某工程的温度应力计算
大体积混凝土温度应力实用计算方法及控裂工程实例
![大体积混凝土温度应力实用计算方法及控裂工程实例](https://img.taocdn.com/s3/m/3814b647cdbff121dd36a32d7375a417876fc144.png)
大体积混凝土温度应力实用计算方法及控裂工程实例嘿,咱今儿就来聊聊大体积混凝土温度应力实用计算方法和控裂工程实例这档子事儿。
你想想看,那大体积混凝土,就好像是一个大块头,它可不简单呐!温度应力就像是藏在它身体里的小怪兽,要是不把这小怪兽给搞定,那可就要出大乱子啦!那怎么计算这个温度应力呢?这可不是随随便便就能搞定的事儿。
咱先来说说计算方法。
就好比咱要去量一个人的身高体重一样,得有一套靠谱的办法。
计算大体积混凝土温度应力也有它的门道。
咱得考虑好多因素呢,像混凝土的材料特性啦,环境温度啦,施工过程啦等等。
这就像是解一道复杂的谜题,得一步步慢慢来,不能着急。
比如说,咱得知道这混凝土在不同温度下会有啥变化,就像人在不同天气穿不同衣服一样。
然后呢,根据这些信息来算出温度应力有多大。
这可不是拍拍脑袋就能想出来的,得有真功夫才行!再来说说控裂工程实例。
你看那些高楼大厦、大桥大坝,它们可都是用大体积混凝土建起来的。
要是不做好控裂,那可不得了,说不定哪天就裂出个大口子来。
就好比有个大坝,那可是关系着好多人的生命财产安全呐!要是大坝因为温度应力裂了,那后果简直不堪设想。
所以啊,在工程中就得特别小心地处理这个问题。
他们会采取各种办法来控制温度应力,比如用合适的材料,调整施工工艺,做好养护工作等等。
就像照顾一个小婴儿一样,得精心呵护。
你想想,要是建个房子,没几年就裂得不成样子,那多难看呐,还不安全。
所以啊,这个大体积混凝土温度应力实用计算方法和控裂工程实例可太重要啦!咱平常生活中可能不太会注意到这些,但这些可都是建筑工程里的关键啊!没有这些,那些宏伟的建筑怎么能建得起来呢?总之,大体积混凝土温度应力实用计算方法就像是一把钥匙,能打开解决问题的大门;而控裂工程实例则是一面镜子,让我们看到实际应用中的成功与失败。
我们得好好研究它们,让我们的建筑更加坚固、美观、安全。
难道不是吗?你说要是没有这些,那我们的城市会变成什么样呢?。
温度应力系数
![温度应力系数](https://img.taocdn.com/s3/m/c7f0192a876fb84ae45c3b3567ec102de2bddf92.png)
温度应力系数引言在材料科学和工程中,温度应力系数是一项重要的参数,它描述了在温度变化下材料的应变程度。
温度变化会导致材料的尺寸发生变化,而温度应力系数可以帮助我们理解和预测材料在温度变化条件下的应力响应。
本文将深入探讨温度应力系数的定义、计算方法以及其在工程中的应用。
温度应力系数的定义温度应力系数是指材料在温度变化下的单位温度变形引起的应力。
它通常用符号α表示。
温度应力系数反映了材料对温度变化的敏感度,即温度单位变化引起的应力变化程度。
温度应力系数的计算方法温度应力系数的计算方法取决于具体的材料类型和应力状态。
以下是常见的计算方法:线性热膨胀系数对于大多数无应力的材料,温度应力系数可以直接通过线性热膨胀系数来计算。
线性热膨胀系数是描述材料在温度变化下长度变化的比例系数。
它通常用符号α表示。
线性热膨胀系数可以通过以下公式计算:α = (1 / L) * (dL / dt)其中L是材料的长度,dL是长度变化量,dt是温度变化量。
材料的弹性性质对于具有应力的材料,温度应力系数的计算需要考虑材料的弹性性质。
弹性性质是指材料在受力作用下能够恢复原状的能力。
材料的弹性性质可以通过应力-应变关系来描述。
应力-应变关系可以用弹性模量来表示,常见的弹性模量包括压缩模量、剪切模量和杨氏模量。
根据材料的应力-应变曲线,可以计算出温度应力系数。
温度应力系数的工程应用温度应力系数在工程中有广泛的应用。
以下是一些常见的工程应用:材料选择在工程设计中,材料的温度应力系数是确定材料是否适合特定工作温度范围的重要考虑因素。
较低的温度应力系数意味着材料对温度变化的响应较小,更适合用于高温环境。
相反,较高的温度应力系数意味着材料对温度变化的响应较大,更适合用于低温环境。
结构设计温度应力系数对于结构设计也非常关键。
在温度变化条件下,材料的应变会导致结构的变形和位移。
通过合理选择材料和结构设计,可以最小化由温度变化引起的应力和变形,确保结构的稳定性和安全性。
混凝土施工温度应力计算方法
![混凝土施工温度应力计算方法](https://img.taocdn.com/s3/m/85b217f027fff705cc1755270722192e453658e0.png)
混凝土施工温度应力计算方法混凝土浇筑后18d左右,水化热量值基本达到最大,所以计算此时温差和收缩差引起的温度应力。
