2001年BD题《公交车调度》题目、论文、点评

合集下载

数学建模-公交车调度问题

数学建模-公交车调度问题

第三篇公交车调度方案得优化模型2001年 B题公交车调度Array公共交通就是城市交通得重要组成部分,作好公交车得调度对于完善城市交通环境、改进市民出行状况、提高公交公司得经济与社会效益,都具有重要意义。

下面考虑一条公交线路上公交车得调度问题,其数据来自我国一座特大城市某条公交线路得客流调查与运营资料。

该条公交线路上行方向共14站,下行方向共13站,表3—1给出得就是典型得一个工作日两个运行方向各站上下车得乘客数量统计。

公交公司配给该线路同一型号得大客车,每辆标准载客100人,据统计客车在该线路上运行得平均速度为20公里/小时.运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料与要求,为该线路设计一个便于操作得全天(工作日)得公交车调度方案,包括两个起点站得发车时刻表;一共需要多少辆车;这个方案以怎样得程度照顾到了乘客与公交公司双方得利益;等等。

如何将这个调度问题抽象成一个明确、完整得数学模型,指出求解模型得方法;根据实际问题得要求,如果要设计更好得调度方案,应如何采集运营数据.公交车调度方案得优化模型*摘要:本文建立了公交车调度方案得优化模型,使公交公司在满足一定得社会效益与获得最大经济效益得前提下,给出了理想发车时刻表与最少车辆数。

并提供了关于采集运营数据得较好建议。

在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客得最少车次数462次,从便于操作与发车密度考虑,给出了整分发车时刻表与需要得最少车辆数61辆。

模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司与乘客双方日满意度为(0、941,0、811)根据双方满意度范围与程度,找出同时达到双方最优日满意度(0、8807,0、8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。

公共自行车调度问题-数学建模论文

公共自行车调度问题-数学建模论文

目录一、问题引入..................................................................................................................................... - 3 -二、问题分析..................................................................................................................................... - 3 -2.1第一问分析................................................................................................................... - 4 -2.2第二问分析................................................................................................................... - 4 -2.3第三问分析................................................................................................................... - 4 -三、模型假设和符号说明................................................................................................................. - 5 -3.1模型假设....................................................................................................................... - 5 -3.2符号系统....................................................................................................................... - 6 -四、模型建立..................................................................................................................................... - 6 -4.1模型分类....................................................................................................................... - 6 -4.2 租赁点分配方案建模.................................................................................................. - 7 -4.3 调度车调度方案建模.................................................................................................. - 8 -4.3.1一辆调度车调度方案....................................................................................... - 8 -4.3.2多辆调度车调度方案....................................................................................... - 9 -4.4租赁点数目和位置的确定......................................................................................... - 11 -4.5 调度时间的模型........................................................................................................ - 12 -五、模型的求解............................................................................................................................. - 13 -5.0经纬度转换为横纵坐标............................................................................................. - 13 -5.1 求解最短路径............................................................................................................ - 13 -5.2 模型一次运行后的单车重分配求解........................................................................ - 14 -5.3 求解分配方案的预估—校正算法............................................................................ - 16 -5.4 求解调度方案的启发式算法.................................................................................... - 16 -5.4.1算法简介......................................................................................................... - 16 -5.4.2算法内容......................................................................................................... - 17 -5.4.3约束条件......................................................................................................... - 18 -5.4.4算法流程图..................................................................................................... - 19 -5.5租赁点位置................................................................................................................. - 20 -5.6计算结果..................................................................................................................... - 20 -5.6.1第一问结果..................................................................................................... - 20 -5.6.2第二问结果..................................................................................................... - 21 -5.6.3第三问结果..................................................................................................... - 23 -六、模型检验................................................................................................................................... - 26 -七、模型优缺点以及改进............................................................................................................... - 26 -7.1分配方案的优点......................................................................................................... - 27 -7.2调度方案的缺优点..................................................................................................... - 27 -7.3新增节点模型的优缺点............................................................................................. - 27 -7.4模型和算法的改进..................................................................................................... - 28 -7.4.1算法的改进..................................................................................................... - 28 -7.4.2模型的改进..................................................................................................... - 28 -八、参考文献................................................................................................................................... - 30 -附录................................................................................................................................................... - 30 -一、问题引入近年来,随着经济的发展,我国各级城市的机动车保有量都进入了持续高速增长时期,但由此所引发的道路拥堵、空气污染也引起了政府以及百姓的极大关注。

