伺服电机选型计算及应用案例介绍
伺服电机的选型计算及应用案例介绍
伺服电机的选型计算及应用案例介绍伺服电机是一种能够精确控制转速和位置的电动机,广泛应用于工业自动化领域。
选型计算是确定伺服电机规格和性能的过程,通常涉及到转矩、转速、功率、惯量等参数的综合考虑。
1.确定负载要求:首先需要明确伺服电机所驱动的负载的要求,包括所需转矩、转速和精度等。
2.计算转矩需求:根据负载要求,可以通过转矩计算公式来估算所需的转矩。
常用的转矩计算公式为:转矩=负载惯量x加速度角加速度+负载转矩其中,负载惯量是指负载的惯性矩,加速度角加速度是指负载加速度的转矩。
3.计算转速需求:根据负载要求,可以通过转速计算公式来估算所需的转速。
常用的转速计算公式为:转速=转矩/转矩常数其中,转矩常数是伺服电机的特性参数,代表单位转矩所需要的电压或电流。
4.确定功率需求:根据转矩和转速需求,可以计算出所需的功率。
功率可以通过转速和转矩的乘积来计算。
功率=转矩x转速5.确定惯量需求:根据负载的惯性矩和转矩需求,可以计算出所需的惯性矩。
惯性矩可以通过负载的质量和尺寸来计算。
以上是伺服电机选型计算的基本步骤,具体的选型还需要考虑其他因素,如环境温度、耐用性、可靠性等。
下面以一个应用案例来介绍伺服电机的选型计算。
假设有一个机械臂需要驱动,臂长为1米,质量为10千克。
机械臂需要能够承受10牛米的转矩,并以每分钟100转的速度旋转。
根据这些要求,可以使用以下公式计算伺服电机的规格和性能。
负载惯量=质量x(臂长^2)转矩需求=负载惯量x加速度角加速度+负载转矩加速度角加速度=转速/时间转速=100转/分钟负载转矩=10牛米根据以上参数,可以计算出负载惯量、加速度角加速度、转矩需求等。
假设加速时间为1秒,则有:加速度角加速度=(100转/分钟)/(60秒/分钟)/(1秒)=1.67转/秒^2负载惯量=10千克x(1米^2)=10千克·米^2转矩需求=10千克·米^2x(1.67转/秒^2)+10牛米=26.7牛米根据转矩需求和伺服电机的特性参数,可以选择合适的伺服电机。
富士伺服电机选型计算资料
富士伺服电机选型计算资料一、关于富士伺服电机的基本资料1. 输出功率(Pout):也就是电机实际输出的功率,通常用单位瓦特(W)表示。
2. 转速(N):电机输出的转速,通常用单位转每分钟(rpm)表示。
3.转矩(T):电机产生的转矩,通常用单位牛顿米(Nm)表示。
4.电压(V):电机工作时所需的电压,通常用单位伏特(V)表示。
5.电流(I):电机工作时所需的电流,通常用单位安培(A)表示。
二、富士伺服电机选型计算方法1.计算输出功率:输出功率(Pout)= 转矩(T)× 转速(N)/ 9550单位:W2.计算所需电流:所需电流(I)= 输出功率(Pout)/ 电压(V)单位:A3.确定电机型号:根据所需输出功率和所需电流,在富士伺服电机的型录中找到适合的型号。
4.考虑额定功率:在选型时,要考虑到电机的额定功率与所需输出功率的关系。
通常情况下,额定功率应大于所需输出功率,以保证电机能够正常工作。
5.考虑载荷惯性:在选型时,要考虑到负载的惯性对电机的影响。
如果负载的惯性较大,需要选择功率较大的电机来满足负载的加速度和减速度要求。
6.考虑工作环境:在选型时,还要考虑工作环境的特殊要求,如温度、湿度、振动等因素。
7.考虑控制系统:在选型时,还要考虑控制系统的要求,如控制精度、速度响应时间等因素。
三、富士伺服电机选型计算示例假设需要选型一台富士伺服电机,输出功率要求为2000W,工作电压为220V,负载惯性为0.03kg·m²,工作环境温度为25℃。
首先计算所需电流:所需电流(I)= 输出功率(Pout)/ 电压(V)所需电流(I)=2000W/220V≈9.09A接下来根据所需输出功率和所需电流,在富士伺服电机的型录中找到适合的型号。
假设找到了型号为MHN309D,额定功率为2200W,额定电流为10A。
然后考虑负载惯性,根据负载惯性为0.03kg·m²,选择合适的电机。
伺服电机选型计算实例
伺服电机选型计算实例伺服电机是一种控制器控制的电机,具有高精度和高速度的特点,广泛应用于机械设备中。
在选型伺服电机时,需要考虑多个参数来满足具体的应用要求。
下面以一个选型计算实例来详细介绍伺服电机的选型过程。
假设我们需要选型一台伺服电机用于驱动一个线传动机构,具体要求如下:1.最大负载力为2000N,工作速度范围为0-10m/s。
2. 线传动机构的负载惯量为500kg·m²。
3. 需要保证驱动精度在±0.2mm范围内。
4.工作环境温度范围为0-40℃。
首先,我们需要计算所需的转矩。
根据公式:转矩=负载力×工作半径,其中工作半径等于线传动机构的负载惯量÷2、由于我们没有具体的线传动机构参数,假设负载惯量为500kg·m²,即工作半径为0.25m。