1、混凝土收缩变形值计算Zy(t)=Zy°(l - e-0011) XMiXM2XM3X……xM10式中:Zy(t)——各龄期混凝土的收缩变形值Zy°——标准状态下混凝土最终收缩量,取值3. 24x10-4e——常数,为2.718t——从混凝土浇筑后至计算时的天数ML M3……M10——考虑各种非标准条件的修正值,按《简明施工计算手册》表5-55 取用,Mk 1.0、M2=1.35X M3=l. 0X M t=l. 41X M5=l. 0X M6=0. 93 , M7=0. 77 , 1. 4、M9=l. 0 , M10=0. 9Zy(⑻=3. 24X10-4(l - 2. 718-00IX18) X 1 X 1. 35X 1 X 1.42X 1 X0. 93X0. 77X 1. 4X 1X0. 9=0. 93X 10-42、混凝土收缩当量温差计算Ty(t)=- Zy(t)/a式中:Ty⑴——各龄期混凝土收缩当量温差(℃),负号表示降温。
Zy⑴——各龄期混凝土的收缩变形值a——混凝土的线膨胀系数,取1. OX ICTTy(t)=-O. 93X10 71. 0X10-5=-9. 3℃3、混凝土的最大综合温度差△T=T2 + 2/3T,nax + Ty(t) - Tn式中:AT——混凝土的最大综合温度差(℃ )L ——混凝土拌合经运输至浇筑完成时的温度(℃)Lax——混凝土最高温开值(℃ )Ty(t)——各龄期混凝土收缩当量温度(℃ )Tn——混凝土浇筑后达到稳定时的气温,取55℃△T=35. 95+2/3X78. 3+(-9. 3) - 35=43. 85℃4、混凝土弹性模量计算E(t)=Ee(l -e-0 091)式中:E(t)——混凝土从浇筑后至计算时的弹性模量(N/mn?)Ee——混凝土的最终弹性模量(N/mm2),可近视取28d的弹性模量。
第十五章工程结构温度应力计算方法
![第十五章工程结构温度应力计算方法](https://img.taocdn.com/s3/m/4fd8413d0b4e767f5acfcec4.png)
图15.2 砖混组合体胀缩变形关系图
图15.3 墙板边界变形条件的建立 注:1. 顶板;2. 墙体;3. 底板。
第十五章 工程结构温度应力计算方法
砖混结构温度应力实用计算方法
将钢筋混凝土顶板与墙体分离,放松相互之间的约束力,则顶板及墙 体在温差及干湿影响下,其自由应变量分别为 c1 ac (T1 T ) c1 (15-1) (15-2) 根据变形协调条件,墙与板接触面纤维的应变方程如图15.2所示 c1 b1 ec1 eb1 (15-3) 同样,将钢筋混凝土底板与上、下层墙体分离,则有 (15-4) c 2 ac (T3 T ) c 2
b2 b b b
Q1 Q2
(Q1 Q2 )h
将式(15-7)至式(15-10)代入式(15-3)、式(15-6)得
15.11
第十五章 工程结构温度应力计算方法
砖混结构温度应力实用计算方法
( 1 1 h 1 h )Q1 ( )Q2 Ac1 2Z c1 Ec bhEb 2Z b Eb bhEb 2Z b Eb
15.9
第十五章 工程结构温度应力计算方法
砖混结构温度应力实用计算方法
顶板 y T1 墙板 T2 Q3 Q2 T3 Q2 Q2 Q2 (c) 底板 Q1 Q1 Q3 Q1 Q11 Q1 (b) 顶板 底板 Q2 Q2 Q1 Q1
δ
Q1 Q1 Q3
Q1
h
Q3 Q2
δ
Q2 Q2 底板 (a) 组合体
a
第十五章 工程结构温度应力计算方法
砖混结构温度应力实用计算方法
c1 b1、 c 2、 b 2 应先按当量温差法, (实际上如果考虑干湿胀缩影响时, 、 将干湿胀缩影响因素考虑到计算温度中去,使计算过程简化。) 于是得 Q1 [(2 Ac1Zc1ZbbhEb Ec ) (2Zb bh2 )( Ac1Ec Zc1 )Q2 ]/ (15-16) Q2 [ (2 Ac 2 EcbhEb Zb ) (2 Ac1bhZc1Zb Eb Ec )(2Zb bh2 ) Ac 2 E]/ [(4bhEb Zb ) (2 Ac 2 Eb Zb Ac 2 Ecbh2 ) (2Zb bh2 )2 Ac1Ec2Zc1 Ac 2 ](15-17) 需要说明的是,以上计算考虑了墙板偏心受拉(压)的弯曲作用,与墙板 底边被嵌固的实际情况仍有出入。
工程的温应力计算
![工程的温应力计算](https://img.taocdn.com/s3/m/6eb46357f12d2af90242e6a1.png)
一、温差效应理论1,局部温差不对整体结构产生影响,只考虑整体温差。
2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。
3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。
二、温差取值对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2:1,施工阶段最低或最高温度(T2)选取:A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。
B,对地上结构,可以认为完全暴露在室外。
可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。
2,施工阶段基准温度(T1)选取:结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。
因此后浇带浇注时的温度作为温差效应里的基准温度T1。
当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。
