纯电动汽车动力传动系参数匹配及仿真_孙景伦

纯电动汽车动力传动系参数匹配及仿真_孙景伦
纯电动汽车动力传动系参数匹配及仿真_孙景伦

2016年第29卷第1期

Electronic Sci.&Tech./Jan.15,2016

协议·算法及仿真

收稿日期:2015-05-12

基金项目:上海市科委科研基金资助项目(11140502000)作者简介:孙景伦(1989—),男,硕士研究生。研究方向:研究方向:汽车动力传动系匹配。

doi :10.16180/https://www.360docs.net/doc/cb246059.html,ki.issn1007-7820.2016.01.014

纯电动汽车动力传动系参数匹配及仿真

孙景伦1,2

,周

萍1,2,孙跃东

1,2(1.上海理工大学机械工程学院,上海200093;

2.上海理工大学机械工业汽车底盘机械零部件强度与可靠性评价重点实验室,上海200093)

为实现纯电动汽车传动系传动比与驱动电机的合理匹配,提出了一种基于MOGA -Ⅱ遗传算法的多目标

优化方法。根据配备两挡变速器的某纯电动汽车的整车参数和设计要求,对其动力传动系统主要部件驱动电机及动力电池进行了匹配和选型。基于GT -drive 软件搭建整车仿真模型进行仿真分析并验证了匹配的合理性。利用多目标优化软件modeFRONTIER进行了传动系传动比优化。优化结果表明,纯电动汽车的一次充电续驶里程及原地起步加速时间分别提高了5.5%和2.9%。

关键词

纯电动汽车;动力传动系;参数匹配;仿真优化

中图分类号

U463.2

文献标识码

A

文章编号1007-7820(2016)01-051-05

Parameters Matching and Simulation for Power Train of Pure Electric Vehicle

SUN Jinglun 1,2,ZHOU Ping 1,2,SUN Yuedong 1,

2

(1.School of Mechanical Engineering ,University of Shanghai for Science and Technology ,Shanghai 200093,China ;2.Key Laboratory of Mechanical Industry for Automobile Chassis Mechanical Parts Strength and Reliability Evaluation ,

University of Shanghai for Science and Technology ,Shanghai 200093,China )

Abstract

A dual-objective optimization method based on MOGA-Ⅱgenetic algorithm is proposed for the ratio

of power train to be matched reasonably to the drive motor of pure electric vehicle.Drive motor and power battery of power train are matched for a two-speed pure electric vehicle based on the vehicle parameters and design require-ments.The GT-drive vehicle simulation models are built to analyze and validate the rationality of the matching.The transmission ratios are optimized by multi-objective optimization software modeFRONTIER.The results show that the driving range of a single charge and initial acceleration time is increased by 5.5%and 2.9%respectively by optimi-zation.

Keywords

pure electric vehicle ;power train ;parameters matching ;simulation optimization

纯电动汽车(Pure Electric Vehicle ,PEV )正逐步成为未来汽车的主要发展方向[1]

。随着纯电动汽车的驱动电机、

动力电池等关键技术的进步,其驱动系统的合理匹配及传动系统的传动比优化,依然是提高整车动

力性及经济性的重要手段[2]

。本文以处于开发初期的

某纯电动汽车为例,

对动力传动系的主要部件进行参数匹配,建立整车仿真模型进行仿真分析验证,并对传

动系统的传动比进行优化,

以提高整车性能。1整车参数及性能要求

目前,纯电动汽车正沿着高速纯电动汽车及低速纯电动汽车两条主线发展[3]

,本文是基于某高速纯电

动汽车进行研究与开发的。其整车主要参数及性能指

标要求如表1所示。

表1

整车主要参数及性能指标要求

主要参数及性能指标数值整车整备质量/kg 1400满载质量/kg 1800迎风面积A /m 2 2.16风阻系数c D

0.31质量转换系数δ 1.04车轮动态半径r /m 0.30滚动阻力系数f 0.017主减速器传动比i 0

3.1701挡传动比i 1 2.1042挡传动比i 2

0.996

协议·算法及仿真孙景伦,等:纯电动汽车动力传动系参数匹配及仿真

续表1

最高车速u max/km·h-1≥150

0 100km·h-1加速时间t/s≤20

30km·h-1恒速下最大爬坡度i max/%≥25

UDDC循环下续驶里程S/km≥200

2动力传动系参数匹配

2.1驱动电机的参数匹配

与传统内燃机汽车不同,PEV由蓄电池供电,电机

驱动车轮行驶[4]。驱动电机的特性参数主要有额定功

率、峰值功率、额定转速、最大转矩等,驱动电机的类型

对PEV的性能也有一定程度的影响[5]。

优化设计中一般以保证PEV预期的最高稳定车

速来初步选择电机的驱动功率,即驱动电机的额定功

率应大于等于PEV在水平良好路面上以最高稳定车

速匀速行驶的阻力功率[6],即

p e ≥

u

max

ηT

mgf

3600

+

c

D

A

76140

u2

()max(1)

式中,p e为额定功率;ηT为总传动效率,这里取92%。

为满足PEV在某一恒定速度下的爬坡性能要求,驱动电机的峰值功率应满足[7]

p max1≥

1

3600η

T

mgf cosα

max

+mg sinα

max

+

c

D

Au2

i

()

21.15

u

i

(2)

式中,αmax为u i=30km·h-1恒定速度下的最大爬坡角度,这里αmax≈14.04?。

另外,为满足PEV加速性能要求,峰值功率应满足[8]

p max2≥

1

3600η

T

δm

d u

j

d t

+mgf+

c

D

Au2

j

()

21.15

u

j

(3)

式中,u j为车辆加速的末速度。

所以根据式(1) 式(3),驱动电机的峰值功率p

max

应满足

p

max

≥max(p e,p max1,p max2)(4)还需注意的是,峰值功率和额定功率之间存在如下关系[9]

p max =p

e

λ(5)

式中,λ为过载系数,一般取1 3。

驱动电机的最高转速由最高车速决定[10],即

n max =

i

i

i

u

max

0.377r

(6)

驱动电机的额定转速由汽车巡航速度u n决定,即

n e =

i

i

i

u

n

0.377r

(7)

驱动电机的最大转矩由汽车实现最低稳定车速来

达到最大爬坡度所克服的阻力转矩决定,即

T

max

=

r

i

i

i

ηT

mgf cosα

max

+mg sinα

max

+

c

D

Au2

i

()

21.15

(8)