则最大转矩=2000N×0.25m=500N·m。
考虑到一般情况下,峰值转矩为最大转矩的2倍,即1000N·m。
接下来,我们需要计算伺服电机的速度要求。
根据给定的工作速度范围0-10m/s,我们可以选择合适的额定转速。
假设我们选择的额定转速为2000rpm,则转速范围为0-2000rpm。
考虑到加速度和减速度的要求,一般额定转速的选择会略高于平均线速度,假设为2200rpm。
接下来,我们需要选择合适的伺服电机型号。
在选型之前,我们还需要考虑工作环境的温度范围。
根据给定的工作环境温度范围为0-40℃,我们需要选择具备合适温度范围的伺服电机。
一般伺服电机的温度范围为0-50℃,因此我们可以选择标准型号的伺服电机。
在选择伺服电机型号时,我们需要参考厂家提供的电机性能参数。
主要包括额定转矩、额定转速、额定电压、额定电流、额定功率等。
根据我们的要求,我们可以对比不同型号的伺服电机并选择合适的型号。
最后,我们需要根据具体应用需求考虑伺服电机的控制方式、接口类型以及其他附件等。
伺服电机计算选择应用实例
伺服电机计算选择应用实例1.选择电机时的计算条件本节叙述水平运动伺服轴(见下图)的电机选择步骤。
例:工作台和工件的W :运动部件(工作台及工件)的重量(kgf)=1000 kgf 机械规格μ:滑动表面的摩擦系数=0.05π:驱动系统(包括滚珠丝杠)的效率=0.9fg :镶条锁紧力(kgf)=50 kgfFc :由切削力引起的反推力(kgf)=100 kgfFcf :由切削力矩引起的滑动表面上工作台受到的力(kgf)=30kgfZ1/Z2:变速比=1/1例:进给丝杠的(滚珠Db :轴径=32 mm丝杠)的规格Lb :轴长=1000 mmP :节距=8 mm例:电机轴的运行规格Ta :加速力矩(kgf.cm)Vm :快速移动时的电机速度(mm-1)=3000 mm-1ta :加速时间(s)=0.10 sJm :电机的惯量(kgf.cm.sec2)Jl :负载惯量(kgf.cm.sec2)ks :伺服的位置回路增益(sec-1)=30 sec-11.1 负载力矩和惯量的计算计算负载力矩加到电机轴上的负载力矩通常由下式算出:Tm = + TfTm :加到电机轴上的负载力矩(Nm)F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf)L :电机转一转机床的移动距离=P×(Z1/Z2)=8 mmTf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2NmF×L2πη无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量,摩擦系数。
若坐标轴是垂直轴,F值还与平衡锤有关。
对于水平工作台,F值可按下列公式计算:不切削时:F = μ(W+fg)例如:F=0.05×(1000+50)=52.5 (kgf)Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm)= 0.9(Nm)切削时:F = Fc+μ(W+fg+Fcf)例如:F=100+0.05×(1000+50+30)=154(kgf)Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm)=2.1(Nm)为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时应大于0.9(Nm),最高转速应高于3000(min-1)。
伺服传动的应用计算
伺服传动的选型计算案例1:丝杠直线传动已知条件(负载质量m=5KG,丝杠传动导程p=10mm,工位移载行程s=1000mm,移载所需时间2.2s)据上述要求旋转一款合适的伺服电机。
解析:1. 首先一般伺服电机的额定转速为n=3000转,运动过程可视为恒扭矩传动x0.01=0.5 m/s∴ 丝杠传动的最快直线速度 ν=300060V (m/s)0.5 m/s0 t1 t2 t3 t ( s)加减速过程的速度变化图为了方便计算,可设定减速与减速时间相等均为t,最终匀速为0.5m/s∴s=1at2x2+0.5(2.2−2t)=1m2∴可得:1.1−0.5t= 1 得t=0.2s,则a=2.5 m/s22.根据需要的加速度可推算所需要的丝杠的轴向推力,从而推算出所需的扭矩已知负载质量:M=5kg,且经上推算的加速度a=4 m/s2(暂定)根据 F=m.a=5x2.5=12.5N (F为丝杠轴向推力)还可以根据丝杠传动电机扭矩与轴向力之间转换关系:T∗2∗π∗η=F∗p (T为电机扭矩,η为效率可取0.9)T =FP2πη=12.5x0.015.652= 0.0221 Nm3.