全国大学生数学建模竞赛常用建模方法总结

全国大学生数学建模竞赛常用建模方法总结

邯郸学院本科毕业论文题目全国大学生数学建模竞赛常用建模方法探讨学生柴云飞指导教师闫峰教授年级2009级本科专业数学与应用数学二级学院数学系(系、部)邯郸学院数学系2013年6月郑重声明本人的毕业论文是在指导教师闫峰的指导下独立撰写完成的.如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督.特此郑重声明.论文经“中国知网”论文检测系统检测,总相似比为5.80%.毕业论文作者(签名):年月日全国大学生数学建模竞赛常用建模方法探讨摘要全国大学生数学建模竞赛作为全国高校规模最大的基础性学科竞赛,越来越受到人们的重视,所以建模竞赛的方法也就变得尤为重要.随着竞赛的不断发展,赛题的开放性逐步增大,一道赛题可用多种解法,各种求解的算法有时会相互融合,同时也在向大规模数据处理方向发展,这就对选手的能力提出了更高的要求.由于建模方法种类众多,无法一一介绍,所以本文主要介绍了四种比较常用的数学建模竞赛方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论方法,并结合历年赛题加以说明.关键词:数学建模竞赛统计学方法数学规划图论Commonly Used Modeling Method ofChina Undergraduate Mathematical Contest in ModelingChai yunfei Directed by Professor Yan fengABSTRACTThe China undergraduate mathematical contest in modeling has been attention by more and more people as a basic subject of the largest national college competition. The method of modeling competition has become more and more important. Open questions gradually increased with the development of competition. Most of the games can be solved by lots of solutions. Sometimes these methods can be used together. And there is also a lot of data which puts forward higher requirement on the ability of players. The modeling methods is too numerous to mention, so this article mainly four kinds Commonly used modeling method are introduced that differential and difference equations modeling method, Mathematical programming modeling method, Statistics modeling method, graph theory and interprets with calendar year’s test questions.KEY WORDS:Mathematical contest in modeling Statistics method Mathematical programming Graph theory目录摘要 (I)英文摘要 (II)前言 (1)1微分方程与差分方程建模 (2)1.1微分方程建模 (2)1.1.1微分方程建模的原理和方法 (2)1.1.2微分方程建模应用实例 (3)1.2差分方程建模 (4)1.2.1 差分方程建模的原理和方法 (4)1.2.2 差分方程建模应用实例 (5)2数学规划建模 (5)2.1线性规划建模的一般理论 (6)2.2线性规划建模应用实例 (7)3统计学建模方法 (8)3.1聚类分析 (8)3.1.1 聚类分析的原理和方法 (8)3.1.2 聚类分析应用实例 (8)3.2回归分析 (9)3.2.1 回归分析的原理与方法 (9)3.2.2 回归分析应用实例 (10)4图论建模方法 (10)4.1两种常见图论方法介绍 (11)4.1.1 模拟退火法的基本原理 (11)4.1.2 最短路问题 (11)4.2图论建模应用实例 (12)5小结 (13)参考文献 (13)致谢 (14)前言全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛.参赛者需要根据题目要求,在三天时间内完成一篇包括模型假设、模型建立和求解、计算方法的设计和实现、模型结果的分析和检验、模型的改进等方面的论文.通过参加竞赛的训练和比赛,可以提高学生用数学方法解决实际问题的意识和能力,而且在培养团队精神和撰写科技论文等方面都会得到十分有益的锻炼.竞赛题目的涉及面比较宽,有工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等.竞赛选手不一定预先掌握深入的专业知识,而只需要学过高等数学的相关课程即可,并且题目具有较大的灵活性,便于参赛者发挥其创造能力.近年来,竞赛题目包含的数据较多,手工计算一般不能实现,所以就对参赛者的计算机能力提出了更高的要求,如2003年B题,某些问题的解决需要使用计算机软件;2001年A题,问题的数据读取需要计算机技术,并且对于给出的图像,需要用图像处理的方法获得;再如2004年A题则需要利用数据库数据,数据库方法,统计软件包等等.竞赛题目的总体特点可大致归纳如下:(1)实用性不断加强,问题和数据来自于实际,解决方法需要切合实际,模型和结果可以应用于实际;(2)综合性不断加强,解法多样,方法融合,学科交叉;(3)数据结构越来越复杂,包括数据的真实性,数据的海量性,数据的不完备性,数据的冗余性等;(4)开放性也越来越突出,题意的开放性,思路的开放性,方法多样,结果不唯一等.总体来说,赛题向大规模数据处理方向发展,求解算法和各类现代算法相互融合.纵观历年的赛题,主要用到的建模方法有:初等数学模型、微分与差分方程建模、组合概率、数据处理、统计学建模、计算方法建模、数学规划、图论方法、层次分析、插值与拟合、排队论、模糊数学、随机决策、多目标决策、随机模拟、计算机模拟法、灰色系统理论、时间序列等.本文不一一列举竞赛题目中涉及的所有方法,只是重点讨论其中一些比较常用的方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论建模方法,并结合案例说明建模方法的原理及应用.1 微分方程与差分方程建模在很多竞赛题目中,常常会涉及很多变量之间的关系,找出它们之间的函数关系式具有重要意义.可在许多实际问题中,我们常常不能直接给出所需要的函数关系,但可以得到含有所求函数的导数(或微分)或差分(即增量)的方程,这样的方程称为微分方程或差分方程. 建立微分方程或差分方程的数学模型是一种重要的建模方法.如1996年A 题“最优捕鱼策略”,1997年A 题“零件参数设计”,2003年A 题“SARS 的传播”,2007年A 题“中国人口增长预测”,2009年A 题“最优捕鱼策略”等赛题中,都用到了这种方法.1.1 微分方程建模1.1.1 微分方程建模的原理和方法一般来说,任何时变问题中随时间变化而发生变化的量与其它一些量之间的关系经常以微分方程的形式来表现.例1.1 有一容器装有某种浓度的溶液,以流量1v 注入该容器浓度为1c 的同样溶液,假定溶液立即被搅拌均匀,并以2v 的流量流出混合后的溶液,试建立反映容器内浓度变化的数学模型.解 注意到溶液浓度=溶液体积溶液质量,因此,容器中溶液浓度会随溶质质量和溶液体积变化而发生变化.不妨设t 时刻容器中溶质质量为()t s ,初始值为0s ,t 时刻容器中溶液体积为()t v ,初始值为0v ,则这段时间()t t t ∆+,内有⎩⎨⎧∆-∆=∆∆-∆=∆t v t v V t v c t v c s 212211, (1) 其中1c 表示单位时间内注入溶液的浓度,2c 表示单位时间内流出溶液的浓度,当t ∆很小时,在()t t t ∆+,内有≈2c =)()(t V t s tv v V t s )()(210-+. (2) 对式(1)两端同除以t ∆,令0t ∆→,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=00212211)0(,)0(V V s s v v dtdV v c v c dt ds . (3) 即所求问题的微分方程模型.