515,60.2273S S ==,故()()2211222121156.68942wn S n S Sn n -+-==+-,从而统计量||0.488X Y T ==,在0.05α=下,查t 分布表可得()()120.0252222 2.0739t n n t α+-==.由于()0.025||0.48822 2.0739T t =<=,即认为两次考试中学员的平均成绩相等,从而认为两次考试中学员的成绩无显著性差异.基本题型Ⅳ 非正态总体参数假设检验【例8.18】某产品的次品率为0.17,现对此产品进行了新工艺试验,从中抽取400件检查,发现次品56间,能否认为这项新工艺显著性地影响产品质量(0.05α=)? 【解】检验问题01:0.17:0.17H p H p =↔≠由题设可知56ˆ0.14400m pn ===,构造统计量 1.597u ===-,当0.05α=时,查正态分布表可得0.025 1.96u =,因为0.025|| 1.96u u <=,故接受原假设0H ,认为新工艺显著性地影响产品质量.【评注】本题的理论依据时中心极限定理:当n 充分大时,在0H 成立时,u =(0,1)N 分布.【例8.19】 已知某种电子元件的使用寿命X 服从指数分布()E λ,现抽查100个元件,得样本均值950()x h =,能否认为参数0.01λ=(0.05α=)? 【解】由题设()XE λ,故211,EX DX λλ==,当n 充分大时,1((0,1)1x u x N λλ-==-,现在检验问题01:0.001:0.001H H λλ=↔≠,则((0.0019501)0.5u x λ=-=⨯-=,当0.05α=时,查正态分布表可得0.025 1.96u =,因为0.025|| 1.96u u <=,故接受原假设0H ,认为参数0.01λ=.【评注】总体()X F x ,2,EX u DX σ==,则当n充分大时,u =从(0,1)N 分布.【例8.20】对某干洗公司去除污点的比例做下列假设检验01:0.7:0.9H p H p =↔=,选出100个污点,设其中去除的污点数为x ,拒绝域为{82}w x =>. (1)当0.7p =时,求犯第一类错误的概率α; (2)当0.9p =时,求犯第二类错误的概率β. 【解】(1)由题设有{82|0.7}1P x p α=>==-Φ1(2.62)10.99560.0044=-Φ=-=.(2){82|0.9}P x p β=≤==Φ( 2.67)1(2.67)10.99620.0038=Φ-=-Φ=-=.【评注】从计算分析,这一检验法的α,β皆很小,是较好的检验.§历年考研真题评析1、【98.1.4】设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,计算得到平均成绩为66.5,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生平均成绩为70分?并给出检验过程.【解】设该次考试的考生成绩为X ,则2(,)XN ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,根据题意建立假设001:70;:70H H .选取统计量 07036X X TnSS在70时,2(70,),(35)X T t .选取拒绝域{||}R T ,其中满足{||}0.05P T ,即{||}0.95P T .即0.975(35) 2.0301t . 由036,66.5,70,15n xs 可以计算得统计量T 的值|66.570|||361.42.030115T .因此不能拒绝0H ,即在显著性水平0.05下可以认为全体考生的平均成绩为70分.§习题全解1、在正常情况下,某炼钢厂的铁水含碳量(%)2(4.55,)XN σ.一日测得5炉铁水含碳量如下:4.48,4.40,4.42,4.45,4.47在显著性水平0.05α=下,试问该日铁水含碳量得均值是否有明显变化. 【解】设铁水含碳量作为总体X ,则2(4.55,)XN σ,从中选取容量为5的样本,测得24.444,0.0011X S ==.由题意,设原假设为0: 4.55H u = 构造检验统计量 ||(4)X u t t S -=,则7.051t ==在显著性水平0.05α=下,查表可得0.97512(4)(4) 2.77647.051tt α-==<,拒绝原假设0H ,即认为有显著性变化.2、根据某地环境保护法规定,倾入河流的废物中某种有毒化学物质含量不得超过3ppm.该地区环保组织对某厂连日倾入河流的废物中该物质的含量的记录为:115,,x x .经计算得15148ii x==∑, 1521156.26i i x ==∑.试判断该厂是否符合环保法的规定.(该有毒化学物质含量X 服从正态分布)【解】设有毒化学物质含量作为总体X ,则2(,)XN u σ,从中选取容量为15的样本,测得1511 3.215i i X x ===∑,22221111()()0.1911n ni i i i S x x x nx n n ===-=-=--∑∑.由题意,设原假设为0:3H u <,备择假设为1:3H u >.构造检验统计量(14)X t t =,则 1.777t ==,在显著性水平0.05α=下,查表可得10.95(14)(14) 1.7613 1.777t t α-==<,即拒绝原假设0H ,接受备择假设1H ,认为该厂不符合环保的规定.3、某厂生产需用玻璃纸作包装,按规定供应商供应的玻璃纸的横向延伸率不应低于65.已知该指标服从正态分布2(,)N μσ, 5.5σ=.从近期来货中抽查了100个样品,得样本均值55.06x =,试问在0.05α=水平上能否接受这批玻璃纸? 【解】设玻璃纸的横向延伸率为总体X ,则2(,5.5)XN u ,从中选取容量为100的样本,测得55.06x =.由题意,设原假设为0:65H u >,备择假设为1:65H u <.