当施工进度无法掌握时,基准温度可取近十年月平均气温值T1=(0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1+16.9+9.2+3.5)/12=13.3。
因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。
只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。
探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。
混凝土温度应力的计算原理
![混凝土温度应力的计算原理](https://img.taocdn.com/s3/m/b0105be0370cba1aa8114431b90d6c85ec3a88c7.png)
混凝土温度应力的计算原理一、引言混凝土是建筑工程中常用的建筑材料,它具有强度高、耐久性好等特点。
但是,混凝土在硬化过程中会产生温度,这种温度会导致混凝土的体积发生变化,从而产生温度应力。
因此,在混凝土结构设计中,需要考虑混凝土温度应力的影响。
本文将介绍混凝土温度应力的计算原理。
二、混凝土温度应力的产生机理混凝土在硬化过程中,会因为水泥的水合反应而产生放热。
同时,混凝土表面会受到外界的影响,从而产生热量的吸收或散发。
这些因素都会导致混凝土温度的升高或降低,从而产生温度应力。
三、混凝土温度应力的分类混凝土温度应力可分为早期温度应力和长期温度应力。
早期温度应力是指混凝土在浇筑后的前几天内,由于水泥水化反应放热,混凝土温度升高从而产生的应力。
这种应力在混凝土强度未达到一定水平时较为明显。
长期温度应力是指混凝土在长时间内,由于温度变化而产生的应力。
这种应力与混凝土的强度有关,其产生的时间一般在混凝土强度达到一定水平后。
四、混凝土温度应力的计算方法混凝土温度应力的计算方法可以分为两种,分别是杆件法和板块法。
杆件法是指将混凝土结构看成一系列杆件,通过计算单个杆件的应力来计算整个结构的温度应力。
这种方法适用于混凝土结构比较简单的情况。
板块法是指将混凝土结构看成一系列板块,通过计算单个板块的应力来计算整个结构的温度应力。
这种方法适用于混凝土结构比较复杂的情况。
五、杆件法的计算方法杆件法的计算方法可以分为一维杆件法和二维杆件法。
一维杆件法是指将混凝土结构看成一维线性结构,通过计算单个杆件的应力来计算整个结构的温度应力。
该方法适用于混凝土结构比较简单的情况。
二维杆件法是指将混凝土结构看成二维的结构,通过计算单个杆件的应力来计算整个结构的温度应力。
该方法适用于混凝土结构比较复杂的情况。
杆件法的计算公式如下:温度应力σt = αEΔT其中,α为混凝土的线膨胀系数,E为混凝土的弹性模量,ΔT为混凝土温度的变化量。
六、板块法的计算方法板块法的计算方法可以分为平面板块法和三维板块法。
工程的温度应力计算
![工程的温度应力计算](https://img.taocdn.com/s3/m/29479784db38376baf1ffc4ffe4733687e21fc3e.png)
工程的温度应力计算温度应力是指由于温度变化引起的物体内部的应力。
在工程领域中,温度应力的计算对于材料的选择、结构设计和工程的安全性评估都具有重要意义。
本文将介绍温度应力的计算方法以及常见的应用案例。
温度应力的计算方法主要有两种:线性热弹性法和非线性热塑性法。
线性热弹性法是一种基于线性弹性理论的计算方法,适用于温度变化幅度较小、材料线性弹性行为较好的情况。
该方法的基本步骤如下:1.确定温度应变:根据温度变化情况和材料的线膨胀系数,计算出温度应变。
2.确定材料的弹性模量:根据材料的力学特性和温度,选择适当的弹性模量。
3.计算温度应力:根据线性弹性理论,利用得到的温度应变和弹性模量,计算出温度应力。
非线性热塑性法是一种基于材料的非线性力学行为的计算方法,适用于温度变化幅度较大、材料非线性行为较明显的情况。
该方法的基本步骤如下:1.确定温度应变:根据温度变化情况和材料的热膨胀系数,计算出温度应变。
2.确定材料的本构关系:根据材料的热塑性行为,选择适当的本构关系。
3.进行有限元分析:利用有限元分析软件,建立模型并进行计算。
4.计算温度应力:根据模型的计算结果,得到温度应力。
温度应力的计算在工程中有许多应用案例。
以下是一些常见的案例:1.管道的热应力计算:管道在运行过程中由于温度变化会产生应力,如果应力超过材料的强度极限,就会导致管道的破裂。
因此,计算管道的热应力是管道工程设计的重要环节。
2.钢结构的温度应力计算:钢结构在夏季高温和冬季低温的环境中,由于温度变化会产生应力,如果应力过大,就会引起结构的变形和破坏。
因此,计算钢结构的温度应力是钢结构工程设计的重要内容。
3.复合材料的热应力计算:复合材料由于材料的组分不同,在温度变化时会产生不同的热应力。
对于复合材料的设计,需要计算不同温度下的热应力,以保证材料的安全性。
4.太阳能电池板的温度应力计算:太阳能电池板在太阳光的照射下会发生温度变化,如果温度应力过大,就会影响电池板的性能和寿命。
大体积混凝土温度应力实用计算方法及控制工程实例
![大体积混凝土温度应力实用计算方法及控制工程实例](https://img.taocdn.com/s3/m/10924f70814d2b160b4e767f5acfa1c7aa0082bb.png)