虽然它是针对液体溶液变化建立的,但对气体和固体浓度变化同样适用.实际应用中,许多时变问题都可取微小的时间段t ∆去考察某些量之间的变化规律,从而建立问题的数学模型,这是数学建模中微分方程建模常用手段之一.常用微分方程建模的方法主要有:(1)按实验定律或规律建立微分方程模型.此种建模方法充分依赖于各个学科领域中有关实验定律或规律以及某些重要的已知定理,这种方法要求建模者有宽广的知识视野,这样才能对具体问题采用某些熟知的实验定律.(2)分析微元变化规律建立微分方程模型.求解某些实际问题时,寻求一些微元之间的关系可以建立问题的数学模型.如例1.1中考察时间微元t ∆,从而建立起反应溶液浓度随时间变化的模型.此建模方法的出发点是考察某一变量的微小变化,即微元分析,找出其他一些变量与该微元间的关系式,从微分定义出发建立问题的数学模型.(3)近似模拟法.在许多实际问题中,有些现象的规律性并非一目了然,或有所了解亦是复杂的,这类问题常用近似模拟方法来建立问题的数学模型.一般通过一定的模型假设近似模拟实际现象,将问题做某些规范化处理后建立微分方程模型,然后分析、求解,并与实际问题作比较,观察模型能否近似刻画实际现象.近似模拟法的建模思路就是建立能够近似刻画或反映实际现象的数学模型,因此在建模过程中经常做一些较合理的模型假设使问题简化,然后通过简化建立近似反映实际问题的数学模型.1.1.2 微分方程建模应用实例例1.2(2003年高教社杯全国大学生数学建模竞赛A 题) SARS 传播的预测. 2003年爆发的“SARS ”疾病得到了许多重要的经验和教训,使人们认识到研究传染病的传播规律的重要性.题目给出了感病情况的三个附件,要求对SARS 的传播建立数学模型:(1)对SARS 的传播建立一个自己的模型,并说明模型的优缺点;(2)收集SARS 对经济某个方面影响的数据,建立相应的数学模型并进行预测.问题求解过程分析 由于题目具有开放性,故选择文献[1]中的求解思路分析. 传染病的传播模式可近似分为自由传播阶段和控后阶段,然后将人群分为易感者S ,感病者I ,移出者R 三类.由三者之间的关系可得到下列微分方程:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++=-=-=NR I S hI dt dR hI kIS dt dI kISdt dS , 利用附件中给出的数据,可以将上述方程变形为I hI kNI dtdI λ=-=, 其中h kN -=λ,其解为t e I t I λ-=0)(.其中0I 为初始值.但此模型只适用于病例数与总人口数具有可比性的情况,当病例数远小于总人口数时,感病人数将随时间以指数增长.这是按实验定律或规律建立的微分方程模型.为进一步改进模型,用计算机跟踪病毒的个体传播情况,又建立计算机模拟模型.然后用计算机模拟北京5月10日之前SARS 的传播情况,并对5月10日以后的传播情况进行预测.但是得到的有效接触率与实际统计数据有所偏差,所以统计数据,为参数的确定寻求医学上的支持,并以随机模拟取代完全确定性的模拟,对原模型进行改进,建立随机模拟模型.通过计算机编程,产生正态分布的随机数,并对传染情况进行500次模拟,即可进行预测,并可得出对SARS 疫情控制提出的相应建议.1.2 差分方程建模1.2.1 差分方程建模的原理和方法差分方程在数学建模竞赛中应用的频率极高,所以要对这种方法引起足够的重视.它针对要解决的目标,引入系统或过程中的离散变量.具体方法是:根据实际的规律性质、平衡关系等,建立离散变量所满足的关系式,从而建立差分方程模型.差分方程可以分为不同的类型,如一阶和高阶差分方程,常系数和变系数差分方程,线性和非线性差分方程等等.