构造检验统计量||(0,1)X u U N σ-=,则|55.0665|18.07275.5U -==在显著性水平0.05α=下,查表可得10.95 1.644918.0727U U α-==<,即拒绝原假设0H ,接受备择假设1H ,不能接受该批玻璃纸..4、某纺织厂进行轻浆试验,根据长期正常生产的累积资料,知道该厂单台布机的经纱断头率(每小时平均断经根数)的数学期望为9.73根,标准差为1.60根.现在把经纱上浆率降低20%,抽取200台布机进行试验,结果平均每台布机的经纱断头率为9.89根,如果认为上浆率降低后均方差不变,问断头率是否受到显著影响(显著水平α=0.05)?【解】设经纱断头率为总体X ,则9.73u EX ==, 1.6σ==,从中选取容量为200的样本,测得9.89x =.由题意,设原假设为0:9.73H u =,备择假设为1:9.73H u ≠. 构造检验统计量(0,1)X U N =,则 1.4142U ==在显著性水平0.05α=下,查表可得0.975121.96 1.4142UU α-==>,即接受原假设0H ,认为断头率没有受到显著影响.5、某厂用自动包装机装箱,在正常情况下,每箱重量服从正态分布2(100,)N σ.某日开工后,随机抽查10箱,重量如下(单位:斤):99.3,98.9,100.5,100.1,99.9,99.7,100.0,100.2,99.5,100.9.问包装机工作是否正常,即该日每箱重量的数学期望与100是否有显著差异?(显著性水平α=0.05) 【解】设每箱重量为总体X ,则2(100,)XN σ,从中选取容量为10的样本,测得99.9x =,20.34S =.由题意,设原假设为0:100H u =,备择假设为1:100H u ≠.构造检验统计量||(9)X u t t S -=,则0.5423t ==,在显著性水平0.05α=下,查表可得0.97512(9)(9) 2.26220.5423tt α-==>,即接受原假设0H ,认为每箱重量无显著差异.6、某自动机床加工套筒的直径X 服从正态分布.现从加工的这批套筒中任取5个,测得直径分别为15,,x x (单位m μ:),经计算得到51124ii x==∑, 5213139i i x ==∑.试问这批套筒直径的方差与规定的27σ=有无显著差别?(显著性水平0.01α=) 【解】设这批套筒直径为总体X ,则2(,)XN u σ,从中选取容量为5的样本,测得151124.815i i X x ===∑,22221111()()15.9511n ni i i i S x x x nx n n ===-=-=--∑∑. 由题意,设原假设为20:7H σ=,备择假设为21:7H σ≠.构造检验统计量2222(1)(4)n S χχσ-=,则2415.959.11437χ⨯==,在显著性水平0.01α=下,查表可得220.99512(4)(4)14.86αχχ-==,220.0052(4)(4)0.2070αχχ==,从而222122(4)(4)ααχχχ-<<. 即接受原假设0H ,认为这批套筒直径的方差与规定的27σ=无显著差别.7、甲、乙两台机床同时独立地加工某种轴,轴的直径分别服从正态分布211(,)N μσ、222(,)N μσ(12,μμ未知).今从甲机床加工的轴中随机地任取6根,测量它们的直径为16,,x x ,从乙机床加工的轴中随机地任取9根,测量它们的直径为19,,y y ,经计算得知:61204.6ii x==∑, 6216978.9i i x ==∑,91370.8i i y ==∑,92115280.2i i y ==∑.问在显著性水平0.05α=下,两台机床加工的轴的直径方差是否有显著差异? 【解】设两台机床加工的轴的直径分别为总体,X Y ,则211(,)XN μσ、222(,)YN μσ,从总体X 中选取容量为6的样本,测得61134.16i i X x ===∑222211111()()0.40811n ni i i i S x x x nx n n ===-=-=--∑∑. 从总体Y 中选取容量为9的样本,测得91141.29i i Y y ===∑222221111()()0.40511n ni i i i S y y y ny n n ===-=-=--∑∑ 由题意,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,8)S F F S =,则0.4081.0070.405F ==,在显著性水平0.05α=下,查表可得0.97512(5,8)(5,8) 6.76FF α-==,0.0252(5,8)(5,8)0.1479F F α==,从而122(5,8)(5,8)F F Fαα-<<.即接受原假设0H ,认为两台机床加工的轴的直径方差无显著差异.8、某维尼龙厂根据长期正常生产积累的资料知道所生产的维尼龙纤度服从正态分布,它的标准差为0.048.某日随机抽取5根纤维,测得其纤度为1.32,1.55,1.36,1.40,1.44.问该日所生产得维尼龙纤度的均方差是否有显著变化(显著性水平α=0.1)? 【解】设维尼龙纤度为总体X ,则2(,0.048)XN u ,从中选取容量为5的样本,测得511 1.4145i i X x ===∑,2211()0.00781n i i S x x n ==-=-∑.由题意,设原假设为0:0.048H σ=,备择假设为1:0.048H σ≠.构造检验统计量2222(1)(4)n S χχσ-=,则2240.007813.542(0.048)χ⨯==在显著性水平0.1α=下,查表可得220.9512(4)(4)9.487713.542αχχ-==<.即拒绝原假设0H ,认为维尼龙纤度的均方差有显著变化.9、某项考试要求成绩的标准差为12,先从考试成绩单中任意抽出15份,计算样本标准差为16,设成绩服从正态分布,问此次考试的标准差是否符合要求(显著性水平α=0.05)? 【解】 设考试成绩为总体X ,则2(,12)XN u ,从中选取容量为15的样本,测得16S =.由题意,设原假设为0:12H σ=,备择假设为1:12H σ≠. 