2.2动力电池的参数匹配

动力电池的参数匹配主要考虑电池组的容量、电

压、能量密度及电池的类型等。确定电池组最小数目

的方法是使电池组最低工作电压大于等于电机最小工

作电压,电池组最大数目由电池组最大输出功率大于

等于驱动电机的最大功率的约束条件来确定。而电池

组的容量是由PEV的续驶里程来限制的[11],如式(9)

所示

E=

1000S

eUη

(9)

式中,E为电池组的容量;e为单位能耗行驶的里程;S

为续驶里程;η为放电深度(DOD),这里DOD

取90%。

综上所述,根据理论计算及权衡,为目标车辆所匹

配的驱动电机及动力电池的指标参数如表2所示。

表2电机及电池组主要参数

部件参数数值

永磁同步电机

额定功率/峰值功率/kW50/95

额定转速/最大转速/rad·min-13000/8000

额定转矩/最大转矩/N·m160/300

锂离子电池

标称容量/Ah120

放电深度/%90

标称电压/V320

能量密度/W·h·kg-1140

3整车性能仿真及验证

根据计算任务的不同以及性能优化的指标要求,

利用整车性能仿真软件GT-drive分别建立了静力

学、动力学及运动学模型,其整车静力学仿真模型如

图1所示。利用其进行整车动力性及经济性计算分

析,得到0 100km·h-1的原地起步加速时间及1挡

爬坡度等仿真结果。

对原车进行试验,并将仿真分析中得到的0

100km·h-1的原地起步加速时间及1挡爬坡度曲线

与实车试验曲线进行了对比,分别如图2及图3所示。

目标车辆0 100km·h-1的加速时间为19.1447s,

30km·h-1恒速下的爬坡度为32.43%,UDDC循环下

一次充电续驶里程为222.19km,均满足设计目标,进

一步说明了为该车动力传动系选型的驱动电机及动力

电池是合适的。

孙景伦,等:纯电动汽车动力传动系参数匹配及仿真

协议·算法及仿真

图1PEV

整车静力学仿真模型

图2

仿真及试验的加速时间曲线

图3仿真及试验的爬坡度曲线

表3

仿真与试验结果对比

性能指标试验结果仿真结果偏差/%最高车速/km ·h -1165.3166.9240.980 100km ·h -1加速时间/s 19.419.1447-1.330km ·h -1恒速下最大爬坡度/%

31.8532.43 1.8单个UDDC 循环能耗/kJ

5505.87

5395.21

-2.0

将仿真结果与试验结果对比分析,其分析结果如

表3所示,

不难发现,仿真结果与实车试验结果各个性能指标偏差的绝对值都在2%以内,验证了整车仿真模型具有较高的精确度。

4目标车辆的性能优化

在目标车辆的电机及电池组合理选型之后,传动系的总传动比是影响整车动力性及经济性的主要因

素。考虑到电机具有低速恒转矩、

高速恒功率及良好的响应速度等特性,在PEV 中变速器的挡位数一般不超过3挡,本文为该车型选配了能够减小电机最大转

矩、

优化电机的工作转速区间、提高传动系效率的两挡自动变速器[12]

4.1设计变量及目标函数的确定

传动系总传动比包括主减速器传动比i 0和各挡传动比i i ,因此选取优化设计变量为

X =[x 1,x 2,x 3]T =[i 0,i 1,i 2]

T

(10)

选取0 100km ·h -1

原地起步加速时间作为动

力性目标函数以及基于UDDC 循环工况的能量消耗量作为经济性目标函数,所以目标函数为

Min F (X )={Time (X ),Energy (X )}(11)

4.2优化约束条件的确定

本PEV 中优化传动系参数的约束条件主要有动力性约束及传动比约束。4.2.1动力性约束

(1)最高车速限制。最高车速u a 须大于所要求的最高车速下限u max ,即

协议·算法及仿真孙景伦,等:纯电动汽车动力传动系参数匹配及仿真

u a >u

max

(12)

(2)最大爬坡度限制。最大爬坡度i

a

要大于所要求的最大爬坡度的下限i max,即

i a >i

max

(13)

4.2.2传动比约束

(1)最大传动比下限。一般通过车辆的最大爬坡度和电机的最大转矩确定最大传动比的下限i max0=

i 0i

1

i

max0

mgf cosα

max

+mg sinα

max

+

c

D

Au2

i

()

21.15

r

T

max

ηT

(14)(2)最大传动比上限。根据最大驱动力必须小于

等于驱动轮与路面之间的附着力,可确定最大传动比的上限i max1为[6]

i max1≤

φF z r

ηT

mgrb

T

max

T

(15)

(3)最小传动比下限。最小传动比的下限i

min0

=

i 0i

2

由车辆按最高速度行驶的阻力限定

i

max0

r

T

max

ηT

mgf+

c

D

Au2

max

()

21.15

(16)(4)最小传动比上限。根据车辆最高稳定车速和

电机最高转速限定最小传动比i min1为

i min1≤

0.377n

max

r

u

max

(17)

(5)主减速器传动比的上限。为避免安装过程中主减速器与其他零件发生干涉,一般限制主减速器传动比i0上限

i

≤5.8(18)(6)2挡传动比下限。根据超速挡传动比的范围一般为0.7 0.8,限制2挡传动比i2下限

i

2

≥0.7(19)(7)相邻传动比约束。为避免换挡困难,设置相邻传动比约束为

1.2≤i

1

i

2

≤1.8(20)

4.3优化模型及策略

传动系参数的优化属于非线性约束优化问题,传统的多目标优化多是采用加权的方法将多个目标集合成一个单目标来优化,但是在优化过程中确定各个目标的加权值较困难。多目标优化平台modeFRONTIER提供了多种优化算法,且提供了与GT-suite等各种CAD/ CAE软件的无缝接口。本文是将建立的整车仿真模型嵌套入modeFRONTIER环境中,以0 100km·h-1原地起步加速时间及单个UDDC循环中动力电池的能耗为优化目标,并采用DOE实验设计和改进的遗传算法(MOGA-Ⅱ)相结合的方法进行传动比优化。建立的模型如图4所示

图4PEV传动比优化模型

4.4优化结果分析

在联合仿真环境中,通过DOE产生10个初始种群,并采用MOGA-Ⅱ优化算法进化20代,产生了200个优化方案,在这些优化方案中有128个可行解,其种群分布如图5所示

图5优化生成的种群分布

在优化计算后生成的一组Pareto最优解中,根据实际情况和目标需要选取一组较为理想的传动比,优化前后的结果如表4所示。

经对比发现,通过优化传动比,0 100km·h-1原地起步加速时间降低了2.9%,单个UDDC循环中整车能耗降低5.5%,UDDC循环下一次充电续驶里程提高至234.41km。说明目标车辆的动力性及经济性均有一定程度的提高。