建立差分方程模型一般要注意以下问题:(1)注意题中的离散变化量,对过程进行分析,尤其要注意形成变化运动过程的时间或距离的分化而得到离散变量;(2)通过对具体变化过程的分析,列出满足题意的差分方程,其中入手点是找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程.1.2.2差分方程建模应用实例例1.3(2007年高教社杯全国大学生数学建模竞赛A题)中国人口增长预测.题目要求从中国的实际情况和人口增长的特点出发,参考附录中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测,特别要指出模型中的优点与不足之处.问题求解过程分析由于题目具有开放性,故选择文献[2]中的求解思路分析.通过分析题中相关的数据,考虑到我国近年来人口发展的总趋势,因为涉及到人口的增长和变换,所以可以先用微分方程来建立模型,并对我国人口增长的中短期和长期趋势做出预测.首先,根据灰色系统理论,使用灰色关联分析模型法对人口系统结构进行关联分析,找出影响人口增长的主要因素;其次使用年龄推算法进行短期预测.在建立和求解长期预测模型时,根据人口阻滞增长模型(Logistic模型),可以考虑对中国人口老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素建立新的人口增长的差分方程模型.但是它仅给出了人口总数的变化规律,反映不出各类人口的详细信息,所以我们需要建立离散化的模型,并进一步可以得到全面系统地反应一个时期内人口数量状况的差分方程,可以用微分和差分方程理论来表现和模拟人口数量的变化规律.从而对人口分布的状况、变化趋势、总体特征等有更加详细和科学的了解.在模型的求解过程中,用到了MATLAB软件,并做参数估计,利用所得结果和题目给出的近五年来的人口数据,对我国人口发展趋势进行了预测,得到了在老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素影响下,未来我国人口发展预测情况.2 数学规划建模数学规划是指在一系列条件限制下,寻求最优方案,使得目标达到最优的数学模型,它是运筹学的一个重要分支.数学规划的内容十分丰富,包括许多研究分支,如:线性规划、非线性规划、整数规划、二次规划、0-1规划、多目标规划、动态规划、参数规划、组合优化、随机规划、模糊规划、多层规划问题等.在1993年A 题“非线性交调的频率设计”,1993年B 题“足球队排名”,1995年A 题“飞行管理问题”,1996年B 题“节水洗衣机”,1997年A 题“零件的参数设计”,1998年A 题“一类投资组合问题”,1999年B 题“钻井布局”,2001年B 题“公交车调度问题”,2002年A 题“车灯线光源的优化”,2006年A 题“出版社书号问题”,2007年B 题“城市公交线路选择问题”等赛题中,都用到了规划的方法.在此以线性规划为例,对规划的方法进行探讨.2.1 线性规划建模的一般理论线性规划建模方法主要用于解决生产实际中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法.一般的优化问题是指用“最好”的方式,使用或分配有限的资源即劳动力、原材料、机器、资金等,使得费用最小或利润最大.优化模型的一般形式为:()m ax m in 或 ()x f z = (4)().0..≤x g t s ()m i ,,2,1 = (5)()()12,,T n x x x x =,.由(4)、(5)组成的模型属于约束优化.若只有(4)式就是无约束优化.()x f 称为目标函数,()0g x ≤称为约束条件.在优化模型中,如果目标函数()x f 和约束条件中的()g x 都是线性函数,则该模型称为线性规划.建立实际问题线性规划模型的步骤如下:(1)设置要求解的决策变量.决策变量选取得当,不仅能顺利地建立模型而且能方便地求解,否则很可能事倍功半.(2)找出所有的限制,即约束条件,并用决策变量的线性方程或线性不等式来表示.当限制条件多,背景比较复杂时,可以采用图示或表格形式列出所有的已知数据和信息,从而避免“遗漏”或“重复”所造成的错误.(3)明确目标要求,并用决策变量的线性函数来表示,标出对函数是取极大还是取极小的要求.需要特别说明的是,要使用线性规划方法来处理一个实际问题,必须具备下面的条件:(1)优化条件:问题的目标有极大化或极小化的要求,而且能用决策变量的线性函数来表示.