构造检验统计量2222(1)(14)n S χχσ-=,则222141619.055612χ⨯==.在显著性水平0.05α=下,查表可得220.97512(14)(14)26.1189αχχ-==,220.0252(14)(14) 5.6287αχχ==,从而222122(14)(14)ααχχχ-<<.即接受原假设0H ,认为此次考试的标准差符合要求.10、某卷烟厂生产甲、乙两种香烟,分别对他们的尼古丁含量(单位:毫克)作了六次测定,获得样本观察值为:甲:25,28,23,26,29,22; 乙:28,23,30,25,21,27.假定这两种烟的尼古丁含量都服从正态分布,且方差相等,试问这两种香烟的尼古丁平均含量有无显著差异(显著性水平α=0.05,)?对这两种香烟的尼古丁含量,检验它们的方差有无显著差异(显著性水平α=0.1)?【解】设这两种烟的尼古丁含量分别为总体,X Y ,则211(,)X N μσ、222(,)Y N μσ,从中均选取容量为6的样本,测得61125.56i i X x ===∑,22111()7.51n i i S x x n ==-=-∑, 61125.66676i i Y y ===∑,22211()11.06671n i i S y y n ==-=-∑, 由题意,在方差相等时,设原假设为012:H u u =,备择假设为112:H u u ≠.构造检验统计量12(2)X Y t t n n =+-,其中222112212(1)(1)9.2834(2)wn S n S S n n -+-==+-.则0.0948t ==,在显著性水平0.05α=下,查表可得120.97512(2)(10) 2.22810.0948tn n t α-+-==>.即接受原假设0H ,认为这两种香烟的尼古丁平均含量无显著差异.由题意,在方差待定时,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,5)S F F S =,则7.50.677711.0667F ==,在显著性水平0.1α=下,查表可得0.9512(5,8)(5,5) 5.0503FF α-==,0.052(5,8)(5,5)0.1980F F α==,由122(5,5)(5,5)F F Fαα-<<.即接受原假设0H ,认为它们的方差无显著差异.§同步自测题及参考答案一、选择题1、关于检验水平α的设定,下列叙述错误的是 【 】()A α的选取本质上是个实际问题,而非数学问题. ()B 在检验实施之前, α应是事先给定的,不可擅自改动.()C α即为检验结果犯第一类错误的最大概率. ()D 为了得到所希望的结论,可随时对α的值进行修正.2、关于检验的拒绝域W,置信水平a ,及所谓的“小概率事件”,下列叙述错误的是 【 】()A a 的值即是对究竟多大概率才算“小”概率的量化描述. ()B 事件021|),,,{(H W X X X n ∈ 为真}即为一个小概率事件.()C 设W 是样本空间的某个子集,指事件}|),,,{(021为真H W X X X n ∈ . ()D 确定恰当的W 是任何检验的本质问题.3、设总体22),,(~σσμN X 未知,通过样本n X X X ,,,21 检验假设00:μμ=H ,此问题拒绝域形式为 【 】()A }C >. ()B }/100{C n S X <-. ()C }10/100{C S X >- . ()D }{C X >.4、设n X X X ,,,21 为来自总体2(,)N μσ的样本,若μ未知, 100:20≤σH ,21:100,H 0.05a ,关于此检验问题,下列不正确的是 【 】()A 检验统计量为100)(12∑=-ni iX X. ()B 在0H 成立时,)1(~100)1(22--n x S n . ()C 拒绝域不是双边的. ()D 拒绝域可以形如})({12∑=>-ni i k X X .5、设总体服从正态分布2(,3)XN μ,12,,,n x x x 是X 的一组样本,在显著性水平0.05α=下,假设“总体均值等于75”拒绝域为12{,,,:74.0275.98}n w x x x x x =<⋃>,则样本容量n = 【 】()A 36. ()B 64. ()C 25. ()D 81.二、填空题1、为了校正试用的普通天平,把在该天平上称量为100克的10个试样在计量标准天平上进行称量,得如下结果:99.3, 98.7, 100.5, 101,2, 98.399.7 99.5 102.1 100.5, 99.2 假设在天平上称量的结果服从正态分布,为检验普通天平与标准天平有无显著差异,0H为 .2、设样本2521,,,X X X 来自总体μμ),9,(N 未知,对于检验0010::H H μμμμ=↔= 取拒绝域形如k X ≥-0μ,若取05.0=a ,则k 值为 .3、设12,,,n x x x 是正态总体2(,)XN μσ的一组样本.现在需要在显著性水平0.05α=下检验假设2200:H σσ=.如果已知常数u ,则0H 的拒绝域1w =______________;如果未知常数u ,则0H 的拒绝域2w =______________.4、在一个假设检验问题中令0H 是原假设,1H 时备择假设,则犯第一类错误的概率{______________}P ,犯第二类错误的概率{______________}P .三、解答题1、某批矿砂的5个样本中的镍含量,经测定为(%)3.25,3.27,3.24,3.26,3.24设测定值总体服从正态分布,问在0.01α=下,能否接受假设:这批矿砂的含量的均值为3.25.2、已知精料养鸡时,经若干天鸡的平均重量为4公斤.今对一批鸡改用粗料饲养,同时改善饲养方法,经同样长的饲养期后随机抽取10只,的其数据如下:3.7,3.8,4.1,3.9,4.6,4.7,5.0,4.5,4.3,3.8已知同一批鸡的重量X 服从正态分布,试推断:这一批鸡的平均重量是否显著性提高.