燃气轮机热力循环分类及其性能改善措施
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同济大学热能与动力工程专业
燃气轮机及内燃机技术
期末论述报告
姓名:******************
学号:******************
院系:机械与能源工程学院
专业:热能与动力工程
燃气轮机热力循环分类及其性能改善措施
摘要:本论文对燃气轮机概念进行了简述,以热力学热力循环角度来涉及燃气轮机的热力循环过程及工作原理问题、燃气轮机热力循环分类、各类热力循环的基本原理及其优越性和缺陷、从简单到复杂进行了比较。最后,简述了外界因素对燃气轮机工作效率的影响和改善燃气轮机性能的各种措施。
关键词: 燃气轮机热力循环 GE 公司 MS6001 型燃气轮机
引言: 燃气轮机是靠内部燃料燃烧释放出的热量直接加热空气,并通过行成的燃气将热能转换成机械功的一种热力机械,同样是内燃机。主要由叶轮式空气压缩机、燃气发生器(燃烧室)和燃气涡轮三个基本部分组成,还有燃料、润滑、冷却、启动、调节和安全等辅助系统。热力循环是指热力系统经过一系列状态变化,重新回复到原来状态的全部过程。热力循环分为正向循环及逆向循环。将热能转换为机械功的循环称为正向循环;将机械功转换为热的循环,称为逆向循环。通过工质的热力状态变化过程,可以将热能转化成机械能而做功,而要做出功一般必须通过工质的膨胀过程,但是任何一个热力膨胀过程都不可能一直进行下去,并连续不断地做出功。这是因为工质的状态将会变化到不适宜继续膨胀做功的情况,而且任何热力设备,其尺寸也都是有限的。
一、燃气轮机循环的四个热力过程与工作原理
通常,在可逆的理想情况下,燃气轮机是由四个热力过程组成的正向循环来实现把热能转化为机械功的动力机械,它们是:
(1)理想绝热压缩过程
对于燃气轮机循环,压缩过程是在压气机中完成,过程中工质状态参数将按绝热过程的规律(pvk=常数)进行变化:压力不断上升,比容逐渐减小,温度伴随增高。由于工质流量相对大、对外界的散热很小,通常认为与外界没有热量交换,因而是绝热过程,即工质与外界没有热交换,工质状态变化是靠部分透平膨胀功驱动压气机来实现的。另外,在理想的可逆情况下,压缩过程中工质的熵值为常数不变,因此理想绝热压缩过程又称为等熵压缩过程;而实际的绝热压缩过程,由于存在的摩擦涡流等因素的影响,将使工质内能增加(温度升高更多一些),等价于从外部加入同样数量的热量,过程是不可逆的,熵总是增加的。
(2)等压燃烧过程
燃气轮机循环的加热过程是在燃烧室中完成的,从压气机出来的高压气体吸收喷入燃烧室的燃料燃烧释放的热量,燃烧过程的结果是使工质吸收了外界加入的热量Q1,而没有与外界发生机械功的交换。对于加热过程,工质状态参数将按定压过程的规律(v/T=常数)进行变化:压力恒定不变(p=常数),比容(比体积)不断增加,温度逐渐上升,熵值也相应增加。
(3)理想绝热膨胀过程
燃气轮机循环的膨胀做功过程是在透平中完成,过程中工质状态参数也将按绝热过程的规律(pvk=常数)进行变化,只不过变化的趋势与压缩过程正相反:压力不断下降,比容逐渐增大,温度伴随降低。通常也认为与外界没有热量交换,因而也是绝热过程,即工质与外界没有热交换,借助工质状态变化来实现膨胀做功。同样,在理想的可逆情况下,膨胀过程中工质的熵值为常数不变,因此理想绝热膨胀过程又称为等熵膨胀过程;而实际的绝热膨胀过程,由于存在的摩擦涡流等因素的影响,过程是不可逆的,熵总是增加的。
(4)等压放热过程
燃气轮机循环的是向大气环境排气放热来完成的,由于环境相对与循环系统体系来说,
可认为是“无限大”,其压力为恒定不变,并与外界没有机械功传递。这样,对于放热过程,工质状态参数也将按如下变化:压力恒定不变(p=常数),比容(比体积)不断减小,温度逐渐下降。
二、燃气轮机热力循环分类
2.1理想简单热力循环
图中:
1-2 压气机绝热压缩过程
2-3 燃烧室中定压吸热过程
3-4 透平中绝热膨胀过程
4-1 大气中定压放热过程
热力学第一定律:Q=△U+W
假设工质为理想气体,四个过程
均为可逆过程Cp和流量保持不变,假定空气比热与燃气比热近似相等。
2.2实际简单热力循环
特点:
热力过程中有各种能量损耗,是不可逆的;
工质的热力性质和数量因燃烧而变。
假定条件(为便于与理想循环比较):
①具有相同的压比和初始温度T1* ;
②涡轮前燃气初温相同,T3* = T3s* ;
③环境参数均为p0、T0,即p1* = p0 、T1* = T0
2.3 回热循环
燃气轮机的排气温度很高,一般为400℃至500℃,如能回收这一高温气体,就可提高燃气轮机效率。
如果采用高温排气加热从压气机出口的空气,再次吸收部分排气能量,提高进入燃烧室的温度,可使燃烧室中加入的燃料量减少,从而提高了热效率,在燃气轮机中加装回热器R,就可实现上述工作过程,这就是回热循环。
优点:可提高燃气轮机热效率
缺点:一、尺寸大,增加维护费用。
二、不适用高压比燃机。
在压缩过程中间,把工质引至冷却器冷却后,再回到压气机中继续压缩以完成压缩过程,此即间冷循环,其中IC是中间冷却器,它的应用使压气机分为低压气机LC和高压气机HC 两个部分。
间冷循环的目的是增加机组净功,但热效率会有所降低。
IC为中间冷却器
理论上,间冷次数无穷多时,压缩过程就变为等温压缩,压缩耗功降至最低,循环比功增加最多。最佳压比分配使循环比功最大。
优点:可提高比功。
缺点:一、增加了冷却器设备
二、间冷循环宜选取较高的压比
三、一般只能用一次
2.5再热循环
在膨胀过程中间,把工质引入再热燃烧室中加热后,再回到涡轮机中继续膨胀以完成膨胀过程,此即再热循环。其目的也是增加机组净功,但热效率会有所降低。
理论上,再热次数无穷多时,膨胀过程就变为等温膨胀,膨胀功达到最大,循环比功增加最多,最佳膨胀比分配使比功最大。
优点:可提高比功
缺点:一、增加了再热燃烧室设备
二、再热循环宜选取较高的压比
三、一般只能用一次