表4优化前后结果对比

参数优化前优化后变化率/%主减速器传动比 3.170 3.574-1挡传动比 2.104 2.995-

2挡传动比0.966 1.666-

0 100km·h-1加速时间/s19.14518.582 2.9

1个UDDC循环能耗/kJ5395.25100.9 5.5

孙景伦,等:纯电动汽车动力传动系参数匹配及仿真协议·算法及仿真

5结束语

(1)在数学计算模型的基础上,根据整车参数和性能指标的要求,为目标车辆匹配并选型了比较理想的驱动电机和动力电池。

(2)利用GT-drive搭建了静力学、运动学及动力学整车仿真模型,并将仿真计算结果与实车试验结果进行对比分析,验证了对动力传动主要部件的选取是合适的,同时也证明了整车仿真模型的精度。

(3)通过modeFRONTIER和GT-suite联合仿真并采用多目标优化设计,使PEV的动力性及经济性均得到一定程度的改善,验证了基于仿真分析的优化设计方法效率高且能节约时间和金钱成本。

参考文献

[1]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2004.

[2]Ren Qinglian,Crolla David,Morris Adrian.Effect of geared transmissions on electric vehicle drive trains[C].Tianjin:

ASME International Design Engineering Technical Confer-

ence and Computers and Information in Engineering Confer-

ence,2009.

[3]殷承良,张建龙.新能源汽车整车设计[M].上海:上海科学技术出版社,2013.

[4]周胜,周云山.纯电动汽车动力匹配及计算仿真[J].计算机仿真,2013,30(2):135-139.

[5]周宝华,秦大同,胡明辉,等.两挡电动汽车动力传动系的参数设计[J].重庆大学学报,2011,34(1):1-6.

[6]余志生.汽车理论[M].北京:机械工业出版社,2009.[7]周兵,江清华,杨易.两挡变速器纯电动汽车动力性经济性双目标的传动比优化[J].汽车工程,2011,33(9):

792-797.

[8]李伟,阴晓峰,武小花.基于电机效率优化的纯电动汽车换挡规律[J].机械传动,2014,38(1):150-153.

[9]王小军.电动汽车传动系统参数匹配及动态特性研究[D].长沙:湖南大学,2013.

[10]钟磊,高松,张令勇.纯电动轿车动力传动装置参数匹配与动力性仿真[J].山东理工大学学报,2010,24(1):

78-80.

[11]王小军.电动汽车传动系统参数匹配及动态特性研究[D].长沙:湖南大学,2013.

[12]周晶晶.纯电动汽车两挡自动变速器试验与仿真[D].长沙:湖南大学,

檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪

2014.

(上接第50页)

处理实时性的要求。同时,可增强算法的抗噪声能力和对图像进行变化的鲁棒性,医学图像深度信息恢复结果进一步验证了该算法的有效性。对医学图像进行三维重建,实现从二维图像到三维空间的重构,使结果更接近人眼所能反映出的图像,将是下一步研究工作的目标。

参考文献

[1]沈洪宇,柴毅.计算机视觉中双目视觉综述[J].科技资讯,2007(34):150-151.

[2]Zhang Hui.A fast binocular vision stereo matching algorithm [C].Wuhan,China:Proceeding of2012International Con-

ference on Modelling,Identification and Control,2012.

[3]项荣.基于双目立体视觉的番茄定位[J].农业工程学报,2012,28(5):161-167.

[4]Li Jian.Research on localization of apples based on binocular stereo vision marked by cancroids matching[C].Beijing,

China:Third International Conference on Digital Manufactur-

ing and Automation,2012.

[5]Ren Jianqiang.Algorithm for3D reconstruction of agriculture field pests based on binocular stereo vision[C].Shiji-

azhuang,China:World Automation Congress(WAC),2010.[6]万智萍,叶仕通.基于OpenCV的双目立体视觉监控跟踪系统[J].科学技术与工程,2013,13(5):1671-1815.[7]张顺岚,莫建文.基于双目立体视觉的三维人脸识别算法[J].电视技术,2014,38(9):214-217.

[8]原思聪.双目立体视觉中的图片匹配方法研究[J].计算机工程与应用,2008,44(8):75-77.

[9]赵本东,陶华敏.双目立体视觉中特征提取算法研究[J].电子技术与软件工程,2014(6):122-123.

[10]张栋栋,李汉舟.双目视觉及其在全自动换电机器人中的应用[J].电子科技,2014,27(7):168-176.

[11]肖健.SIFT特征匹配算法研究与改进[D].重庆:重庆大学,2012.

[12]邵暖,刘乐.基于特征匹配算法的双目视觉测距[J].燕山大学学报,2012(1):57-61.

(完整版)纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

所以满载时最大爬坡度为tan( m ax α)*100%=14.4%>14%,满足规定要求。 4 电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1 以最高设计车速确定电机额定功率 当汽车以最高车速m ax V 匀速行驶时,电机所需提供的功率(kw )计算式为: max 2 max ).15.21....(36001 V V A C f g m P d n +=η (2-1) 式中: η—整车动力传动系统效率η(包括主减速器和驱动电机及控制器的工作效率),取0.86; m —汽车满载质量,取18000kg ; g —重力加速度,取9.8m/s 2; f —滚动阻力系数,取0.016; d C —空气阻力系数,取0.6; A —电动汽车的迎风面积,取2.550×3.200=8.16m 2(原车宽*车身高); m ax V —最高车速,取70km/h 。 把以上相应的数据代入式(2-1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw ),即 kw 1005.8970)15.217016.86.0016.08.918000(86.036001).15 .21....(360012 max 2 max <kw V V A C f g m P D n =???+???=+?=η (3-2) 4.2满足以10km/h 的车速驶过14%坡度所需电机的峰值功率 将14%坡度转化为角度:018)14.0(tan ==-α。 车辆在14%坡度上以10km/h 的车速行驶时所需的电机峰值功率计算式为:

电动汽车动力匹配计算规范(纯电动)

XH-JS-04-013 电动汽车动力匹配计算设计规范 编制:年月日 审核:年月日 批准:年月日 XXXX有限公司发布

目录 一、概述 (1) 二、输入参数 (1) 2.1 基本参数列表 (1) 2.2 参数取值说明 (1) 三、XXXX动力性能匹配计算基本方法 (2) 3.1 驱动力、行驶阻力及其平衡 (3) 3.2 动力因数 (6) 3.3 爬坡度曲线 (6) 3.4 加速度曲线及加速时间 (7) 3.5 驱动电机功率的确定 (7) 3.6 主驱动电机选型 (8) 3.7 主减速器比的选择 (8) 参考文献 (9)