试就0.01α=和0.05α=分别推断.3、测定某种溶液中的水份,它的10个测定值给出0.037%S =,设测定值总体为正态分布,2σ为总体方差,试在水平0.05α=下检验假设01:0.04%:0.04%H H σσ=↔<.4、在70年代后期,人们发现在酿造啤酒时,在麦芽干燥过程中形成致癌物质亚硝基二甲胺(NDMA ).到了80年代初期开发了一种新的麦芽干燥过程,下面给出了在新老两种干燥过程中形成的NDMA 的含量(以10亿份中的份数计)老过程 6,4,5,5,6,5,5,6,4,6,7,4 新过程2,1,2,2,1,0,3,2,1,0,1,3设两样本分别来自正态总体,且两总体的方差相等,两样本独立,分别以12,u u 记对应于老、新过程的总体均值,试检验假设(0.05α=)0111:2:2H u u H u u -=↔->.5、检验了26匹马,测得每100毫升的血清中,所含的无机磷平均为3.29毫升,标准差为0.27毫升;又检验了18头羊,每100毫升血清中汗无机磷平均值为3.96毫升,标准差为0.40毫升.设马和羊的血清中含无机磷的量均服从正态分布,试问在显著性水平0.05α=条件下,马和羊的血清中无机磷的含量有无显著性差异?6、某种产品的次品率原为0.1,对这种产品进行新工艺试验,抽取200件发现了13件次品,能否认为这项新工艺显著性地降低了产品的次品率(0.05α=)?7、设n X X X ,,,21 为总体(,4)XN a 的样本,已知对假设01:1: 2.5H a H a =↔=,0H 的拒绝域为{2}w X =>.(1)当9u =时,求犯两类错误的概率α和β; (2)证明:当n →∞时,0α→,0β→.同步自测题参考答案 一、选择题1.()D .2. ()C .3. ()C .4. ()B .5. ()A . 二、填空题1.100=μ.2. 1.176.3. 222210.0250.97522110011{()()()()}nniii i w x u n x u n χχσσ===->⋃-<∑∑;222220.0250.975220(1)(1){(1)(1)}n S n S w n n χχσσ--=>-⋃<- .4.10{|}P H H 接受成立,01{|}P H H 接受成立.三、解答题 1、接受0H .2、0.01α=时,显著性提高;0.05α=时,没有显著性提高 .3、 接受0H .4、拒绝0H ,接受1H .5、方差无显著性差异,均值有显著性差异,故有显著性差异.6、 拒绝0H .7、(1)0.0668α=,0.2266β=,(2)102α=-Φ→,(04β=Φ-→()n →∞.。
概率论与数理统计假设检验习题课
概率论与数理统计第7章 假设检验习题课Ὅ例1在假设检验中,表示原假设, 则显著性检验水平表示( ).A. 为假,但接受的概率B. 为真,但拒绝的概率C. 为假,但拒绝的概率D. “纳伪”错误的概率.解| H0为真检验水平即为犯第一类错误的概率,即P{拒绝H} = ,因此B为正确答案.Ἲ方法归纳假设检验的理论依据是“实际推断原理”,即小概率事件在一次试验中一般不会发生,如果小概率事件在一次试验中偶然发生,就会造成检验结果的错误. 犯第一类错误的概率就是显著性水平 ,即P{拒绝H0| H0为真} = .解Ὅ例2考虑检验问题拒绝域取 ,试求c 使得检验的显著性水平为0.05. 在显著性水平0.05下拒绝域为,因此,在H 0为真的条件下,因而即,2c=1.96,所以c=0.98.Ἲ方法归纳犯第一类错误的概率就是显著性水平 ,即P{拒绝H0| H0为真} = .Ὅ例3设总体,选取样本容量为n的简单随机样本,设为样本平均值,S为样本标准差.检验假设,,若已知,选取的检验统计量为————,若未知,选取的检验统计量为 .解关于均值μ的假设检验,若已知,选取的检验统计量为,若未知,选取的检验统计量,Ἲ方法归纳选择合适的检验统计量是假设检验的关键,关于均值μ的假设检验,若已知,选取的检验统计量为,若未知,选取的检验统计量为 .Ὅ例4设总体,其中、均未知,选取样本容量为n的简单随机样本. 为样本均值,为样本方差,则假设的检验使用的统计量为A. B. C. D.解由于未知,检验使用统计量 .Ὅ例5某产品以往的废品率不高于5%,今从一批产品中抽取一样本,以检验这批产品的废品率是否高于5%(显著水平:α),提出的假设应为( ).A.B.C.D.解假设检验中假设一般有三种形式,分别是双侧检验,右侧检验,左侧检验,右侧检验和左侧检验统称单侧检验. 由于检验是否高于5%,为单侧检验,选择假设B.Ὅ例63.25 3.27 3.24 3.26 3.24。
假设检验练习试题-答案解析
假设检验练习试题-答案解析(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--假设检验练习题1. 简单回答下列问题:1)假设检验的基本步骤?答:第一步建立假设 (通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论)有三类假设第二步选择检验统计量给出拒绝域的形式。
根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1: W为双边H1: W为单边H1: W为单边第三步:给出假设检验的显著水平第四步给出零界值C,确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。