大体积混凝土温度应力实用计算方法及控制
工程实例
大体积混凝土的温度应力主要由于混凝土内部温度梯度不均匀所
引起,温度应力大小与混凝土的水泥含量、骨料类型、孔隙结构以及
环境温度等因素有关。
计算温度应力可采用以下公式:σ=αEΔT+(1-ν)αmΔT,其中,σ为温度应力,α为混凝土的线膨胀系数,E为混凝土的弹性模量,
ν为混凝土的泊松比,αm为混凝土的平均线膨胀系数,ΔT为混凝土内部温度差。
控制大体积混凝土的温度应力,可采取以下措施:
1. 使用高性能混凝土材料,降低混凝土线膨胀系数;
2. 对混凝土的成分、配合比等进行优化设计,降低混凝土内部温度梯度;
3. 控制施工环境的温度和湿度,提高混凝土的早期强度和抗裂性能;
4. 采用降温措施,如水帘喷淋、冷却剂等,降低混凝土的温度。
实际工程中,可通过对混凝土施工过程进行监控和管控,以及采
用温度预应力技术等措施,有效控制大体积混凝土的温度应力。
例如,在某大型桥梁工程中,采用了温度预应力技术,并通过建立温度控制
模型对施工过程进行精细化监控,成功地控制了混凝土的温度应力,
确保了施工质量和结构安全。
温度应力计算·
![温度应力计算·](https://img.taocdn.com/s3/m/47c456af8762caaedd33d473.png)
施工配合比(kg/m3)二.温度计算(1)绝热温升Tmax′=WQ/γC(1-e-mt) Tmax′---绝热温升Q-----水泥水化热Q=377x103J/KgC-----砼比热C=0.96X103J/(Kg.℃)γ-----砼重度γ=2400Kg/M3W-----每立方米水泥重量260 Kg/M3m-----热影响系数,m=0.43+0.0018QTmax′=260X377X103/0.96X103X2400(1-e-1.10X3) =44℃Tmax=8℃+44℃=52℃(12℃为入模温度)相应也可以建立绝热温度见公式:Tmax′=WQ/γCxε+F/50F-----粉煤灰用量ε――――不同浇筑块的热系数Tmax′=260X377X103/Tmax=8+55=63℃取Tmax=63℃三. 温应力计算1.将砼的收缩随时间的进程换算成当量温度计算:Ty(t)= εy(t)/αα=1x10-5砼线膨胀系数εy(t)=ε0M1M2M3······M10(1-e0.01t)Ty(t)------当量温度εy(t)----任意时间的收缩(mm/mm)M1-----水泥品种为普通水泥,取1.0M2-----水泥细度为4000孔,取1.35M3-----骨料为石灰石,取1.00M4-----水灰比为0.52,取1.64M5-----水泥浆量为0.2,取1.00M6------自然养护30天,取0.93M7------环境相对湿度为50%,取0.54M8------水里半径倒数为0.4,取1.2M9------机械振捣,取1.00M10------含筋率为8%,取0.9ε0--ε∞---最终收缩,在标准状态下ε0=3.24X10-4εy(30)=1.01x10-4Ty(30)=10.1℃εy(27)=0.92 x10-4Ty(27)=9.2℃εy(24)=0.83 x10-4Ty(24)=8.3℃εy(21)=0.73 x10-4 Ty(21)=7.3℃εy(18)=0.64 x10-4Ty(18)=6.4℃εy(15)=0.54 x10-4Ty(15)=5.4℃εy(12)=0.439 x10-4 Ty(12)=4.39℃εy(9)=0.335 x10-4 Ty(9)=3.35℃εy(6)=0.226 x10-4 Ty(6)=2.26℃εy(3)=0.114 x10-4 Ty(3)=1.14℃计算中心温度当量温差:△T6=2.26-1.14=1.12℃△T9=3.35-2.26=1.09℃△T12=4.39-3.35=1.04℃△T15=5.4-4.39=1.01℃△T18=6.4-5.4=1.0℃△T21=7.3-6.4=0.9℃△T24=8.3-7.3=1.0℃△T27=9.2-8.3=0.9℃△T30=10.1-9.2=0.9℃2.计算中心温度砼基础施工时处于散热条件,考虑上下表面及侧面的散热条件,当体积厚达3m时,,散热影响系数取0.97;当中心浇筑完第四天后,水化热达峰值。
温度应力计算知识讲解
![温度应力计算知识讲解](https://img.taocdn.com/s3/m/830f427fb90d6c85ec3ac669.png)
温度应力计算收集于网络,如有侵权请联系管理员删除第四节 温度应力计算一、温度对结构的影响1 温度影响(1)年温差影响指气温随季节发生周期性变化时对结构物所引起的作用。
假定温度沿结构截面高度方向以均值变化。
则12t t t -=∆12t t t -=∆该温差对结构的影响表现为:对无水平约束的结构,只引起结构纵向均匀伸缩;对有水平约束的结构,不仅引起结构纵向均匀伸缩,还将引起结构内温度次内力;(2)局部温差影响指日照温差或混凝土水化热等影响。
A :混凝土水化热主要在施工过程中发生的。
混凝土水化热处理不好,易导致混凝土早期裂缝。
在大体积混凝土施工时,混凝土水化热的问题很突出,必须采取措施控制过高的温度。
如埋入水管散热等。
B:日照温差是在结构运营期间发生的。
日照温差是通过各种不同的传热方式在结构内部形成瞬时的温度场。