根据需要出的扭矩再反推出所需电机的功率: ∴ 根据功率扭矩之间的转换公式: T =9550∗p n反推得出P =T∗n 9550=0.0221x30009550=0.00695 kw = 6.95w从扭矩的角度100W 以下的伺服电机都能满足要求4.伺服电机是精确定位的马达,不能只满足驱动扭矩,还需从惯量上去校核够不够, (丝杠φ15,长度1100): 丝杠传动系的惯量:J=J 1负载+J 2丝杠(可得其惯量0.426 x10−4 kgm 2) J 1=m ∗r 2=5x(p 2π)2=5x(0.159)210−4 kgm 2=0.1267x10−4 kgm 2∴ J=(0.426+0.1267)x10−4 kgm 2=0.5527 x10−4 kgm 2所以可得总负载的惯量为0.5527 x10−4 kgm 25.电机所需承受的总惯量已得知,则需要查询所选电机的惯量参数,这里以三菱电机为例由三菱电机属性的惯量匹配比为15~25,则可得:J 电机=0.552720=0.0276 ∴ 可得100W 的电机惯量太小,尽管扭矩够了,但是不能很精准地控制负载的定位所以应该选用HF-MP23G1(K9020)案例2:同步带直线传动已知条件(负载质量m=5KG,同步带轮直径d=50mm,工位移载行程s=1000mm,移载所需时间2s)据上述要求旋转一款合适的伺服电机。
伺服电机选型计算实例
1
·注
伺服电机计算选择应用实例
无论是否在切削,是垂直轴还是水平轴,F 值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F 值还与平衡锤有关。对于水平工 作台,F 值可按下列公式计算:
不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm)
Ta =
Vm × 2π× 1
60
ta
×Jm×(1-e-ks。ta)+
+ Vm × 2π× 1
60
ta
×JL×(1-e-ks。ta)÷η
1 Vr = Vm×{1- Ta·ks
(1- e-ks。ta )}
Ta :加速力矩(kgf·cm) Vm :电机快速移动速度(min-1) ta :加速时间(sec) Jm :电机的惯量(kgf.cm.s2) JL :负载的惯量(kgf.cm.s2) Vr :加速力矩开始下降的速度(与 Vm 不同) (min-1) Ks :位置回路的增益(sec-1) η :机床的效率
切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm)
为了满足条件 1,应根据数据单选择电机,其负载力矩在不切削时 应大于 0.9(Nm),最高转速应高于 3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为 2.0 Nm)。
伺服电机的选型计算及应用案例介绍 包含多种情形计算
滚珠丝杆机构变化量变化量值单位工件部分的质量WA200Kg
铁的密度P17900Kg/m3铝的密度P22800Kg/m3黄铜的密度P38500Kg/m3滚珠丝杆的长度BL0.55M
滚珠丝杆的直径BD0.02M
滚珠丝杆的螺距BP0.01M
滚珠丝杆的效率BN0.9
联轴器的惯量JC0.00001Kg.m2摩擦系数U0.3
外力F150N
重力加速度g9.8m/s2运行模式
移动距离L0.4M
加速时间ta0.1S
匀速时间tb60S
减速时间td0.1S
循环时间tc5S
计算量
滚珠丝杆的质量BW 1.36Kg
负载部分的惯量JL0.000585Kg.m2预选电机的惯量JM0.000014Kg.m2
惯量比JL/JM41.80975倍定位快的要求惯量比在3-5倍之间,定位慢的要求惯量比在5-8倍之间
最高速度Vmax0.007m/s 转速N0.7r/s 电机转速N39.93r/min 移动转矩Tf 1.306N.M 加速时转矩Ta 1.331N.M 减速时转矩Td-1.281N.M
确认最大转矩Tmax N.M 加速时转矩=Ta
确认有效转矩Trms 4.531N.M。
伺服电机计算选择应用实例全解
伺服电机计算选择应用实例1. 选择电机时的计算条件 本节叙述水平运动伺服轴(见下图)的电机选择步骤。
例:工作台和工件的W :运动部件(工作台及工件)的重量(kgf )=1000 kgf 机械规格 μ :滑动表面的摩擦系数=0.05π :驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf )=50 kgfFc :由切削力引起的反推力(kgf )=100 kgfFcf:由切削力矩引起的滑动表面上工作台受到的力(kgf ) =30kgfZ1/Z2: 变速比=1/1例:进给丝杠的(滚珠 Db :轴径=32 mm 丝杠)的规格 Lb :轴长=1000 mm P :节距=8 mm例:电机轴的运行规格 Ta :加速力矩(kgf.cm )Vm :快速移动时的电机速度(mm -1)=3000 