例如:对于=有的双边 W为的右单边 W为的右单边 W为第五步根据样本观测值,计算和判断计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受(计算P值 227页 p值由统计软件直接得出时拒绝,否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)2)假设检验的两类错误及其发生的概率?答:第一类错误:当为真时拒绝,发生的概率为第二类错误:当为假时,接受发生的概率为3)假设检验结果判定的3种方式?答:1.计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受2.计算P值 227页 p值由统计软件直接得出时拒绝,否则接受3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受4)在六西格玛A阶段常用的假设检验有那几种应用的对象是什么答:连续型(测量的数据):单样本t检验 -----比较目标均值双样本t检验 -----比较两个均值方差分析 -----比较两个以上均值等方差检验 -----比较多个方差离散型(区分或数的数据):卡方检验 -----比较离散数2.设某种产品的指标服从正态分布,它的标准差σ =150,今抽取一个容量为26 的样本,计算得平均值为1 637。
2014年假设检验考试试题及答案解析
假设检验考试试题及答案解析一、单选题(本大题9小题.每题1.0分,共9.0分。
请从以下每一道考题下面备选答案中选择一个最佳答案,并在答题卡上将相应题号的相应字母所属的方框涂黑。
)第1题假设检验中的显著性水平α是( )。
A 推断时犯第Ⅱ类错误的概率B 推断时犯第Ⅰ和第Ⅱ类错误的概率C 推断时犯第Ⅰ类错误的概率D 推断时犯第Ⅲ类错误的概率【正确答案】:C【本题分数】:1.0分【答案解析】[解析] 显著性水平α是犯第Ⅰ类错误的概率,也就是原假设H0为真,却拒绝H的概率。
第2题当总体服从正态分布,但总体方差未知的情况下,H0:μ=μ,H1:μ<μ则H的拒绝域为( )。
A t≤tα(n-1)B t≤-tα(n-1)C t>-tα(n-1)D t≤(n-1)【正确答案】:B【本题分数】:1.0分第3题从一批零件中抽出100个测量其直径,测得平均直径为5.2cm,标准差为1.6cm,想知道这批零件的直径是否服从标准直径5cm,因此采用t检验法,那么在显著性水平α下,接受域为( )。
A |t|≥tα/2(99)B |t|<tα/2(100)C |t|<tα/2(99)D |t|≤tα/2(99)【正确答案】:C【本题分数】:1.0分【答案解析】[解析] 采用t检验法进行双边检验时,因为,所以在显著性水平α下,接受域为|t|≤tα/2(99)。
第4题在假设检验中,若抽样单位数不变,显著性水平从0.01提高到0.1,则犯第二类错误的概率( )。
A 也将提高B 不变C 将会下降D 可能提高,也可能不变【正确答案】:C【本题分数】:1.0分【答案解析】[解析] 原假设H0非真时作出接受H的选择,这种错误称为第二类错误。
在一定样本容量下,减少α会引起β增大,减少β会引起α的增大。
第5题机床厂某日从两台机器所加工的同一种零件中,分别抽取两个样本,检验两台机床的加工精度是否相同,则提出假设( )。
【正确答案】:B【本题分数】:1.0分【答案解析】[解析] 检验两台机床的加工精度是否相同,即检验两台机床加工的方差是否相同,因此适合采用双侧检验,并把“=”放进原假设。
假设检验例题及解析
选择题在进行假设检验时,如果原假设为真,而样本数据却导致我们拒绝了原假设,这种情况被称为:A. 第一类错误(正确答案)B. 第二类错误C. 第三类错误D. 无错误假设我们要检验某种药物是否能有效降低血压,原假设应为:A. 药物能降低血压B. 药物不能降低血压(正确答案)C. 药物对血压无影响D. 药物可能升高血压在单样本t检验中,如果计算出的t值大于临界t值,我们应该:A. 接受原假设B. 拒绝原假设(正确答案)C. 无法判断D. 重新进行试验假设检验中的P值表示的是:A. 原假设为真的概率B. 备择假设为真的概率C. 在原假设为真的条件下,观察到当前或更极端结果的概率(正确答案)D. 犯第二类错误的概率在进行两个独立样本的均值比较时,如果两个样本的方差未知且不相等,我们应使用:A. 单样本t检验B. 配对t检验C. Welch's t检验(正确答案)D. 方差分析假设检验中的显著性水平α通常设定为:A. 0.01B. 0.05(正确答案)C. 0.10D. 0.20在进行卡方检验时,如果计算出的卡方值小于临界卡方值,我们应该:A. 接受原假设(正确答案)B. 拒绝原假设C. 无法判断D. 需要更多数据假设我们要检验某种食品中是否含有某种有害物质,原假设应为:A. 食品中含有有害物质B. 食品中不含有害物质(正确答案)C. 食品中可能含有有害物质D. 食品中一定不含有害物质在进行假设检验时,如果犯第二类错误的成本远高于犯第一类错误的成本,我们应该:A. 提高显著性水平αB. 降低显著性水平α(正确答案)C. 保持显著性水平α不变D. 无法确定如何调整显著性水平α。
假设检验练习题统计学
4-第8章假设检验练习题统计学(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第八章假设检验练习题一、填空1、在做假设检验时容易犯的两类错误是和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是也叫第一类错误,它是指原假设H0是的,却由于样本缘故做出了 H0的错误;和叫第二类错误,它是指原假设H0是的, 却由于样本缘故做出 H0的错误。
4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为。
5、假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为。
6、从一批零件中抽取100个测其直径,测得平均直径为,标准差为,在显著性水平α=下,这批零件的直径是否服从标准直径5cm(是,否)7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为。
(用H0,H1表示)8、一般在样本的容量被确定后,犯第一类错误的概率为α,犯第二类错误的概率为β,若减少α,则β9、某厂家想要调查职工的工作效率,工厂预计的工作效率为至少制作零件20个/小时,随机抽样36位职工进行调查,得到样本均值为19,样本标准差为6,试在显著水平为的要求下,问该工厂的职工的工作效率(有,没有)达到该标准。