桥梁结构为空间结构,所以温度场是三维方向和时间的函数,即:xTy=f,(t z,),i该类三维温度场问题较为复杂。
在桥梁分析计算中常采用简化近似方法解决。
假定桥梁沿长度方向的温度变化为一致,则简化为二维温度场,即:x=Tf(t z,),i进一步假定截面沿横向或竖向的温度变化也为一致,则可简化为一维温度场。
如只考虑竖向温度变化的一维温度场为:=Tf(t z),i我国桥梁设计规范对结构沿梁高方向的温度场规定了有如下几种型式:2 温度梯度f(z,t)(1)线性温度变化梁截面变形服从平截面假定。
收集于网络,如有侵权请联系管理员删除对静定结构,只引起结构变形,不产生温度次内力;对超静定结构,不但引起结构变形,而且产生温度次内力;(2)非线性温度变化梁在挠曲变形时,截面上的纵向纤维因温差的伸缩受到约束,从而产生约束温度应力,称为温度自应力σ0s。
对静定结构,只产生截面的温度自应力;对超静定结构,不但产生截面的温度自应力,而且产生温度次应力;二、基本结构上温度自应力计算1 计算简图2 计算公式和χ的计算3 ε三、连续梁温度次内力及温度次应力计算采用结构力学中的力法求解。
温度应力计算
![温度应力计算](https://img.taocdn.com/s3/m/976220427ed5360cba1aa8114431b90d6c8589a6.png)
温度应力计算B.6.1自约束拉应力的计算可按下式计算:G(D=f∙∑∆T b(f)∙E iω∙H f(Gr)(B.6.1)式中:S⑴——龄期为t时,因混凝土浇筑体里表温差产生自约束拉应力的累计值(MPa);△Tii(t)——龄期为t时,在第i计算区段混凝土浇筑体里表温差的增量(°C)。
E i(t)——第i计算区段,龄期为t时,混凝土的弹性模量(MPa);α——混凝土的线膨胀系数;H i(t,τ)——龄期为T时,在第i计算区段产生的约束应力,延续至t时的松弛系数,可按表B.6.1取值。
注:T为龄期,H(t,T)为在龄期为T时产生的约束应力,延续至t时的松弛系数。
B.6.2混凝土浇筑体里表温差的增量可按下式计算:∆T b(0=∆T1(r)-∆T l(z-J) (B.6.2) 式中:j——为第i计算区段步长(d)。
B.6.3在施工准备阶段,最大自约束应力可按下式计算:Ozm B X=S∙E(力∙∆Tι∏wx∙H(t9τ)(B.6.3)式中:Ozmax --- 最大自约束应力(MPa);△Timax一混凝土浇筑后可能出现的最大里表温差(℃);E(t)——与最大里表温差"lmax相对应龄期t时,混凝土的弹性模量(MPa);H(t,T)——在龄期为T时产生的约束应力,延续至t时(d)的松弛系数。
B.6.4外约束拉应力可按下式计算:HσM=∑∆T2j(0∙E iω∙H,(f")∙R iω1Z z I==I(R6.4-1) ∆T2,(r)=∆T2(r-J)-∆T2(r)(R6.4-2)R iω=1 ----------------- 71- ------ ---- (R6.4-3)c0sh(Vτ⅛7),⅜)式中:σ×(t)——龄期为t时,因综合降温差,在外约束条件下产生的拉应力(M Pa);△T2i(t)——龄期为t时,在第i计算区段内,混凝土浇筑体综合降温差的增量(o C)eμ——混凝土的泊松比,取0.15;Ri(t)——龄期为t时,在第i计算区段,外约束的约束系数。
大体积混凝土温度和温度应力计算
![大体积混凝土温度和温度应力计算](https://img.taocdn.com/s3/m/708017f64128915f804d2b160b4e767f5acf80be.png)
大体积混凝土温度和温度应力计算在大体积混凝土施工前,必须进行温度和温度应力的计算,并预先采取相应的技术措施控制温度差值,控制裂缝的开展,做到心中有数,科学指导施工,确保大体积混凝土的施工质量。
(一)温度计算搅拌站提供的混凝土每立方米各项原材料用量及温度如下:水泥:367kg,11℃;砂子:730kg,13℃,含水率为3%;石子:1083kg,9℃,含水率为2%;水:195kg,9℃;粉煤灰:35kg,11℃;外加剂:27kg,11℃。
混凝土拌合物的温度:T0=[0.9(mceTce+msaTsa+mgTg)+4.2Tw(mw-ωsamsa-ωgmg)+c1(ωsamsa+Tsa+wgmgTg)-c2(wsamsa+wgmg)]÷[4.2mw +0.9(mce+msa+mg)]式中T0——混凝土拌合物的温度(℃);mw、mce、msa、mg——水、水泥、砂、石的用量(kg);Tw、Tce、Tsa、Tg——水、水泥、砂、石的温度(℃);wsa、wg——砂、石的含水率(%);c1、c2——水的比热容(kJ/kg·K)及溶解热(kJ/kg)。
当骨料温度>0℃时,C1=4.2,C2=0;≤0℃时,c1=2.1,c2=335。
为计算简便,粉煤灰和外加剂的重量均计算在水泥的重量内。
T0=[0.9(429×11+730×13+1083×9)+4.2×9(195-3%×730-2%×1083)+4.2(3%×730×13+2%×1083×9)-0]÷[4.2×195+0.9(429+730+1083)]=10.3℃。
混凝土拌合物的出机温度:T1=T0-0.16(T0-Ti)式中T1——混凝土拌合物的出机温度(℃);Ti——搅拌棚内温度(℃)。