mm -1 ta :加速时间(s)=0.10 sJm :电机的惯量(kgf.cm.sec 2) Jl :负载惯量(kgf.cm.sec 2)ks :伺服的位置回路增益(sec -1)=30 sec -11.1 负载力矩和惯量的计算 计算负载力矩 加到电机轴上的负载力矩通常由下式算出:Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P ×(Z1/Z2)=8 mmTf:滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2NmF ×L2πη无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量,摩擦系数。
若坐标轴是垂直轴,F值还与平衡锤有关。
对于水平工作台,F值可按下列公式计算:不切削时:F = μ(W+fg)例如:F=0.05×(1000+50)=52.5 (kgf)Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm)= 0.9(Nm)切削时:F = Fc+μ(W+fg+Fcf)例如:F=100+0.05×(1000+50+30)=154(kgf)Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm)=2.1(Nm)为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时应大于0.9(Nm),最高转速应高于3000(min-1)。
伺服电机选型案例
伺服电机选型案例伺服电机功率计算选型例子伺服电机功率计算选型例子(新手必看,经典案例分析)伺服电机选型也有相应的规律和公式可循的。
最常见的机械传动结构有同步带,齿轮齿条,丝杆等。
以同步带为例,需要计算的参数有电机转速,电机力矩,转动惯量。
第一,电机额定转速N=(v/2πr)*i,启动瞬间需要的拉力F=(M+m1-m2)a+δ(M+m1-m2)g(水平),F=(M+m1-m2)a+δ(M+m1-m2)g+(M+m1-m2)g(垂直),T扭矩=F*R。
T电机=T扭矩/机械减速比n,电机功率=N*T 电机/10,启动惯量J=1/2mR2,电机惯量J电机=J/减速比的平方n2/惯量比i。
第二,同步带轮直径D=100mm、提升机载货台总重M=30kg、货物总重m1=10kg,配重m2=25kg,提升滚动摩擦系数取δ=0.03、加速度a=2m/S2、提升速度v=3m/s。
减速机减速比i=5,电机额定转速n=(v/2πr)*i=3/(2*3.14*0.05)*5*60=2866r/min,启动瞬间需要的拉力F=(M+m1-m2)a+&delta,(M+m1-m2)g+(M+m1-m2)g=(30+10-25)*2+0.03(30+10-25)*10+(30+10-25)*10=184.5N。
T扭矩=F*R=184.5*0.05=9.225Nm,折算电机需要扭矩T1=9.225Nm/5=1.85Nm,折算电机功率P1=2866*1.85/10=0.5KW。
启动惯量J=1/2mR2=0.5*(10+30+25)*0.0025=0.08125kgm2,折算电机需要惯量J1=0.08125/25=0.00325kgm2,根据经验值取惯量比=10,则实际J电=J1/10=0.000325kgm2。
经计算电机至少满足以下条件下面看下1.2千瓦3000RPM,4牛米的电机的惯量是2.98*10-4kgm2。
所以可以选择80ST-M04030的电机。
伺服电机功率计算选型案例
如果选择500W电机,JM = 8.17kg.cm2,则15625 / R2 < 3*8.17,R2 > 637,R > 25
输出转速=2000/25=80 rpm,满足要求。
这种传动方式阻力很小,忽略扭矩计算。
14
实用文档
举例计算1
这种传动方式与前一种传动方式相同, 选型时主要考虑负载惯量的计算,计 算公式也与前面相同。
作用,根據切線方向的牛頓第二運動定
律 Ft m at
rFt r m at
m r 2
4
实用文档
Ft F
rm 轉軸
將剛體看成是由許多質點所構成,則每一質點都滿足類似 的方程式
i miri2 i 1,2,3, ,n 對每一質點作加總即得到
i ( miri2)
i
i
m F
mF
左邊的合力矩只需考慮外力所產生的力矩,由內力所產生
总结:转动型负载主要考虑惯量计算。
15
实用文档
举例计算2
M
1:R2
D
1:R1
已知:负载重量M=50kg,同步带轮直径 D=120mm,减速比R1=10,R2=2,负载与 机台摩擦系数µ=0.6,负载最高运动速 度30m/min,负载从静止加速到最高速 度时间200ms,忽略各传送带轮重量, 驱动这样的负载最少需要多大功率电机?