10、刚到一批货物,质量检验员必须决定是否接受这批货物,如不符合要求,将退还给货物供应商,假定合同规定的货物单件尺寸为6,请据此建立原假设_ _ 和备择假设。
σ已知,应采用统计量检验总体均值。
11、总体为正态总体,且2σ未知,应采用统计量检验总体均值。
12、总体为正态总体,且2二、选择1、假设检验中,犯了原假设H0实际是不真实的,却由于样本的缘故而做出的接受H0的错误,此类错误是()A 、α类错误B 、第一类错误C 、取伪错误D 、弃真错误2、一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A 、0:5H μ=,1:5H μ≠B 、0:5H μ≠,1:5H μ>C 、0:5H μ≤,1:5H μ>D 、0:5H μ≥,1:5H μ< 3、一个95%的置信区间是指( ) A 、总体参数有95%的概率落在这一区间内 B 、总体参数有5%的概率未落在这一区间内C 、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率( ) A 、都增大 B 、都减小 C 、都不变 D 、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。
假设检验与指数练习题讲解
某机床厂加工一种零件,根据经验知道,该厂加工 零件的椭圆度近似服从正态分布,其总体均值为 0=0.081mm,总体标准差为=0.025 。今换一种新机床 进行加工,抽取n=200个零件进行检验,得到的椭圆 度为0.076mm。试问新机床加工零件的椭圆度的均值 与以前有无显著差异?(=0.05)
分析:1.双侧检验; 2.大样本且方差2已知,使用z检验。
z
x 0
n
~ N (0,1)
1
1
题解1
H0: = 0.081 H1: 0.081 = 0.05 n = 200
临界值(如下图):
拒绝 H0
.025
选择并计算检验统计量: x 0 0.076 0.081 z 2.83 n 0.025 200 决策:
拒绝 H0
0.025
检验统计量:
t
11.89 12 0.4932 10
0.7035
决策:
不拒绝H0
拒绝 H0
0.025
结论:
该供货商提供的零件符合要求
-2.262
0
2.262
t
10
10
不同显著性水平的检验结果比较
11
11
练题解答
12
12
指数体系练习题
表2. 某商店三种商品销售资料
销售量 价格(元) 商品 计量 名称 单位 2011年 2012年 2011年 2012年 甲 公斤 300 360 0.42 0.45 乙 件 200 200 0.30 0.36 丙 套 1400 1600 0.20 0.28
在 = 0.05的水平上拒绝H0
拒绝 H0
.025
第六章 假设检验习题答案ppt课件
解:
H0 :σ2 ≤ 0.75, H1 : σ2 > 0.75
2 ( n 1 ) s 2 2 29 2 7 7 .3 3 0 .7 5
一个假设检验,能够帮助判定
电视的使用寿命的方差是否显 著大于视频录像设备的使用寿
7 7 . 3 3 4 2 . 5 5 7 0 ( 2 9 )
2 2 0 . 0 5
命的方差。并在 0.05的显著性
水平下做出结论。
样本提供的证据表明:在显著 性水平为 0.05 时下电视的使用 寿命的方差显著大于视频录像 设备的使用寿命的方差
第六章 假设检验
第六章 假设检验
样本提供的证据表明:在显著性水平= 0.05时能认为该厂生产的工艺品框架宽 与长的平均比率为0.618
0
2.0930
t
第六章 假设检验
•
一个著名的医生声称75%的女 性所穿过的鞋子过小,一个研 究组织对 356 名女性进行了研 究,发现其中有 313 名女性所 穿的鞋子号码至少小一号。取
解:
0 z 0 (1 0 ) n
样本提供的证据表明:每个家庭每 天收看电视的平均时间增加了
第六章 假设检验
•
经验表明,一个矩形的宽与长之 比等于 0.618 的时候会给人们比 较良好的感觉。某工艺品工厂生 产的矩形工艺品框架的宽与长要 求也按这一比率设计,假定其总
0.672 0.615 0.606 0.690 0.628
0.699 0.749 0.654 0.670 0.612
拒绝 H0
0.025
拒绝 H0
0.025
-2.0930
检验统计量: x 0 t (19) s n 0.6583 0.618 1.9323 0.09327 20
统计学习题——假设检验
第六章 假设检验例1从死于汽车碰撞事故的司机中抽取2000名司机的随机样本,根据他们的血液中是否含有酒精以及他们是否对事故负有责任,将数据整理如下表所示。
在整个总体中,血液中含有酒精和不含酒精的司机之间在对事故负有责任方面有差异吗?为了回答这一问题:1) 叙述0H 并计算概值;2) 计算适当的置信区间(95%)来说明差异有多大;3) 从这一数据如何说明“酒精增加了事故的发生率”。
解:设1p 为含酒精中有责任的概率,2p 无酒精中有责任的概率。
提出假设0H :血液中含酒精和不含酒精的司机之间对事故富有的责任无差异。
即1p =2p 1H :1p ≠2p 。
依据样本数据:1p =650/(650+150)=13/16 2p =700/(700+500)=7/12构造统计量:P=1p -2p 又因为1p ~N (1p ,111n )p 1p -(),2p ~N (2p ,222n )p 1p -() 所以1p -2p ~ N (1p -2p ,111n )p 1p -(+222n )p 1p -() 记111n )p 1p -(+222n )p 1p -(为2s 1p -2p 的95%的置信区间为(1p -2p -2/z a *s ,1p -2p +2/z a *s )=(0.19,0.27)。
不包括0 ,所以拒绝零假设。
可见含酒精的对事故负责任的概率远大于不含酒精的。
即酒精增加了事故的而发生率。