一、概述 汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是各种性能中最基本、最重要的性能之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性匹配计算,以判断设计方案是否满足设计目标和使用要求。 二、输入参数 2.1 基本参数列表 进行动力匹配计算需首先按确定整车和发动机基本参数,详细精确的基本参数是保证计算结果精度的基础。下表是XXXX动力匹配计算必须的基本参数,其中发动机参数将在后文专题描述。 表1动力匹配计算输入参数表。 2.2 参数取值说明 1)迎风面积 迎风面积定义为车辆行驶方向的投影面积,可以通过三维数模的测量得到,三维数据不健全则通过设计总布置图测得。XXXX车型迎风面积为A

一般取值5-8 m 2 。 2)动力传动系统机械效率 根据XXXX 车型动力传动系统的具体结构,传动系统的机械效率T η主要由主驱动电机传动效率、传动轴万向节传动效率、主减速器传动效率等部分串联组成。 采用有级机械变速器传动系的车型传动系统效率一般在82%到85%之间,计算中可根据实际齿轮副数量和万向节夹角与数量对总传动效率进行修正,通常取传动系统效率T η值为78-82%。 3)滚动阻力系数f 滚动阻力系数采用推荐的客车轮胎在良好路面上的滚动阻力系数经验公式进行匹配计算: f =??? ???????? ??+??? ??+4 410100100a a u f u f f c 其中:0f —0.0072~0.0120以上; 1f —0.00025~0.00280; 4f —0.00065~0.002以上; a u —汽车行驶速度,单位为km/h ; c —对于良好沥青路面,c =1.2。 三、 XXXX 动力性能匹配计算基本方法 汽车动力性能匹配计算的主要依据是汽车的驱动力和行驶阻力之间的平衡关系,汽车的驱动力-行驶阻力平衡方程为 j i w f t F F F F F +++= (1)

纯电动汽车动力性计算公式

纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 整车外廓(mm ) 11995×2550×3200(长×宽×高) 电机额定功率 100kw 满载重量 约18000kg 电机峰值功率 250kw 主减速器速比 6.295:1 电机额定电压 540V 最高车(km/h ) 60 电机最高转速 2400rpm 最大爬坡度 14% 电机最大转矩 2400Nm 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

kw 100w 5.8810)15.211016.86.08cos 016.08.9180008sin 8.918000(86.036001).15 .21..cos ...sin ..(36001 20 02 max <k V V A C f g m g m P slope slope D =???+???+???=++=ααη 从以上动力性校核分析可知,所选100kw/540V 交流感应电机的功率符合所设计的动力性参数要求。 5 动力蓄电池组的校核 5.1按功率需求来校核电池的个数 电池数量的选择需满足汽车行驶的功率要求,并且还需保证汽车在电池放电达到一定深度的情况下还能为汽车提供加速或爬坡的功率要求。 磷酸锂铁蓄电池的电压特性可表示为: bat bat bat bat I R U E .0+= (4-1) 式中: bat E —电池的电动势(V ); bat U —电池的工作电压(V ); 0bat R —电池的等效内阻(Ω); bat I —电池的工作电流(A )。 通常,bat E 、0bat R 均是电池工作电流bat I 以及电流电量状态值SOC (State Of Charge )的函数,进行电池计算时,要考虑电池工作最差的工作状态。假设SOC 为其设定的最小允许工作状态值(SOC low ),对应的电池电动势bat E 和电池等效内阻0bat R 来计算电池放电的最大功率,即可得到如下计算表达式: 铅酸电池放电功率: bat bat bat bat bat bat bd I I R E I U P )..(.0-== (4-2) 上式最大值,即铅酸蓄电池在SOC 设定为最小允许工作状态值时所能输出的最大功率为: 2 max 4bat bat bd R E P = (4-3)

电动汽车动力匹配设计规范

电动汽车动力匹配设计规范 XXXXXX Q/XXX XXXXXXXXXXXXXX XXXXXX

电动汽车动力匹配设计规范 XXXX-XX -XX 发布 XXXX-XX -XX 实施 XXXXXXXX 有限公司 发 布 目 次 前言 ............................................................................................... Ⅱ 1 范围 ........................................................................................... 1 2 规范性引用文件 ........................................................................... 1 3 术语和定义 .................................................................................. 1 4 技术要求 ..................................................................................... 3 4.1 评价指标 .................................................................................. 3 4.2 计算方法 .................................................................................. 4 4.3 基础数据收集和输入 ................................................................ 10 4.4 计算任务和匹配优化 ................................................................ 10 4.5 计算结果输入及数据分析 . (13) 电动汽车动力匹配设计规范 X X X X X X X X X X 有限公司企业标准

电动汽车动力匹配计算规范(纯电动)

电动汽车动力匹配计算设计规范 编制:年月日 审核:年月日 批准:年月日 XXXX有限公司发布

目录 一、概述 (1) 二、输入参数 (1) 2.1 基本参数列表 (1) 2.2 参数取值说明 (1) 三、XXXX动力性能匹配计算基本方法 (2) 3.1 驱动力、行驶阻力及其平衡 (3) 3.2 动力因数 (6) 3.3 爬坡度曲线 (6) 3.4 加速度曲线及加速时间 (7) 3.5 驱动电机功率的确定 (7) 3.6 主驱动电机选型 (8) 3.7 主减速器比的选择 (8) 参考文献 (9)

一、概述 汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是各种性能中最基本、最重要的性能之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性匹配计算,以判断设计方案是否满足设计目标和使用要求。 二、输入参数 2.1 基本参数列表 进行动力匹配计算需首先按确定整车和发动机基本参数,详细精确的基本参数是保证计算结果精度的基础。下表是XXXX动力匹配计算必须的基本参数,其中发动机参数将在后文专题描述。 表1动力匹配计算输入参数表。 2.2 参数取值说明 1)迎风面积 迎风面积定义为车辆行驶方向的投影面积,可以通过三维数模的测量得到,三维数据不健全则通过设计总布置图测得。XXXX车型迎风面积为A