T1=10.3-0.16(10.3-14)=10.9℃3.混凝土拌合物浇筑完成对的温度T2=T1-(att+0.032n)(T1-Ta)式中T2——混凝土拌合物经运输至浇筑完成时的温度(℃);a——温度损失系数(h-1);tt——混凝土自运输至浇筑完成时的时间(h);n——混凝土转运次数;Ta——运输时的环境气温(℃)。
水泥混凝土路面温度应力的计算与分析
![水泥混凝土路面温度应力的计算与分析](https://img.taocdn.com/s3/m/6c82bd5fa66e58fafab069dc5022aaea998f41ea.png)
水泥混凝土路面温度应力的计算与分析水泥混凝土路面的温度应力是路面施工和使用过程中需要考虑的一个重要问题,它对路面的稳定性和耐久性有着直接的影响。
在本篇文章中,我将详细介绍水泥混凝土路面温度应力的计算与分析方法,并分享我的观点和理解。
一、温度应力的原因与表现水泥混凝土路面温度应力主要由两个原因引起:温度变化和限制条件。
当路面受到温度变化的作用时,水泥混凝土路面会产生热胀冷缩效应,从而产生内部的温度应力。
路面的几何限制条件(如交通荷载、边界约束等)也会导致温度应力的产生。
这些温度应力在路面表面的表现形式是裂缝和变形。
由于水泥混凝土的有限的抗拉强度,温度引起的应力超过其抗拉强度时,路面就会产生裂缝。
由于温度应力的作用,路面可能会出现变形现象,如变形、凸起等。
二、温度应力的计算与分析方法下面我将介绍两种常用的水泥混凝土路面温度应力的计算与分析方法。
1. 数值模拟方法数值模拟方法是目前常用的一种计算水泥混凝土路面温度应力的方法。
它基于有限元原理,通过将路面划分为小的单元,对每个单元进行温度场和应力场的计算,最后通过求解大量单元的方程组得到整体的温度应力分布。
数值模拟方法的优点在于能够考虑复杂的边界条件和材料性能,并且计算结果准确可靠。
然而,该方法需要较为复杂的数值计算技术,对计算机硬件和软件要求较高,而且计算过程较为繁琐。
2. 经验公式方法经验公式方法是另一种计算水泥混凝土路面温度应力的方法。
该方法基于已有的实测数据和经验公式,通过简化计算过程,得到大致的温度应力估计值。
这种方法的优点是简单易行,不需要复杂的计算过程和专业的数值模拟技术。
然而,由于经验公式方法忽略了一些影响因素和细节,因此计算结果可能不够精确。
该方法更适用于一般性的工程设计和初步评估。
三、个人观点与理解在我看来,水泥混凝土路面温度应力的计算与分析是确保路面稳定性和耐久性的重要环节。
准确地计算和分析温度应力,不仅可以指导工程设计和施工过程,还可以为路面维护和养护提供依据。
混凝土温度应力计算
![混凝土温度应力计算](https://img.taocdn.com/s3/m/baa514c4a216147916112874.png)
混凝土温度应力计算
土建工程大体积混凝土最高温升值可按式(4-49)计算。
式中,T′max 为混凝土内部的最高温升值(℃);t0为 混凝土浇筑温度(℃),计算时,在无气温和浇筑温度的关 系值时,可采用计划浇筑日期的当地平均气温(℃);Q为 每立方米混凝土中水泥的用量(kg/m3),上述两式适用于 强度等级为42.5级的矿渣硅酸盐水泥;F为每立方米混凝土 中粉煤灰的用量(kg/m3)。
高层建筑施工
混凝土温度应力计算
1. 混凝土绝热最高温升值计算
大体积混凝土中心部分的最高温度,在绝热条件下是混凝土浇 筑温度与水泥水热化之和。但实际的施工条件表明,混凝土内部的 温度与外界环境之间必然存在着温差,加上结构物的四周又具备一 定的散热条件,因此在新浇筑的混凝土与其周围环境之间必然会发 生热能交换。故大体积混凝土内部的最高温度,是由浇筑温度、水 泥水化后产生的水化热量全部转化为温升后的最后温度,称为绝热 最高温升,一般用Tmax表示,可按式(4-48)计算。
混凝土温度应力计算
不同龄期几种常用水泥在常温下释放的水化热值如表4-14 所示。从表中可以看出,水泥水化热值与水泥品种、水泥强度 等级和混凝土龄期等因素有关。
注:表中数值是按平均硬化温度为15 ℃时编制的,当平 均温度为7~10 ℃时,表中数值按60%~70%采用;当采用粉 煤灰硅酸盐水泥、火山灰硅酸盐水泥时,其水化热值可参考矿 渣硅酸盐水泥的数值。
混凝土温度应力计算
2. 混凝土最高温升值计算
自1979年以来,对已施工的许多大体积混凝土结构的 现场实测升温、降温数据资料,经过统计整理分析后得出: 凡混凝土结构厚度在1.8 m以下的,在计算最高温升值时, 可以忽略水灰比、单位用水量、浇筑工艺及浇筑速度等次要 因素的影响,而只考虑单位体积水泥用量及混凝土浇筑温度 这两个主要影响因素,以简便的经验公式进行计算。工程实 践证明,其精确程度完全可以满足指导施工的要求,其计算 值与实测值相比误差较小。
(整理)温度场和温度应力计算
![(整理)温度场和温度应力计算](https://img.taocdn.com/s3/m/4b4eaa70ff00bed5b9f31dfa.png)
附计算书3:温度场和温度应力计算一、温度场计算计算以本工程1.2m 厚底板为例,用差分法计算底板28d 水化热温升曲线。
计算中各参数的取值如下:W ——每m 3胶凝材料用量,440kg/ m 3;Q ——胶凝材料水化热总量(kJ/kg );,本例采用实测值260kJ/kg ;c ——混凝土的比热,取1.0kJ/ (kg ∙C );ρ——混凝土的质量密度,取2400kg/ m 3;α——导温系数,取0.0035m 2/h ;m ,取0.5。