(数值计算过程不再列出)例2、1974年,美国盖洛普公司的一次调查表明,在750名美国男子的样本中,有45%抽烟;在另一个相互独立的750名女子的样本中,36%抽烟,1) 构造男性总体和女性总体中抽烟比例之差的95%单侧置信区间;2) 计算没有差异这一原假设的概值;3) 在错误水平α=0.05下,45%与36%之差在统计上是可以分辨的吗?(或是显著的吗?)即,能拒绝0H 吗?用两种方式回答,并说明两种答案是一致的:1) 0H 是否没有落入95%的置信区间之内?2) 对0H 的概值是否小于0.05?解:设男性抽烟比例为1p ,女性抽烟比例为2p 。
[汇总]统计学假设检验练习题
[汇总]统计学假设检验练习题例3.7.9 从一大批相同型号的金属线中,随机选取10根,测得它的直径(单位:mm)为:1.23 1.24 1.26 1.29 1.20 1.32 1.23 1.23 1.29 1.282(1)如果金属线直径X,N(μ,0.04),试求平均直径μ的置信度为95%的置信区间.22(2)如果金属线直径X,N(μ, σ),σ未知,试求平均直径μ的置信度为95%的置信区间.例3.7.10 随机取某牌香烟8支,其尼古丁平均含量为3.6mg,标准差为0.9mg(试求此牌香烟尼古丁平均含量μ的95,的置信区间((假设尼古丁含量服从正态分布)(4.某种袋装食品的重量服从正态分布.某一天随机地抽取9袋检验,重量(单位:g)为510 485 505 505 490 495 520 515 49022(1) 若已知总体方差σ=8.6,求μ的置信度为90%的置信区间; (2) 若已知总体方差未知,求μ的置信度为95%的置信区间. 5.为了估计在报纸上做一次广告的平均费用,抽出了20家报社作随机样本,样本的均值和标准差分别为575(元)和120(元),假定广告费用近似服从正态分布,求总体均值的95%的置信区间.6.从某一班中随机抽取了16名女生进行调查.她们平均每个星期花费13元吃零食,样本标准差为3元,求此班所有女生每个星期平均花费在吃零食上的钱数的95%的置信区间.(假设总体服从正态分布)7.一家轮胎工厂在检验轮胎质量时抽取了400条轮胎作试验,其检查结果这些轮胎的平均行驶里程是20000km,样本标准差为6000km.试求这家工厂的轮胎的平均行驶里程的置信区间,可靠度为95%.8.为了检验一种杂交作物的两种新处理方案,在同一地区随机地选择8块地段.在各试验地段,按两种方案处理作物,这8块地段的单位面积产量是(单位:kg) 一号方案产量: 86 87 56 93 84 93 75 79二号方案产量: 80 79 58 91 77 82 74 66222假设两种产量都服从正态分布,分别为N(μ, σ) ,N(μ, σ), σ未知,求μ-μ的置信度1212为95%的置信区间.9.为了比较两种型号步枪的枪口速度,随机地取甲型子弹10发,算得枪口子弹的平均值=500(m/s), 标准差s=1.10(m/s); 随机地取乙型子弹20发,得枪口速度平均值=496(m/s),标1准差s=1.20(m/s). 设两总体近似地服从正态分布,并且方差相等,求两总体均值之差的置信水2平为95%的置信区间.10.为了估计参加业务训练的效果.某公司抽了50名参加过训练的职工进行水平测验,结果是平均得分为4.5,样本方差为1.8;抽了60名未参加训练的职工进行水平测验,其平均得分为3.75,样本方差为2.1. 试求两个总体均值之差的95%的置信区间.(设两个总体均服从正态分布).11、风驰汽车制造厂的装配车间安装车门仍需人工操作,不同工人的装配时间不同,同一工人的装配时间也有差异,为测定安装车门所需时间,每隔一定时间抽选一个样本,共抽取了10个样本,其数据如下(单位:秒):41 43 36 26 20 21 46 39 37 21 1. 以置信度95%,估计安装一个车门所需平均时间的置信区间, 2.若要求估计平均装配时间的误差不超过2秒,置信度为95%,应抽选多大的样本,3.若费用为200元,观察每个样本的费用为4元,置信度为95%,则允许误差限是多少,4.假设上月测定的平均时间为35秒,则a=0.05时,检验其平均时间是否有显著缩短,12、万里橡胶制品厂生产的汽车轮胎平均寿命为40,000公里,标准差为7500公里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择并计算检验统计量:
z x 0 0.076 0.081 2.83 n 0.025 200
决策:
在 = 0.05的水平上拒绝H0
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
2
2
案例分析2
某批发商欲从厂家购进一批灯泡,合同规 定灯泡的使用寿命不能低于1000小时,灯泡的 使用寿命服从正态分布标准差为200。现从最近 生产的一批产品中随机抽取100只,测得样本平 均 寿 命 为 960 。 批 发 商 是 否 应 该 进 这 批 灯 泡 ? (=0.05)
决策:
在 = 0.05的水平上拒绝H0
结论:
有证据表明这批灯泡的使用 寿命显著低于1000小时。
4
4
案例分析3
某电子元件批量生产的质量标准为平均使 用寿命1200小时。某厂宣称他们采用一种新工 艺生产的元件质量大大超过规定标准。为了进 行验证,随机抽取了100件作为样本,测得平 均使用寿命1245小时,标准差300小时。能否 说该厂生产的电子元件质量显著地高于规定标 准? (=0.05)
120 36
决策:
拒绝H0
结论:
改良后的新品种产量有显著提高
8
8
练习题3
一种汽车配件的平均长度要求为12cm,高于或低于该 标准均被认为是不合格的。汽车生产企业在购进配件时, 通常是经过招标,然后对中标的配件提供商提供的样品进 行检验,以决定是否购进。现对一个配件提供商提供的10 个样本进行了检验。假定该供货商生产的配件长度服从正 态分布,在0.05的显著性水平下,检验该供货商提供的配 件是否符合要求? x 11.89, S 0.4932
s n 300 100
决策:
在 = 0.05的水平上不能拒绝H0
结论:
不能认为该厂生产的元件寿命 显著地高于1200小时.