匀速扭矩Tb = Tf = 1.387 N.m
减速扭矩Tc = TA – Tf = 11.285 N.m
实效扭矩Trms = sqrt[(Ta2*t1 + Tb2*t2 + Tc2*t3) / (t1+t2+t3)]
伺服电机选型计算实例
伺服电机选型计算实例在进行伺服电机选型时,需要考虑到多个因素,包括载荷特性、运动要求、控制要求以及环境要求等。
下面我们将通过一个实际案例来详细介绍伺服电机选型的计算方法。
案例描述:公司需要选购一台适合于自动化生产线上使用的伺服电机,用于驱动一台输送带,具体要求如下:1.输送带长度为2米,宽度为0.5米,预计最大负载为100千克。
2.需要实现起动、停止、加速和减速、定位等功能。
3.运动速度为1米/秒。
4.工作温度范围为-10℃~40℃。
根据以上要求,我们可以按照以下步骤进行伺服电机选型计算:步骤1:计算所需输出功率首先,我们需要计算伺服电机的输出功率。
根据输送带的长度、宽度和预计最大负载,可以计算得到输送带的质量:质量=长度×宽度×质量体积,质量体积可以通过相应材料的密度来获得。
假设输送带材料的密度为1克/立方厘米,则质量=2×0.5×1=1千克。
根据牛顿第二定律,质量乘以加速度等于力,所以我们可以得到加速度=质量/时间^2=100/1=100米/秒^2、再根据功率=力×速度,可以计算得到所需输出功率=力×速度=100×1=100瓦特。
步骤2:根据负载惯性计算电机惯性比为了实现加速和减速的控制要求,需要考虑负载的惯性。
负载的惯性通常用负载惯量来表示,通常使用kg*m^2作为单位。
对于输送带系统,我们假设负载的半径为0.25米(输送带宽度的一半),负载的惯量=负载质量×半径^2=100×0.25^2=6.25kg*m^2、然后,我们需要计算电机的惯性比,电机的惯量通常使用kg*m^2作为单位。
假设选用的伺服电机的惯量为0.01kg*m^2,则电机的惯性比=负载的惯量/电机的惯量=6.25/0.01=625步骤3:根据运动要求计算加速度和最大速度根据运动要求中的加速度和速度,我们可以计算得到实际需要的加速时间和加速距离。
伺服电机选型计算及案例
伺服电机选型计算及案例
在进行伺服电机选型计算前,首先需要了解以下参数:
1.力矩要求:根据工作负载计算所需的最大输出力矩。
2.转速要求:根据工作过程中所需的最高转速确定。
3.加速度要求:根据工作过程中的速度变化率来计算。
4.环境条件:包括工作温度、工作湿度等环境因素。
下面以一个简单的案例为例,演示如何进行伺服电机选型计算。
案例:自动化生产线运行速度为60米/分钟,工作台上的工件质量为10千克,需要在0.5秒内从静止加速到最终速度并保持匀速运动。
根据这些要求,我们需要选用合适的伺服电机。
步骤1:计算所需的输出力矩。
根据牛顿第二定律,力矩(扭矩)等于质量乘以加速度。
加速度可以通过速度变化与时间的比值来计算。
加速度a = (60 m/min) / (0.5 s) = 120 m/min² = 2 m/s²
力矩T = (质量m) * (加速度a) = 10 kg * 2 m/s² = 20 Nm
所以我们需要选用至少能提供20Nm的输出力矩的伺服电机。
步骤2:计算所需的最高转速。
最高转速通常需要根据具体工作过程来确定。
在这个案例中,我们假设最高转速为3000 rpm(每分钟转数)。
步骤3:计算所需的加速度。
加速度已经在步骤1中计算过,为2m/s²。
步骤4:确定环境条件。
根据实际工作环境,确定伺服电机所需的环境参数,例如工作温度和湿度范围。
通过以上计算,我们得到了选型参数:输出力矩为20 Nm,最高转速为3000 rpm,加速度为2 m/s²。
伺服电机与丝杆的选型计算案例
伺服电机与丝杆的选型计算案例那咱就来个简单又有趣的伺服电机与丝杆选型计算案例。
就比如说咱要做一个小型的自动化设备,这个设备呢是要把一些小零件从一个地方精准地推到另一个地方,就像把小珠子从一个盒子推到另一个盒子那样。
一、确定工作要求。
1. 负载重量。
首先得知道这个小零件有多重呀。
假设这个小零件加上推动它的小夹具啥的,总共重1千克,这就是咱们要推动的负载重量啦,简单吧。
2. 移动速度和距离。
3. 精度要求。
精度也很重要呢,咱们这个设备要求小零件的位置误差不能超过0.1毫米,就像小珠子必须非常精准地落到指定的小位置上。
二、丝杆选型计算。
1. 导程选择。
导程就是丝杆转一圈,螺母带着负载移动的距离。