(2)选择条件:有多种可供选择的可行方案,以便从中选取最优方案.(3)限制条件:达到目标的条件是有一定限制的(比如,资源的供应量有限度等),而且这些限制可以用决策变量的线性等式或线性不等式表示出来.此外,描述问题的决策变量相互之间应有一定的联系,才有可能建立数学关系,这一点自然是不言而喻的.线性规划模型的求解可用图解法或单纯形法.随着计算机的普及和大量数学软件的出现,可以利用现成的软件MATLAB或LINGO等求解,在此不再叙述.2.2线性规划建模应用实例例2.1(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目给出了美国某艾滋病医疗试验机构公布的两组数据,数据涉及到了病人CD4和HIV的浓度含量的测试结果.根据所给的资料需要参赛者完成以下问题:(1)利用附件1的数据,预测继续治疗的效果,或者确定最佳治疗终止时间;(2)利用附件2的数据,评价4种疗法的优劣(仅以4CD为标准),并对较优的疗法预测继续治疗的效果,或者确定最佳治疗终止时间;(3)如果病人需要考虑4种疗法的费用,对评价和预测有什么影响.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.首先对题目所给数据进行分析,考虑到治疗的效果与患者的年龄有关,将患者按年龄分组,如25~35岁及45岁以上4组.每组中按照4种疗法和4个25岁,45~~14岁,35治疗阶段(如1020周,4030周),构造16个决策单元.取4~~~~0周,2010周,30种药品量为输入,治疗各个阶段末患者的4CD值的比值为输出.CD值与开始治疗时4然后建立相应的数学模型,利用相对有效性评价方法,建立分式规划模型并经过变换,转化为线性规划模型求解,对各年龄组患者在各阶段的治疗效率进行评价.计算结果:对第1年龄组疗法2和4在整个治疗中效率较高,在第4阶段仍然有效;对第2年龄组疗法1在第1,2阶段有效;对第3年龄组疗法1,2,3在第1阶段有效;对第4年龄组疗法1,2在第1,2阶段有效.表明只有2514岁的年4种轻患者,才能在治疗的最~后阶段仍然有有效的疗法.随后,由线性规划模型的对偶形式建立预测模型,对各年龄组各种疗法下一阶段的疗效进行预测.若由某决策单元得到的实际输出大于预测输出,则该决策单元相对有效;反之,说明该种疗法对该组患者在治疗的未来阶段不再有效,应该转换疗法.3 统计学建模方法在数学建模竞赛中,常常会涉及到大量的数据,因此,我们就需要用统计学建模方法对这些数据进行处理.此类方法主要包括统计分析、计算机模拟、回归分析、聚类分析、数据分类、判别分析、主成分分析、因子分析、残差分析、典型相关分析、时间序列等.如2004年A题“奥运会临时超市网点设计问题”,2004年B题“电力市场的输电阻塞管理问题”,2007年A题“人口增长预测问题”,2008年B题“大学学费问题”,2012年A题“葡萄酒的评价”等都用到了这种建模方法.在此选取其中两类方法进行阐述.3.1聚类分析3.1.1聚类分析的原理和方法该方法说的通俗一点就是,将n个样本,通过适当的方法选取m聚类中心,通过研究各样本和各个聚类中心的距离,选择适当的聚类标准,通常利用最小距离法来聚类,从而可以得到聚类.结果利用sas 软件或者spss 软件来做聚类分析,就可以得到相应的动态聚类图.这种模型的的特点是直观,容易理解.聚类分析的类型可分为:Q型聚类(即对样本聚类)和R型聚类(即对变量聚类).通常聚类中有相似系数法和距离法两种衡量标准.聚类方法种类多样,有可变类平均法、中间距离法、最长距离法、利差平均和法等.在应用时要注意,在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理.主要的方法步骤大致如下:(1)首先把每个样本自成一类;(2)选取适当的衡量标准,得到衡量矩阵;(3)重新计算类间距离,得到衡量矩阵;(4)重复第2步,直到只剩下一个类.3.1.2聚类分析应用实例例3.1(2012年高教社杯全国大学生数学建模竞赛A题)葡萄酒的评价.题目的附件中给出了某一年份一些葡萄酒的评价结果,和该年份这些葡萄酒的和酿酒葡萄的成分数据.