6
6
课堂练习题1
某一小麦品种的平均产量为5200kg/hm2 。一家研究 机构对小麦品种进行了改良以期提高产量。为检验改良 后的新品种产量是否有显著提高,随机抽取了36个地块 进行试种,得到的样本平均产量为5275kg/hm2,标准差 为120/hm2 。试检验改良后的新品种产量是否有显著提
丙 套 1400 1600 0.20 0.28 280 320.0 448
合计 — — — — — 466 531.2 682
14
指数体系
Σp0q0 q变化 Σp0q1 p变化 Σp1q1
(466)
(531.2)
(682)
p1q1 p0q1 p1q1 p0q0 p0q0 p0q1 Σp1q1 Σp0q0 (p0q1 p0q0) ( p1q1 p0q1)
高? (=0.05)
分析:1 右侧检验;
2 大样本且方差2未知,使用z检验统计量。
z x 0 ~ N (0,1)
Sn
7
7
练习题2解答
H0 : 5200 H1 : > 5200 = 0.05
n = 36
临界值(c):
拒绝H0
0.05
0 1.645 z
检验统计量: z 5275 5200 3.75
12
12
指数体系练习题
表2.
某商店三种商品销售资料
商品 计量 销售量
价格(元)
名称 单位 2011年 2012年 2011年 2012年
甲 公斤 300 360 0.42 0.45 乙 件 200 200 0.30 0.36
丙 套 1400 1600 0.20 0.28
试从相对数和绝对数两方面分析该商店三 种商品销售额2011年比2012年的增长情况,并分 析其中由于销售量及价格变动造成的影响。
假设检验案例分析1
某机床厂加工一种零件,根据经验知道,该厂加工 零件的椭圆度近似服从正态分布,其总体均值为 0=0.081mm,总体标准差为=0.025 。今换一种新机床 进行加工,抽取n=200个零件进行检验,得到的椭圆 度为0.076mm。试问新机床加工零件的椭圆度的均值 与以前有无显著差异?(=0.05)
分析:1.右侧检验
2.大样本且方差2未知,使用z检验统计量:
z x ~ N (0,1)
sn
5
5
题解3
H0: 1200 H1: >1200 = 0.05 n = 100 临界值(1.645):
检验统计量:
z x 0 1245 1200 1.5
分析:1.左侧检验;
2.小样本、正态总体且方差2已知,使用z 检验。
z x 0 n
3
3
题解2
H0: ≥1000 H1: < 1000
= 0.05;n = 16 临界值(如下图):
检验统计量:
z x 0 960 1000 2 n 200 100
分析:1.双侧检验
2.小样本,正态总体,且方差2未知,使用t 检验统计量:
10个零件尺寸的长度 (cm)
12.2 10.8 12.0 11.8 11.9
t
x
0
~ t(9)
12.4 11.3 12.2 12.0 12.3
sn
9
9
练习题3解答
H0 : = 12 H1 : 12 = 0.05
分析:1.双侧检验;
2.大样本且方差2已知,使用z检验。
z x 0 ~ ቤተ መጻሕፍቲ ባይዱ (0,1) n
1
1
题解1
H0: = 0.081 H1: 0.081 = 0.05 n = 200 临界值(如下图):
拒绝 H0
拒绝 H0
.025
.025
-1.96 0 1.96 Z
df = 10 - 1 = 9 临界值(c):
拒绝 H0
拒绝 H0
0.025
0.025
-2.262 0 2.262 t
检验统计量: t 11.89 12 0.7035
0.4932 10
决策:
不拒绝H0
结论:
该供货商提供的零件符合要求
10
10
不同显著性水平的检验结果比较
11
11
练题解答
13
题解
某商店销售额指数及因素分析计算表
商品 计量 销 量
价 格(元) p0q0
名称 单位 2011q0 2012q1 2011p0 2012p1 (元)
p0q1
p1q1
甲 公斤 300 360 0.42 0.45 126 151.2 162
乙 件 200 200 0.30 0.36 60 60.0 72