一般取值5-8 m 2 。 2)动力传动系统机械效率 根据XXXX 车型动力传动系统的具体结构,传动系统的机械效率T η主要由主驱动电机传动效率、传动轴万向节传动效率、主减速器传动效率等部分串联组成。 采用有级机械变速器传动系的车型传动系统效率一般在82%到85%之间,计算中可根据实际齿轮副数量和万向节夹角与数量对总传动效率进行修正,通常取传动系统效率T η值为78-82%。 3)滚动阻力系数f 滚动阻力系数采用推荐的客车轮胎在良好路面上的滚动阻力系数经验公式进行匹配计算: f =??? ???????? ??+??? ??+4 410100100a a u f u f f c 其中:0f —0.0072~0.0120以上; 1f —0.00025~0.00280; 4f —0.00065~0.002以上; a u —汽车行驶速度,单位为km/h ; c —对于良好沥青路面,c =1.2。 三、 XXXX 动力性能匹配计算基本方法 汽车动力性能匹配计算的主要依据是汽车的驱动力和行驶阻力之间的平衡关系,汽车的驱动力-行驶阻力平衡方程为 F F F F F +++=

纯电动汽车动力性计算公式

纯电动汽车动力性计算公式 XXEV 动力性计算 2最咼行驶车速的计算 最高车速的计算式如下: n r V max 0.377 - i g i o 0.377 2400 °.487 1 6.295

70km/h 43.5mph (2-1) 式中: n—电机转速(rpm); r—车轮滚动半径(m ); i g —变速器速比;取五档,等于1;i。一差速器速比。所以,能达到的理论最高车速为70km/h。 3最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 max arcsin(%山」0. d f) arcsin(2400 1 6.2950.9 0.015)8.20 m.g.r 18000 9.8 0.487

所以满载时最大爬坡度为tan(a-)*100%=14. 4%>14%,满足规定要求. 4电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1以最高设计车速确定电机额定功率 当汽车以最高车速匀速行驶时,电机所需提供的功率(kw)计算式为: 36咖盹八唱游心(2-1) 式中: n—整车动力传动系统效率〃(包括主减速器和驱动电机及控制器的工作效率),取0.86; m—汽车满载质量,取18000kg; g—重力加速度,取9.8m/s2; f—滚动阻力系数,取0.016; Cd—空气阻力系数,取0?6; A—电动汽车的迎风面积,取2?550x3?200=8?16m2(原车宽*车身高);最高车速,取70km/ho 把以上相应的数据代入式(2?1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw),即 二总制诃和E6+吆需型)x7。 =39.5kw<\ OOkw (3-2) 4.2满足以10km/h的车速驶过14%坡度所需电机的峰值功率 将14%坡度转化为角度:a = tan-,(0.14) = 8°o 车辆在14%坡度上以10km/h的车速行驶时所需的电机峰值功率计算式为:

电动汽车动力性能分析与计算

电动汽车与传统内燃机汽车之间的主要差别是采用了不同的动力源,它由蓄电池提供电能,经过驱动系统和电动机,驱动电动汽车行驶。电动汽车的能量供给和消耗,与蓄电池的性能密切相关,直接影响电动汽车的动力性和续驶里程,同时影响电动汽车行驶的成本效益。 电动汽车在行驶中,由蓄电池输出电能给电动机,用于克服电动汽车本身的机械装置的内阻力,以及由行驶条件决定的外阻力。电动汽车在运行过程中,行驶阻力不断变化,其主电路中传递的功率也在不断变化。对电动汽车行驶时的受力状况以及主电路中电流的变化进行分析,是研究电动汽车行驶性能和经济性能的基础。 1、电动汽车的动力性分析 1.1 电动汽车的驱动力 电动汽车的电动机输出轴输出转矩M,经过减速齿轮传动,传到驱动轴上的转矩Mt,使驱动轮与地面之间产生相互作用,车轮与地面作用一圆周力F0,同时,地面对驱动轮产生反作用力Ft.Ft 与F0大小相等方向相反,Ft方向与驱动轮前进方向一致,是推动汽车前进的外力,将其定义为电动汽车的驱动力。有: 电动汽车机械传动装置是指与电动机输出轴有运动学联系的减速齿轮传动箱或变速器、传动轴及主减速器等机械装置。机械传动链中的功率损失包括:齿轮啮合点处的摩擦损失、轴承中的摩擦

损失、旋转零件与密封装置之间的摩擦损失以及搅动润滑油的损失等。 1.2 电动汽车行驶方程式与功率平衡 电动汽车在上坡加速行驶时,作用于电动汽车的阻力与驱动力始终保持平衡,建立如下的汽车行驶方程式: 以电动汽车行驶速度va乘以(2)式两端,考虑机械损失,再经过单位换算之后可得: 或 由(4)、(5)两式可以看出,电动汽车在行驶时,电动机传递到驱动轮的输出功率与体现在驱动轮上的阻力功率始终保持平衡。将(4)变换可得: 式中PM为电动机的输出功率。 用曲线图表示上述功率关系,将电动机的输出功率、汽车经常遇到的阻力功率与对应车速的关系归置在x-y坐标图上得到电动汽车功率平衡图如图1所示。

电动汽车动力匹配设计规范.(DOC)

XXXXXX Q/XXX X X X X X X X X X X有限公司企业标准 XXXXXXXXXXXXXXXXXXXX 电动汽车动力匹配设计规范 XXXX-XX -XX 发布 XXXX-XX -XX 实施 XXXXXXXX有限公司发布

Q/XXX XXXXXXX-201X 目次 前言 (Ⅱ) 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 技术要求 (3) 4.1 评价指标 (3) 4.2 计算方法 (4) 4.3 基础数据收集和输入 (10) 4.4 计算任务和匹配优化 (10) 4.5 计算结果输入及数据分析 (13)

Q/XXX XXXXXXX-201X 前言 我公司缺少关于动力匹配方面的设计规范,给整车动力性、经济性方面的计算造成障碍。自本规范下发之日起,本文件将指导后续工作中动力性、经济性的计算。 本标准按照GB/T 1.1—2009给出的规则起草。 本标准由XXXX提出。 本标准由XXXX负责起草。 本标准主要起草人:XXX 本标准于XXXX年XX月首次发布。