咱先初步选个导程为5毫米的丝杆。
为啥呢?因为这样算起来比较简单嘛。
如果丝杆转得快,那小零件就能跑得快,要是导程太小,可能就转半天小零件也移动不了多远,就像小蚂蚁爬得太慢啦。
2. 确定丝杆的效率。
一般丝杆的效率大概在30% 80%之间。
咱就取个中间值,假设丝杆效率是50%。
这个效率就像一个小漏斗,能量在传递过程中会有损失,不是所有电机的力量都能完全用来推动小零件的。
3. 计算丝杆扭矩。
根据公式:扭矩 = (负载重量×重力加速度×丝杆导程)÷(2×π×丝杆效率)。
重力加速度咱取9.8米/秒²。
把数值带进去就是:扭矩 = (1×9.8×0.005)÷(2×3.14×0.5)≈ 0.0156牛·米。
这个扭矩就是丝杆需要的力气来推动小零件的,就像你推小推车,需要用多大的劲儿一样。
三、伺服电机选型计算。
1. 计算所需的转速。
根据移动速度和丝杆导程来算电机的转速。
转速 = (移动速度÷丝杆导程)×60。
把数值带进去就是:转速 = (0.1÷0.005)×60 = 1200转/分钟。
升降机伺服电机选型计算实例
升降机伺服电机的选型计算实例如下。
首先,我们需要确定升降机的升降速度和负载重量。
假设升降机的升降速度为10米/分钟,负载重量为50公斤。
接下来,我们需要选择合适的伺服电机型号。
在选择伺服电机时,我们需要考虑升降机的效率、转速和转矩等因素。
另外,我们需要选择能够提供足够力量的电机,以确保升降机可以正常运行。
在此过程中,我们可以考虑使用额定功率计算公式,根据升降机的功率需求来选择合适的伺服电机。
具体的计算方法如下:功率(P)=力(F)×速度(V)÷杠杆臂(G)×95%的效率。
其中,杠杆臂通常可以取定为95%,效率则取决于具体的机构运动部分之间的摩擦等因素。
根据上述公式,我们可以将已知的数据代入其中,即负载重量为50公斤,升降速度为10米/分钟。
为了方便计算,我们可以假设升降机的效率为0.95。
接下来,我们就可以根据公式来计算升降机所需的功率:功率= 负载重量×升降速度÷杠杆臂×0.95 = 50 ×10 ÷95% = 52.6瓦特(W)由于升降机通常需要两台或更多伺服电机来同时工作,以确保升降机的稳定性和安全性,因此我们需要选择功率更大的伺服电机。
在实际应用中,我们通常会选择与所需功率相当或略高的伺服电机型号。
考虑到升降机的安全性和效率,我们建议选择一个较为强劲的伺服电机,如无刷电机或者步进电机等。
其中无刷电机以其稳定的性能和较低的维护成本而被广泛应用在升降机领域。
对于具体型号的选择,需要考虑电机的输出功率、扭矩、转速等参数。
此外,根据实际工况和使用环境,还需要考虑电机的温度、噪音、防水防尘等级等因素。
在实际使用过程中,我们还需要对伺服电机进行定期维护和检查,以确保其正常运行。
如果出现异常情况,需要及时处理,避免造成安全事故。
总之,升降机的伺服电机选型需要考虑升降速度、负载重量、效率和安全等因素。
通过功率计算公式和实际应用选择合适的伺服电机型号,可以提高升降机的效率和安全性。
伺服电机选型计算实例
伺服电机计算选择应用实例1. 选择电机时的计算条件 本节叙述水平运动伺服轴(见下图)的电机选择步骤。
例:工作台和工件的W :运动部件(工作台及工件)的重量(kgf )=1000 kgf 机械规格 μ :滑动表面的摩擦系数=0.05π :驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf )=50 kgfFc :由切削力引起的反推力(kgf )=100 kgfFcf:由切削力矩引起的滑动表面上工作台受到的力(kgf ) =30kgfZ1/Z2: 变速比=1/1例:进给丝杠的(滚珠 Db :轴径=32 mm 丝杠)的规格 Lb :轴长=1000 mm P :节距=8 mm例:电机轴的运行规格 Ta :加速力矩(kgf.cm )Vm :快速移动时的电机速度(mm -1)=3000 mm -1 ta :加速时间(s)=0.10 sJm :电机的惯量(kgf.cm.sec 2) Jl :负载惯量(kgf.cm.sec 2)ks :伺服的位置回路增益(sec -1)=30 sec -11.1 负载力矩和惯量的计算 计算负载力矩 加到电机轴上的负载力矩通常由下式算出:Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P ×(Z1/Z2)=8 mmTf:滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2NmF ×L2πη无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量,摩擦系数。