要求参赛者建立数学模型解决以下问题:(1)分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信;(2)根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级;(3)分析酿酒葡萄与葡萄酒的理化指标之间的联系;(4)分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量.问题求解过程分析由于题目具有开放性,故选择文献[4]中的求解思路分析.由于给定了酿酒葡萄的理化指标,首先可将附录2和附录3中的一些数据进行处理.并可以据此对各种酿酒葡萄进行聚类分析,但是,由于题目中所给的数据庞大,所以可通过主成分分析法,简化并提取大部分有效信息,再用聚类分析对酿酒葡萄进行分级.最后根据酿酒葡萄对应葡萄酒质量的平均值大小进行比较,排序分级.接下来针对问题中分析酿酒葡萄与葡萄酒理化指标之间的联系,及上面整理好的数据,采用回归分析原理,在SPSS中得到酿酒葡萄与葡萄酒的理化指标之间的联系.再通过相关分析,得出相应的相关系数,从而得到相应的判断结论.在分析酿酒葡萄与葡萄酒的理化指标之间的联系时,还用到了多元线性回归分析.该模型用于生活实践中,也可以解决很多实际问题.3.2回归分析回归分析是利用数据统计原理,对大量数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程,并加以外推,用于预测今后的因变量的变化的分析方法.3.2.1回归分析的原理与方法回归分析是在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型;对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制.回归分析主要包括一元线性回归、多元线性回归、非线性回归.回归分析的主要步骤为:(1)根据自变量和因变量的关系,建立回归方程.(2)解出回归系数.(3)对其进行相关性检验,确定相关系数.(4)当符合相关性要求后,便可与具体条件结合,确定预测值的置信区间.需要注意的是,要尽可能定性判断自变量的可能种类和个数,并定性判断回归方程的可能类型.另外,最好应用高质量的统计数据,再运用数学工具和相关软件定量定性判断.3.2.2回归分析应用实例例3.2(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目同例2.1.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.问题2的解决就用到回归模型.首先分析数据知,应建立时间的一次与二次函数模型,并经过统计分析比较,确定哪种较好.所以可建立一个统一的回归模型,也可对每种疗法分别建立一个模型.以总体回归模型为例,分别用一次与二次时间函数模型进行比较,可知疗法3~1用一次模型较优,且一次项系数为负,即4CD在减少,从数值看疗法3优于疗法2和1;疗法4用二次模型较优,即4t左右达到最大.可以通过4条回归CD先增后减,在20曲线进行比较,显示疗法4在30周之前明显优于其它.最后再用检验法作比较,结果是疗法1与2无显著性差异,而疗法1与3,2与3,3与4均有显著性差异.4 图论建模方法图论建模方法在建模竞赛中也经常涉及,应用十分广泛,并且解法巧妙,方法灵活多变.如1990年B题“扫雪问题”,1991年B题“寻找最优Steiner树”,1992年B题“紧急修复系统的研制”,1993年B题“足球队排名”,1994年A题“逢山开路问题”,1994年B题“锁具装箱问题”,1995年B题“天车与冶炼炉的作业调度”,1997年B题“截断切割的最优排列”,1998年B题“灾情巡视最佳路线”,1999年B题“钻井布局”,2007年B题“城市公交线路选择问题”等都应用到了图论的方法.图论近几年来发展十分迅速,在物理、化学、生物学、地理学、计算机科学、信息论、控制论、社会科学、军事科学以及计算机管理等方面都有着广泛的应用.因此图论越来越受到了全世界数学界和工程技术界乃至经营决策管理者的重视.同时也成为了数学建模中一种十分重要的方法.图论问题算法很多,包括最短路、最大流、最小生成树、二分匹配、floyd、frim等.。