Q/XXX XXXXXXX-201X 电动汽车动力匹配设计规范 1范围 本规范规定了电动汽车动力匹配设计规范的术语和定义、技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本规范适用于XXXX整车动力性能匹配与计算。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 12534-1990 汽车道路试验方法通则 GB/T 12544-2012 汽车最高车速试验方法 GB/T 12543-2009 汽车加速性能试验方法 GB/T 18386-2005 电动汽车能量消耗率和续驶里程试验方法 GB/T 19596-2004 电动汽车术语 3术语和定义 GB/T 19596中界定的术语和定义适用于本标准。下列术语和定义适用于本文件。 3.1 续驶里程 电动汽车在动力蓄电池完全充电状态下,以已定的行驶工况,能连续行程的最大距离,单位为km。 3.2 能量消耗率 电动汽车经过规定的试验循环后动力蓄电池重新冲带你至试验前的容量,从电网上得到的电能除以行驶里程所得的值,单位为Wh/km。 3.3 最高车速 电动汽车能够往返各持续行程3 km距离的最高平均车速。 3.3 30分钟最高车速 电动汽车能够持续行驶30 min以上的最高平均车速。 3.4 加速能力V1至V2 电动汽车从速度V1加速到速度V2所需的最短时间。 3.5 爬坡车速 电动汽车在给定坡度的坡道上能够持续行驶1 km以上的最高平均车速。 3.6

汽车动力传动系统参数优化匹配方法

1 机械传动汽车动力传动系统参数的优化通常包括发动机性能指标的优选,机械变速器传动比的优化和驱动桥速比的优化,以下分别阐述。 7.1汽车发动机性能指标的优选方法 在汽车设计中,发动机的初选通常有两种方法: 一种是从保持预期的最高车速初步选择发动机应有功率来选择的,发动机功率应大体上等于且不小于以最高车速行驶时行驶阻力功率之和;一种是根据现有的汽车统计数据初步估计汽车比功率来确定发动机应有的功率。 在初步选定发动机功率之后,还需要进一步分析计算汽车动力性和燃料经济性,最终确定发动机性能指标(如发动机最大转矩,最大转矩点转速等)。 通常在给定汽车底盘参数、整车性能要求(如最大爬坡度max i ,最高车速m ax V ,正常行驶车速下百公里油耗Q ,原地起步加速时间t 等),以及车辆经常运行工况条件下,就可以选择发动机的最大转矩T emax ,及其转矩n M ,最大功率max e P 及其转速P n ,发动机最低油耗率min e g 和发动机排量h V 。 在优选发动机时常常遇到两种情况:一种情况是有几个类型的发动机可供选择,在整车底盘参数和车辆经常行驶工况条件确定时,这属于车辆动力传动系合理匹配问题,可用汽车动力传动系统最优匹配评价指标来处理。 第二种情况是根据整车性能要求和汽车经常行驶工况条件来对发动机性能提出要求,作为发动机选型或设计的依据,而这时发动机性能是未知的。 对于计划研制或未知性能特性指标的发动机性能可看作为发动机设计参数和运行参数的函数,此时,外特性和单位小时燃油消耗率可利用表示发动机的简化模型。 优选汽车发动机参数的方法: (1) 目标函数F (x ) 目标函数为汽车行驶的能量效率最高。 (2) 设计变量X ],,,,[max h M p e em V n n P T X

某纯电动汽车动力系统匹配计算报告

电动车动力参数匹配计算 表2动力性参数 Tab.2Dynamics Parameters 参数 指标续驶里程/km 100-180最高车速/(1km h -?) 50-700-0.7max v 1km h -?加速时间/s ≤15201km h -?最大爬坡度20%-25% 1整车额定功率计算 电动汽车在行驶过程中,整车额定功率需求一般由在平直路面上最高车速行驶所需功率决定,具体计算公式为: t max max D rated v .v A C mgf P ηρ??? ? ? ?? ?? ???+≥2 632136001(1) 式中:rated P 为整车额定功率,W k ;m 为电动汽车满载质量,kg ;g 为质量加速度, 9.82s /m ;f 为滚动阻力系数;ρ为空气密度,为1.2263m /kg ;D C 为空气阻力系数;max v 为 最高车速,h /km ;t η为传动系统效率,取0.95。 带入相关参数后计算得:rated P ≥(4.1+2.5)W k 。 2整车最大功率计算 整车最大功率需求一般出现在加速或上坡时,故依此选定。2.1加速过程最大功率 在加速过程中最大功率为: t a D max a v .a v A C mgf ma P ηρδ??? ? ? ???? ???++≥2 632136001(2) 式中:max a P 为加速时整车功率需求,W k ;δ为汽车旋转质量换算系数;a 为加速度,2s /m ;a v 为加速目标车速,h /km 。 带入相关参数后计算得: 表1整车参数 Tab.1Vehicle Parameters 参数指标驱动形式集中电机驱动 整备质量/kg xx 满载质量/kg xx 轴距/m xx 质心到前轴距离/m -质心高度/m -主传动比xx 车轮滚动半径/m xx 迎风面积/2m xx 风阻系数xx 滚动阻力系数xx 汽车旋转质量换算系数 xx 附件功率/W k xx

电动汽车动力匹配计算规范(纯电动)

XH-JS-04-013 XXXX有限公 司 技术规范 电动汽车动力匹配计算设计规范 编制: 审核: 批准: 2015-10-15 发布 XXXX有限公司发布编号:2015-001 2015-11-1 实施

一、概述. 二、输入参数. 2.1基本参数列表 2.2参数取值说明 三、XXX 动力性能匹配计算基本方法 3.1驱动力、行驶阻力及其平衡 参考文献 3.2 动力因数 6.. 3.3 爬坡度曲线 6.. 3.4 加速度曲线及加速时间 3.5 驱动电机功率的确定 3.6 主驱动电机选型 8. 3.7 主减速器比的选择 8. 3.

汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是各种性能中最基本、最重要的性能之一。动力性的好坏, 直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性匹配计算,以判断设计方案是否满足设计目标和使用要求。 输入参数 2.1基本参数列表 进行动力匹配计算需首先按确定整车和发动机基本参数,详细精确的 基本参数是保证计算结果精度的基础。下表是XXXX动力匹配计算必须 的基本参数,其中发动机参数将在后文专题描述。 表1动力匹配计算输入参数表。 2.2参数取值说明1)迎风面积 迎风面积定义为车辆行驶方向的投影面积,可以通过三维数模的测量得到,三维数据不健全则通过设计总布置图测得。XXXX车型迎风面积为A