混凝土的入模温度取10C ,地基温度为18C ,大气温度为18C 。
温度场计算差分公式如下:1,1,,1,,222(21)2n k n kn k n kn k T T t t T aT a T x x -+++∆∆=∙--+∆∆∆ (B.4.2-1)⑴试算t ∆、x ∆,确定2x t∆∆α。
取t ∆ = 0.5天 = 12小时,x ∆ = 0.4m ,即分3层 则412625.04.0120035.022≈=⨯=∆∆x t α,可行。
代入该值得出相应的差分法公式为k k n kn k n k n T T T T T ∆+⋅++⋅=+-+,,1,11,475.02525.0⑵画出相应的计算示意图,并进行计算。
底板厚1.2m ,分3层,每层0.4m ,相应的计算示意如下图。
从上至下各层混凝土的温度分别用1T 、2T 、3T 表示,相应k 时刻各层的温度即为k T ,1、k T ,2、k T ,3。
混凝土与大气接触的上表面边界温度用0T 表示,与地基接触的下表面边界温度用0'T 表示。
k = 0,即第05.00=⋅=∆⋅t k 天, 上表面边界0T ,取大气温度,0T = 18C 各层混凝土温度取入模温度,即0,1T =0,2T = 0,3T = 10C下表面边界0'T ,取地基温度,0'T = 18C ;k = 1,即第5.05.01=⋅=∆⋅t k 天,温升=-⋅⋅⋅=-=∆⋅⋅-⋅-⋅-∆⋅⋅-∆⋅-⋅-)(24000.1260440)(5.015.05.0)11(5.0)1(max 1e e e eT T t k m tk m10.544C上表面边界温度0T ,散热温升为0,始终保持不变,0T = 18C第一层混凝土温度1,1T ,见计算图示中方框1,1,1T 的边界为0T 和0,2T ,在0,1T 的基础上考虑温升1T ∆,即C T T T T T 644.22475.02525.010,10,201,1=∆+⋅++⋅=第二层混凝土温度1,2T ,见计算图示中方框2,1,2T 的边界为0,1T 和0,3T ,在0,2T 的基础上考虑温升1T ∆,即C T T T T T 544.20475.02525.010,20,30,11,2=∆+⋅++⋅=m m m第三层混凝土温度1,3T ,见计算图示中方框3,1,3T 的边界为0,2T 和0'T ,在0,3T 的基础上考虑温升1T ∆,即2,003,13,010.5250.47522.6442T T T T T C'+=+⋅+∆=︒下表面边界温度0'T ,需要考虑散热温升2/1T ∆,所以需每一步都需进行修正。
温度应力计算公式
![温度应力计算公式](https://img.taocdn.com/s3/m/99d41535f56527d3240c844769eae009581ba228.png)
温度应力计算公式温度应力是物体在受到温度变化时产生的应力。
当物体处于不均匀温度场中时,由于物体不同部分的膨胀系数不同,就会产生应力,这种应力称为温度应力。
温度应力的大小与物体材料的热膨胀系数、温度变化量以及物体内部的约束情况有关。
温度应力的计算可以使用线性热弹性材料的温度应力公式:\[ \sigma = \alpha \cdot E \cdot \Delta T \]其中,\[ \sigma \] 是温度应力,\[ \alpha \] 是物体的热膨胀系数,\[ E \] 是杨氏模量,\[ \Delta T \] 是温度变化量。
这个公式的前提是物体只受到温度的影响,没有其他外力作用。
如果物体还受到其他外力作用,需要考虑这些外力的影响。
在计算温度应力时,可以采用以下几个步骤:1.确定物体的几何形状和材料性质,包括热膨胀系数和杨氏模量。
这些参数可以通过实验或者查阅相关资料获得。
2.确定温度变化量。
温度应力的计算需要知道物体的初始温度和最终温度之间的差值。
3. 将参数带入温度应力公式,计算出温度应力的数值。
注意单位的一致性,热膨胀系数一般以 \( 1/\text{℃} \) 为单位,杨氏模量一般以 \text{帕斯卡}(\text{Pa})为单位,温度变化量一般以摄氏度为单位,温度应力的单位为帕斯卡(\text{Pa})。
温度应力的计算公式可以通过引入热力学和弹性力学的知识推导得到。
在温度变化时,由于物体不同部分的温度不同,就会引起物体的体积膨胀或者收缩。
这种膨胀或者收缩会引起内部的应力分布,从而产生温度应力。
需要注意的是,温度应力只是物体在受到温度变化时产生的瞬时应力,不会一直存在。
一旦温度变化停止,温度应力就会消失。
温度应力的计算方法还有其他的一些公式,比如复杂几何形状的物体可以使用有限元方法进行计算。
不同的方法适用于不同的情况,根据具体的问题选择适合的计算方法。
总之,温度应力的计算是热力学和弹性力学的应用,通过使用温度应力公式,可以计算出物体在受到温度变化时产生的应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、温差效应理论1,局部温差不对整体结构产生影响,只考虑整体温差。
2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。
