大数据挖掘技术地的综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据挖掘技术综述

随着计算机、网络技术的发展,获得有关资料非常简单易行。但对数量大、涉及面宽的数据,传统统计方法无法完成这类数据的分析。因此,一种智能化的、综合应用各种统计分析、数据库、智能语言来分析庞大数据资料的“数据挖掘” (Date Mining )技术应运而生。本文主要介绍了数据挖掘的基本概念以及数据挖掘的方法;本文对数据

掘的应用及其发展前景也进行了描述。

随着信息技术迅速发展,数据库的规模不断扩大,从而产生了大量的数据。激增的数据背后隐藏着许多重要的信息,人们希望能够对其行更高层次的分析,以便更好地利用这些数据。为给决策者提供一个统一的全局视角,在许多领域建立了数据仓库。但大量的数据往往使人们无法辨别隐藏在其中的能对决策提供支持的信息,而传统的查询、报表工具无法满足挖掘这些信息的需求。因此,需要一种新的数据分析技术处理大量数据,并从中抽取有价值的潜在知识,数据挖掘 (Data Mining )技术由此应运而生。数据挖掘技术也正是伴随着数据仓库技术的发展而逐步完善起来的数据挖掘是指从数据集合中自动抽取隐藏在数据中的那些有用信息的非平凡过程,这些信息的表现形式为:规则、概念、规律及模式等。它可帮助决策者分析历史数据及当前数据,并从中发现隐藏的关系和模式,进而预测未来可能发生的行为。数据挖掘的过程也叫知识发现的过程,它是一门涉及面很广的交叉性新兴学科,涉及到数据库、人工智能、数理统计、可视化、并行计算等领域。数据挖掘是一种新的信息处理技术,其主要特点是

对数据

库中的大量数据进行抽取、转换、分析和其他模型化处理,并从中提取辅助决策的关键性数据。数据挖掘是KDD( Knowledge Discovery in Database )中的重要技术,它并不是用规范的数据库查询语言(如SQL进行查询,而是对查询的内容进行模式的总结和内在规律的搜索。传统的查询和报表处理只是得到事件发生的结果,并没有深入研究发生的原因,而数据挖掘则主要了解发生的原因,并且以一定的置信度对未来进行预测,用来为决策行为提供有利的支持。

数据挖掘的研究融合了多个不同学科领域的技术与成果,使得目前的数据挖掘方法表现出多种多样的形式。从统计分析类的角度来说,统计分析技术中使用的数据挖掘模型有线形分析和非线形分析、回归分析、逻辑回归分析、单变量分析、多变量分析、时间序列分析、最近序列分析、最近邻算法和聚类分析等方法。利用这些技术可以检查那些异常形式的数据,然后,利用各种统计模型和数学模型解释这些数据,解释隐藏在这些数据背后的市场规律和商业机会。知识发现类数据挖掘技术是一种与统计分析类数据挖掘技术完全不同的挖掘技术,包括人工神经元网络、支持向量机、决策树、遗传算法、粗糙集、规则发现和关联顺序等。

传统的统计学为数据挖掘提供了许多判别和回归分析方法,常用的有贝叶斯推理、回归分析、方差分析等技术、贝叶斯推理是在知道新的信息后修正数据集概率分布的基本工具,处理数据挖掘中的分类问题,回归分析用来找到一个输入变量和输出变量关系的最佳模型,在回归分析中有用来描述一个变量的变化趋势和别的变量值的关系的线性回归,还有

用来为某些事件发生的概率建模为预测变量集的对数回归、统计方法中的方差分析一般用于分析估计回归直线的性能和自变量对最终回归的影响,是许多挖掘应用中有力的工具之一。

关联规则是一种简单,实用的分析规则,它描述了一个事物中某些属性同时出现的规律和模式,是数据挖掘中最成熟的主要技术之一。它是由R Agrawal等人首先提出的,最经典的关联规则的挖掘算法是Apriori,该算法先挖出所有的频繁项集,然后,由频繁项集产生关联规则,许多关联规则频繁项集的挖掘算法都是由它演变而来的,关联规则在数据挖掘领域应用很广泛适合于在大型数据集中发现数据之间的有意义关系,原因之一是它不受只选择一个因变量的限制,关联规则在数据挖掘领域最典型的应用是购物篮分析。大多数关联规

则挖掘算法能够无遗漏发现隐藏在所挖掘数据中的所有关联关系,所挖掘出的关联规则量往往非常巨大,但是,并不是所有通过关联得到的属性之间的关系都有实际应用价值,对这些关联规则进行有效的评价,筛选出用户真正感兴趣的,有意义的关联规则尤为重要。

聚类分析是根据所选样本间关联的标准将其划分成几个组,同组内的样本具有较高的相似度,不同组的则相异,常用的技术有分裂算法,凝聚算法,划分聚类和增量聚类。聚类方法适合于探讨样本间的内部关系,从而对样本结构做出合理的评价,此外,聚类分析还用于对孤立点的检测。有时进行聚类不是为了将对象相聚在一起而是为了更容易地使某个对象从其他对象中分离出来。聚类分析已被应用于经济分析、模式识别、图像处理等多种领域,尤其在商业上,聚类分析

可以帮助市场人员发现顾客群中所存在的不同特征组群。

聚类分析的技术关键除了算法的选择之外,就是对样本的度量标准的选择。并非由聚类分析算法得到的类对决策都有效,在运用某一个算法之前,一般要先对数据的聚类趋势进行检验。

决策树学习是一种通过逼近离散值目标函数的方法,通过把实例从根结点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每个结点说明了对实例的某个属性的测试,该结点的每一个后继分支对应于该属性的一个可能值,分类实例的方法是从这电脑应用技术棵树的根结点开始,测试这个结点指定的属性,然后按照给定实例的该属性值对应的树枝向下移动。决策树方法是要应用于数据挖掘的分类方面。

神经网络建立在自学习的数学模型基础之上,能够对大量复杂的数据进行分析,并可以完成对人脑或其他计算机来说极为复杂的模式抽取及趋势分析,神经网络既可以表现为指导的学习也可以是无指导聚类,无论哪种,输入到神经网络中的值都是数值型的。

人工神经元网络模拟人脑神经元结构,以MP模型和Hebb学习规则为基础,建立三大类多种神经元网络,具有非线形映射特性、信息的分布存储、并行处理和全局集体的作用、高度的自学习、自组织和自适应能力的种种优点。前馈神经元网络以感知器网络、BP网络等

代表,可以用于分类和预测等方面;反馈式网络以Hopfield网络为代表,用于联想记忆和优化计算;自组织网络以ART模型、Kohonon 模型

相关文档
最新文档