般取值5-8 m 2。 2)动力传动系统机械效率 根据XXXX 车型动力传动系统的具体结构,传动系统的机械效率 要由主驱动电机传动效率、传动轴万向节传动效率、主减速器传动效率等 部分串联组成。 采用有级机械变速器传动系的车型传动系统效率一般在 82 %到85% 之间,计算中可根据实际齿轮副数量和万向节夹角与数量对总传动效率进 行修正,通常取传动系统效率 T 值为78-82 %。 3)滚动阻力系数f 滚动阻力系数采用推荐的客车轮胎在良好路面上的滚动阻力系数经 验公式进行匹配计算: 其中:f o — 0.0072 ?0.0120 以上; f i — 0.00025 ?0.00280 ; f 4 — 0.00065 ?0.002 以上; c —对于良好沥青路面,c =l.2。 XXXX 动力性能匹配计算基本方法 汽车动力性能匹配计算的主要依据是汽车的驱动力和行驶阻力之间 的平衡关系,汽车的驱动力-行驶阻力平衡方程为 F t F f F w F i F j f = C f 0 f 亠 100 4 f 4 — 100 U a —汽车行驶速度,单位为 km/h ;

电动汽车动力传动系统参数的匹配设计

场地电动汽车动力传动系统设计 (兰州工业学院汽电) 摘要:根据电动汽车动力性能要求, 考虑到动力传动系统共振的危害, 结合 传动系统频率匹配, 提出了电动汽车动力传动系统参数匹配计算方法。以某 公司电动汽车机电传动系统为例, 在 A DV ISOR 软件中建立整车模型, 进行 循环工况下动力经济性能仿真分析。通过仿真和试验可知, 该车动力性和经 济性均能满足设计要求且动力传动系统 没有共振产生, 验证了匹配的可行性。 关键词:电动汽车; 动力性; 匹配; 频率 M atching of Param eters of Power Transm ission for E lectric V ehicles XUE N ian wen, GAO Fe,i XU X ing, GONG X in ( Schoo l of A utomob ile and T ra ffic Eng ineering, Jiangsu U n iversity, Zhenjiang 212013, Jiangsu, Ch ina) Abstract: A cco rding to e lectr ic veh icle dynam ic requ irem ents and the disadvantag es of system resonance, a m atch ing m eth od of pow er tra in fo r e lectr ic veh ic lesw as put fo rw ard based on frequency m atch ing o f dr ive train system. T ak ing mechan ica l and e lec trica l drive system for an electr ic car as an examp le, softw are ADV ISOR w as emp loyed to conduct sim ulation ana ly s is of drive cyc le o f the dynam ic and econom ic pe rfo rm ance; the resu ltw as in accordance w ith actual data. Bo th the simu la tion result and test data ind ica ted that dynam ic and econom ic perform ance of the vehic le cou ld m eet the requ irem ents; there w as no resonance o f the powe r train system; feasib ility m atch m ethod w as ver ified. K ey words: e lectr ic car; dynam ic per fo rm ance; m atch ing; frequency

电动汽车动力匹配设计规范

Q/XXX XXXXXXXXXXXXXXXXXXXX XXXXXX XX x X -X X 发布x X X X X X 有x 限-公司企业标实准 XXXXXXXX 有限公司 发 布 前言 1 4.1 4. 2 4. 3 4. 4 4. 5 范围 ............................................... 规范性引用文件 .......................................... 术语和定义 ............................................ 技术要求标.「〕 电动汽. 车动力. 匹配设计规范 计算方法 ............................................. 基础数据收集和输入 ........................................ 计算任务和匹配优化 ........................................ 计算结果输入及数据分析 ...................................... 4 10 10 13 、八 — 冃 U 言 我公司缺少关于动力匹配方面的设计规范, 给整车动力性、经济性方面的计算造成障碍。 下发之日起,本文件将指导后续工作中动力性、经济性的计算。 自本规范 本标准由XXXX 提出。 本标准由XXXX 负责起草。 本标准主要起草人:XXX 本标准于XXXX 年 XX 月首次发布。 电动汽车动力匹配设计规范 1 范围 本规范规定了电动汽车动力匹配设计规范的术语和定义、技术要求、试验方法、检验规则、标志、 包装、运输和贮存。 本规范适用于XXX X 整车动力性能匹配与计算 。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。 凡是注日期的引用文件, 其随后所有的 修改单(不包 括勘误的内容)或修订版均不适用于本标准,凡是不注日期的引用文件, 其最新版本适用 于本标准。

纯电动汽车动力传动系参数匹配及仿真_孙景伦

2016年第29卷第1期 Electronic Sci.&Tech./Jan.15,2016 协议·算法及仿真 收稿日期:2015-05-12 基金项目:上海市科委科研基金资助项目(11140502000)作者简介:孙景伦(1989—),男,硕士研究生。研究方向:研究方向:汽车动力传动系匹配。 doi :10.16180/https://www.360docs.net/doc/cb246059.html,ki.issn1007-7820.2016.01.014 纯电动汽车动力传动系参数匹配及仿真 孙景伦1,2 ,周 萍1,2,孙跃东 1,2(1.上海理工大学机械工程学院,上海200093; 2.上海理工大学机械工业汽车底盘机械零部件强度与可靠性评价重点实验室,上海200093) 摘 要 为实现纯电动汽车传动系传动比与驱动电机的合理匹配,提出了一种基于MOGA -Ⅱ遗传算法的多目标 优化方法。根据配备两挡变速器的某纯电动汽车的整车参数和设计要求,对其动力传动系统主要部件驱动电机及动力电池进行了匹配和选型。基于GT -drive 软件搭建整车仿真模型进行仿真分析并验证了匹配的合理性。利用多目标优化软件modeFRONTIER进行了传动系传动比优化。优化结果表明,纯电动汽车的一次充电续驶里程及原地起步加速时间分别提高了5.5%和2.9%。 关键词 纯电动汽车;动力传动系;参数匹配;仿真优化 中图分类号 U463.2 文献标识码 A 文章编号1007-7820(2016)01-051-05 Parameters Matching and Simulation for Power Train of Pure Electric Vehicle SUN Jinglun 1,2,ZHOU Ping 1,2,SUN Yuedong 1, 2 (1.School of Mechanical Engineering ,University of Shanghai for Science and Technology ,Shanghai 200093,China ;2.Key Laboratory of Mechanical Industry for Automobile Chassis Mechanical Parts Strength and Reliability Evaluation , University of Shanghai for Science and Technology ,Shanghai 200093,China ) Abstract A dual-objective optimization method based on MOGA-Ⅱgenetic algorithm is proposed for the ratio of power train to be matched reasonably to the drive motor of pure electric vehicle.Drive motor and power battery of power train are matched for a two-speed pure electric vehicle based on the vehicle parameters and design require-ments.The GT-drive vehicle simulation models are built to analyze and validate the rationality of the matching.The transmission ratios are optimized by multi-objective optimization software modeFRONTIER.The results show that the driving range of a single charge and initial acceleration time is increased by 5.5%and 2.9%respectively by optimi-zation. Keywords pure electric vehicle ;power train ;parameters matching ;simulation optimization 纯电动汽车(Pure Electric Vehicle ,PEV )正逐步成为未来汽车的主要发展方向[1] 。随着纯电动汽车的驱动电机、 动力电池等关键技术的进步,其驱动系统的合理匹配及传动系统的传动比优化,依然是提高整车动 力性及经济性的重要手段[2] 。本文以处于开发初期的 某纯电动汽车为例, 对动力传动系的主要部件进行参数匹配,建立整车仿真模型进行仿真分析验证,并对传 动系统的传动比进行优化, 以提高整车性能。1整车参数及性能要求 目前,纯电动汽车正沿着高速纯电动汽车及低速纯电动汽车两条主线发展[3] ,本文是基于某高速纯电 动汽车进行研究与开发的。其整车主要参数及性能指 标要求如表1所示。 表1 整车主要参数及性能指标要求 主要参数及性能指标数值整车整备质量/kg 1400满载质量/kg 1800迎风面积A /m 2 2.16风阻系数c D 0.31质量转换系数δ 1.04车轮动态半径r /m 0.30滚动阻力系数f 0.017主减速器传动比i 0 3.1701挡传动比i 1 2.1042挡传动比i 2 0.996