若坐标轴是垂直轴,F值还与平衡锤有关。
对于水平工作台,F值可按下列公式计算:不切削时:F = μ(W+fg)例如:F=0.05×(1000+50)=52.5 (kgf)(52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm)=Tm= 0.9(Nm)切削时:F = Fc+μ(W+fg+Fcf)例如:F=100+0.05×(1000+50+30)=154(kgf)Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm)=2.1(Nm)为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时应大于0.9(Nm),最高转速应高于3000(min-1)。
垂直使用的滚珠丝杠伺服电机选型计算实例
垂直使用的滚珠丝杠伺服电机选型计算实例
垂直使用的滚珠丝杠伺服电机选型计算实例如下:
一、伺服电机选型步骤
1. 确定电机的机械负载:机械负载主要包括工作台、工作物和丝杠的重量,以及可能的外部负载。
在本例中,工作台重量为50kgf,工作物重量最大为25kgf,丝杠重量可以根据具体型号确定。
2. 确定电机的运动参数:运动参数包括电机的最大行程、最大速度、加速度等。
在本例中,最大行程为1000mm,最大速度为50m/min,加速度可以根据具体应用确定。
3. 确定电机的控制参数:控制参数包括定位精度和重复定位精度。
在本例中,定位精度为±/最大行程,重复定位精度为±。
4. 确定电机的驱动参数:驱动参数包括电机的最大扭矩和最大电流等。
在本例中,电机的最大扭矩和最大电流可以根据具体应用确定。
二、伺服电机选型计算
1. 计算电机的轴向力:根据机械负载的重量和重力加速度,可以计算出电机的轴向力。
在本例中,等速度时轴向力F2=μ(W1+W2)xg=(50+25)=(N),
其中μ为滑动摩擦系数,W1为工作台重量,W2为工作物重量,g为重力加速度。
2. 计算电机的转矩:根据电机的轴向力和转速,可以计算出电机的转矩。
在本例中,电机的转速可以根据具体应用确定,然后根据轴向力和转速计算出电机的转矩。
3. 确定电机型号:根据电机的运动参数、控制参数和驱动参数,以及计算出的转矩和可能的外部负载,选择适合的电机型号。
以上是垂直使用的滚珠丝杠伺服电机选型计算实例,具体计算过程可能需要根据具体情况进行调整和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
伺服电机选型计算及应用案例介绍
4.电机转速和扭矩(转矩)公式
扭矩公式:T=9550P/n
T是扭矩,单位N·m; P是输出功率,单位KW ; n扭是矩电公机式转:速T,=9单73位P/rn/min
T是扭矩,单位kg·m; P是输出功率,单位KW ; n是电机转速,伺服单电机选位型计算r/及m应用i案n例介绍
5.扭矩计算
电机转矩T (N.m)
滑轮半径r (m)
提升力F (N)F=
T r
经过减速机提升后的提
升力为:F=
T r ▪R
r T
F
r
1/R T
F
伺服电机选型计算及应用案例介绍
6.电机带动丝杆扭矩计算
F
电机转矩T (N.m)
螺杆导程PB (m)
推力F (N)F=T▪ 2π
P
T PB
F
经过减速机提升后的提
升力为:F=T▪ 2π ▪R
P
T 1/R PB
伺服电机选型计算及应用案例介绍
二.转动惯量
1.定义:是刚体绕轴转动时惯性的量度。通常 以字母I或J来表示。单位为kg·m²
2.与转动惯量有关的因素: 1.刚体的总质量 2.质量分布 3.转轴的位置
伺服电机选型计算及应用案例介绍
3.转动惯量的计算: (1)单个质点的转动惯量: J=mr2
伺服电机选型计算及应用案例介绍
3.预选电机
(2)质量离散分布刚体的转动惯量:
J m jrj2 m1r12 m2r22 j
r2 m2
(3)质量连续分布刚体的转动惯量:
r1
m1
r3 m3
转轴
J r2dm dm:质量元
伺服电机选型计算及应用案例介绍
5.3 定轴转动的转动惯量