3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。
二、温差取值
对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度
T2:
1, 施工阶段最低或最高温度(T2)选取:
A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。
B, 对地上结构,可以认为完全暴露在室外。
可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33 度)。
2, 施工阶段基准温度(T1)选取:
结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。
因此后浇带浇注时的温度作为温差效应里的基准温度T1。
当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。
当施工进度无法掌握时,基准温度可取近十年月平均气温值T仁
(0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1 + 16.9+9.2+3.5 )/12
= 13.3。
因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进
行计算:降温温差T1-T2=15- (-9 ) =24C ;当计算地上结构升温温差时,升温温差T1-T2=15-33=18C。
表1 2000年~2009年青岛月平均气温
只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。
探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度 (T1)会降低,相应最大负温差也会减小
三、混凝土长期收缩的影响根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。
混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。
由于竖向构件的约束,水平构件的混凝土收缩会产生拉应变,这种应变可以和混凝土因温度变化产生的应变等效,可用产生等量应变的温度差(当量温差)计入混凝土收缩效应的影响。
参考王梦铁的《工程结构裂缝控制》中的相关计算方法,混凝土收缩应变的形式和发展与混凝土龄期密切相关,任意时间t (天数)时混凝土已完成的收缩应变为:
y(t) 3.24 10 4(1 e 0.01t)M1M2 M n 3.24 104(1 e 0.01t)
其中???为各种修正系数,各修正系数的取值和对应的影响因素见下表:
表8.3.1 计算混凝土收缩的修正系数
时间无限长即整个龄期混凝土的收缩徐变应变为
40 01 4
y( ) 3.24 10 (1 e . ) 3.24 10
这样,任意时间t (天数)时混凝土剩余未完成的收缩应变为:
混凝土收缩的应变量可等同于混凝土在一定负温差下产生的收缩应变量,混凝土温差应变为y T 其中a为混凝土线膨胀系数,a =1X 10-5/C
因此混凝土剩余未完成的收缩应变当量负温差为T y / 32.4 e
(1)假设结构后浇带在施工2个月后浇注,则结构剩余未完成的收缩应变当量负温差
为 T o y /
32 4 e 0.01 60 17.8 C ;
(1)假设结构后浇带在施工6个月后浇注,则结构剩余未完成的收缩应变当量负温差 为 %。
y /
32.4 e 0.01 180 5.4 C ;
计算时的总温差为季节温差与收缩当量温差相叠加,如果结构后浇带在施工 6个月后 封闭,则降温温差为24+5.4=29.4 C ;升温温差18-5.4=12.6 C 。
四、计算操作
采用PMSA 软件对整体模型进行温差和收缩效应分析,楼板采用 弹性
膜模拟,分层对整个平面内的节点施加相应的温差作用进行计算。
楼板应
刁梁扳顶面与柱顶对齐响下偏移0.5)
力不考虑梁及其翼缘对其的分担作用忌雑齟簇豔上砸都加
遍度荷載垂數
-1
」"4丄」
【1)为考虑砼的徐变应力松弛,砼构件的温度内力可
以乘以折减系数0.3,钢构件不折减;2)温度效应的组合贡献:可以取组 合值系数
0.7乘以分项系数1.2=0.84 ; 3)为考虑砼构件裂缝引起的刚度 退化,砼构件的刚度
(即混凝土弹性模量)可以乘以折减系数 0.85,钢构
件不折减。
】
从计算结果中可以读出楼板最大主拉应力值。
MPa (局部应力引起的 裂缝对整个结构的影响不大,可不考虑),也可读出相应楼板温度配筋面 积。
则需要配置双层双向温度筋的单层每延米钢筋面积:
A =(楼板应力-混凝土抗拉强度标准值 )x 楼板厚度X1000
S
2x 钢筋抗拉强度标准值
(ftk=2.02MPa ),三级钢(fyk=400MPs ),楼板厚度150mm 楼板温度应力 4.62MPa (拉力),则楼板单侧每米钢筋面积
如C30混凝土
碇枸件温度效应析咸锚
双层10@150(524 mn i )可满足要求。
至于温度效应引起的压力,混凝土 自身抗压强度基本可以抵消,不再另行计算。
A S =(4.62-2.01) X 150X 1000
2x400
=489mm 即需要另外附加的楼板温度钢筋为。