纯电动汽车动力性计算公式(可编辑修改word版)

XXEV 动力性计算 1初定部分参数如下 整车外廓(mm)11995×2550× 3200(长×宽×高) 电机额定功率100kw 满载重量约 18000kg 电机峰值功率250kw 主减速器速比 6.295:1 电机额定电压540V 最高车(km/h)60 电机最高转速2400rpm 最大爬坡度14% 电机最大转矩2400Nm 2最高行驶车速的计算 最高车速的计算式如下: V max = 0.377 ? n.r i g i = 0.377 ?2400 ? 0.487 1? 6.295 = 70km / h = 43.5mph 1) 式中: n—电机转速(rpm); r—车轮滚动半径(m); i g —变速器速比;取五档,等于1; i 0 —差速器速比。 (2- 所以,能达到的理论最高车速为70km/h。 3最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 =arcsin(T tq.i g.i0.d-f)=arcsin(2400?1?6.295?0.9-0.015)=8.20 max m.g.r18000 ? 9.8? 0.487

所以满载时最大爬坡度为 t a n ( max )*100%=14.4%>14%,满足规定要求。 4 电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1 以最高设计车速确定电机额定功率 当汽车以最高车速V max 匀速行驶时,电机所需提供的功率(kw )计算式为: 1 C .A .V 2 P n = (m .g . f 3600 + d max ).V 21.15 max (2-1) 式中: η—整车动力传动系统效率(包括主减速器和驱动电机及控制器的工作效 率),取 0.86; m —汽车满载质量,取 18000kg ; g —重力加速度,取 9.8m/s 2; f —滚动阻力系数,取 0.016; C d —空气阻力系数,取 0.6; A —电动汽车的迎风面积,取 2.550× 3.200=8.16m 2(原车宽*车身高); V max —最高车速,取 70km/h 。 把以上相应的数据代入式(2-1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw ),即 1 C .A .V 2 P n = (m .g . f + D max ).V max 3600 ? = 1 3600 ? 0.86 21.15 (18000 ? 9.8? 0.016 + 0.6 ?8.16 ? 702 21.15 ) ? 70 (3-2) = 89.5kw <100kw 4.2 满足以 10km/h 的车速驶过 14%坡度所需电机的峰值功率 将 14%坡度转化为角度: = tan -1(0.14) = 80 。 车辆在 14%坡度上以 10km/h 的车速行驶时所需的电机峰值功率计算式为:

基于某款纯电动汽车动力系统计算与仿真分析

基于某款纯电动汽车动力系统计算与仿真分析 摘要动力系统参数的选择与匹配对电动汽车的动 力性和经济性会产生很大的影响。文章在理论计算和系统分析的基础上,对电机、电池以及传动系传动比进行了参数匹配,分析了纯电动汽车动力系统参数的选择对电动汽车性能的影响。GT-suite 仿真结果表明,所选动力总成部件与整车匹配后能够满足纯电动轿车动力性的要求。为纯电动汽车动力系统参数选择与匹配提供了参考。 关键词电动汽车动力系统参数匹配动力性仿真 中图分类号:U463. 23 文献标识码:A 电动汽车是解决当前能源短缺和环境污染问题可行的 技术之一。电动汽车是由车载动力电池作为能量源的零排放汽车。近些年来,电动汽车的研制热潮在全世界范围内兴起,尤其是在我国,逐步向小批量商业化生产的方向发展。电动汽车技术的发展依赖于多学科技术的进步,尤其需要解决的问题是进一步提高动力性能,增加续驶里程,降低成本。考虑开发经费和开发周期,建立计算机仿真模型对电动汽车的性能进行仿真分析是很有意义的。 1电动汽车动力系统参数要求电动汽车的动力性主要取决于动力及传动系统参数匹配,包括动力电池、驱动电机及传动系统控制器等部 件。 根据设计要求,本电动汽车设计参数为:最高车速 150km/h,最大爬坡度》30%,续驶里程》180km。0100km/h 的时间为: < 15s。相关的车辆参数为:汽车整备质量: 1600kg ;迎风面积:2.19m2;长?卓?赘呤滴?631?? 790?? 470 m m ;轴距为:2650;滚动阻力为:0.0015;风阻系数: 0.296 。 2电机参数匹配电机作为电动汽车主要动力源,电机的匹配对电动汽车

电动汽车动力匹配设计规范(2)

电动汽车动力匹配设计规范(2) 1 2020年4月19日

XXXXXX Q/XXX XXXXXXXXXXXXXXXXX XXX

文档仅供参考,不当之处,请联系改正。 II 2020年4月19日 XXXX-XX -XX 发布 XXXX-XX -XX 实施 XXXXXXXX 有限公司 发 布 目 次 前言 ................................................................................................................. Ⅱ 1 范围 ............................................................................................................... 1 2 规范性引用文件 ........................................................................................... 1 3 术语和定义 (1) 4 技术要求 ....................................................................................................... 3 4.1 评价指标 .................................................................................................... 3 4.2 计算方法 .................................................................................................... 4 4.3 基础数据收集和输入 ............................................................................... 10 4.4 计算任务和匹配优化 ............................................................................... 10 4.5 计算结果输入及数据分析 .. (13) 电动汽车动力匹配设计规范 X X X X X X X X X X 有限公司企业标准

相关文档
最新文档