• 质量离散分布的刚体 J miri2 • 质量连续分布的刚体 J r 2dm
c 有效转矩 运转、停止全过程所需转矩的平方平均值的单 位时间数值,通常为电机的额定转矩的80%以 下。
2.转速 最高转速通常要在额定转速以下。需使用电机 的最高转速时,应注意转矩和温度的上升。
伺服电机选型计算及应用案例介绍
3.惯量比
惯量比是用电机的转动惯量去除负载惯 量的数值。按照通常的标准,750W以下 的电机为20倍以下,1000W以上的电机 为10倍以下,若要求快速响应,则需更 小的惯量比。反之,如果加速时间允许 数秒,就可以采用更大的惯量比。
伺服电机的选型及应用案例 介绍
伺服电机选型计算及应用案例介绍
➢一,扭矩的概念及计算方法 ➢二,转动惯量的概念及计算方法 ➢三,伺服电机选型的原则 ➢四,伺服电机选型的步骤 ➢五,与选择相关的项目情况说明 ➢六,实例应用讲解
伺服电机选型计算及应转动状态产生变化的因素,即 物体在受到不为零的外力矩作用下,原为静 止的将开始转动,原为转动的转速将发生变 化。
伺服电机选型计算及应用案例介绍
五.和选择相关的项目说明
1.转矩 a 峰值转矩 运转过程中(主要是加减速时)电机所需的最 大转矩,通常为电机最大转矩的80%以下。
b 移动转矩 电机长时间运转所需的转矩。通常为电机的额 定转矩的80%以下。
伺服电机选型计算及应用案例介绍
各机构移动转矩的计算公式:
伺服电机选型计算及应用案例介绍
2.扭矩:转动力矩又称为转矩或扭矩。
伺服电机选型计算及应用案例介绍
3.公式: 力矩等于径向矢量与作用力的
如右图所示:欲让门产生转动,必须 施加一外力F。施力点离转轴越远越 容易使门产生转动。平行于门面的分 力对门的转动没有效果,只有垂直于 门面的分力才能让门产生转动。力矩 的符号经常用T表示。单位N ▪ m
伺服电机选型计算及应用案例介绍
1.滚珠丝杆的质量: Bw=ρxV=7.9*103*π(0.02/2)2*0.5
=1.24kg
2.负载部分的惯量: JL=JC+JB=JC+BW*BD2/8+WA*BP2/4π2
=0.00001+(1.24*0.022)/8+10*0.022/4π2 =1.73*10-4kg.m2
伺服电机选型计算及应用案例介绍
四.伺服电机选型步骤
1.确定机构部 次外,还要确定各机构零件(滚珠丝杆 的长度,导程和带轮直径等)的细节 机构部典型示例
伺服电机选型计算及应用案例介绍
2.确定运转模式 加减速时间、匀速时间、停止时间、循 环时间、移动距离等。
伺服电机选型计算及应用案例介绍
注:运转模式对电机的容量选择有很大的影 响。除了特别需要的情况,加减速时间、停 止时间尽量取得大点,就可以选择小容量的 电机
J ml 2 /12
J mr2 / 2 J 2mr 2 / 5 J 2mr 2 / 3
伺服电机选型计算及应用案例介绍
三.伺服电机的选型原则
• 连续工作扭矩 < 伺服电机额定扭矩
• 瞬时最大扭矩 < 伺服电机最大扭矩 (加速时)
• 惯量比
<电机规定的惯量比
• 连续工作速度 < 电机额定转速
伺服电机选型计算及应用案例介绍
dm为质量元,简称质元。其计算方法如下:
质量为线分布 dm dl 质量为面分布 dm ds 质量为体分布 dm dV
J与质量大小、质量分布、转轴位置有关 演示程序: 影响刚体转动惯量的因素
常见刚体的转动惯量
J mr 2 J mr 2 / 2 J mr 2 / 2 J m(r12 r22) / 2
3.计算负载惯量和惯量比
结合各机构部计算负载惯量。(请参照普 通的惯量及其计算方法)并且用所选的电 机的惯量去除负载惯量,计算惯量比。
伺服电机选型计算及应用案例介绍
4.计算转速 根据移动距离、加减速时间、匀速时间计 算电机转速。
5.计算转矩 根据负载惯量和加减速时间、匀速时间计 算所需的电机转矩。 6.选择电机 选择能满足以上3~5项条件的电机。
伺服电机选型计算及应用案例介绍
伺服电机选型计算及应用案例介绍
伺服电机选型计算及应用案例介绍
六.实例应用讲解
案例1
已知:负载重量WA=10kg,螺杆螺距BP=20mm,螺杆直 径BD=20mm,螺杆长BL=0.5m,机械效率η=0.9,摩擦系 数μ=0.1,负载移动距离0.3m,加减速时间ta=td=0.1s,匀 速时间tb=0.8s,静止时间t4=1s。联轴器的惯量Jc= 10x106 kg.m2 .请选择满足负载需求的最小功率伺服电机。