(完整word版)公交调度

(完整word版)公交调度

公共汽车调度方法研究运输0702 华一丁3070405047[摘要]自改革开放以来,我国的公共交通建设取得了很大的成就。

但由于路网布局不合理,停车设施不足,公共交通方式单一而且信息化程度不够,我国许多大中型城市的交通问题依然十分严峻。

城市交通问题已成为城市发展的瓶颈。

如何解决这些问题已成为摆在城市发展面前的重要课题。

[关键字]公共交通城市交通系统公交调度就道路建设而言,全国公路里程从1978年的89万公里增至2007年的348万公里,高速公路从无到有己达5.45万公里。

交通的建设离不开城市的发展与扩大,据统计,1978至2007年,城镇人口从7955万人增至59379万人,目前我国的大中型城市数量是80年代初的三倍。

在城市迅速发展的情况下,我国交通建设虽然取得了很大的成就,尤其是城市中心区交通负荷过重,交通拥挤和阻塞现象日趋严重,交通污染与事故越来越引起社会的普遍关注.随着我国汽车工业的发展,许多小汽车进入私人家庭,这给城市交通带来了巨大的压力。

城市交通的日渐拥堵使得我国许多大中城市公交车辆运行速度不断下降,平均行驶速度低于15km/h,城市公交所承担的运量不断减退,居民出行方式由公共交通逐年向个体交通方式转移,这无疑加剧了交通需求的不断增加与公交发展相对滞后的矛盾。

因此,优先发展城市公交系统,改善公交服务水平,吸引更多乘客选择公交出行无疑是解决这一矛盾的首选途径。

国内外均不乏运用公共交通来解决城市交通问题的成功例子,可以借鉴。

在人口稠密、交通强度很大的香港,交通问题之所以解决得比较好,其中十分重要的原因是充分利用了城市公共交通。

目前,香港公交客运量占城市客运交通的比重,从20年前的73%提高到目前的88%。

在国外,许多大城市的公交系统也承担了相当比重的城市客运总量,如纽约为86%,伦敦为80%,东京为71%.与其他形式的交通方式相比,公交出行的成本最低,时间也较灵活。

公交服务的覆盖面很广,其运输体系可在需求量很大的地区每小时有效运送2万名乘客,而且也能在成本低、效益高的条件下为人口稀少的地区服务.同时,公交运输体系还在火车、地铁和长途汽车组成的综合运输体系中发挥重要的作用.然而我国现有的城市公交系统并没有完全发挥其在城市交通系统中的重要作用。

历届数模论文题目

历届数模论文题目

| 1993 年全国大学生数学建模竞赛A 题非线性交调的频率设计| 1993 年全国大学生数学建模竞赛A 题非线性交调的频率设计| 1993 年全国大学生数学建模竞赛B题足球队派名次| 1994年全国大学生数学建模竞赛A 题逢山开路| 1994年全国大学生数学建模竞赛B题锁具装箱|1995年全国大学生数学建模竞赛A题一个飞行管理模型|1995年全国大学生数学建模竞赛B题天车与冶炼炉的作业调度|1996年全国大学生数学建模竞赛A题最优捕鱼策略B题节水洗衣机|1997年全国大学生数学建模竞赛试题(cmcm97') A题零件的参数设计| 1997年全国大学生数学建模竞赛试题(cmcm97') B题截断切割| 1998年全国大学生数学建模竞赛题目A题投资的收益和风险B题灾情巡视路线| 1999创维杯全国大学生数学建模竞赛题目A题自动化车床管理| 1999创维杯全国大学生数学建模竞赛题目B题钻井布局| 2000网易杯全国大学生数学建模竞赛题目A题DNA序列分类B题钢管订购和运输1993年A题非线性交调的频率设计1993年B题球队排名问题1994年A题逢山开路1994年B题锁具装箱1995年A题一个飞行管理模型1995年B题天车与冶炼炉的作业调度1996年A题最优捕鱼策略1996年B题节水洗衣机1997年A题零件的参数设计1997年B题截断切割1998年A题投资的收益和风险1998年B题灾情巡视路线1999年A题自动化车床管理1999年B题钻井布局2000年A题DNA序列分类2000年B题钢管定购和运输2001年A题血管的三维重建2001年B题公交车调度| 2001年全国大学生数学建模竞赛题目A题血管的三维重建| 2001年全国大学生数学建模竞赛题目B题公交车调度2001年全国大学生数学建模夏令营数学建模题目A题三峡工程陡高边坡开挖优化设计B题:城市交通拥阻的分析与治理| 2001年全国大学生数学建模夏令营数学建模题目(C)题目C:乳房癌的诊断| 2002高教社杯全国大学生数学建模竞赛题目A题车灯线光源的优化设计B题彩票中的数学| 2003高教社杯全国大学生数学建模竞赛题目A题 SARS的传播| 2003高教社杯全国大学生数学建模竞赛题目B露天矿生产的车辆安排| 2004高教社杯全国大学生数学建模竞赛题目A题奥运会临时超市网点设计B题电力市场的输电阻塞管理| 2005高教社杯全国大学生数学建模竞赛题目A题: 长江水质的评价和预测B题:DVD 在线租赁| 2006高教社杯全国大学生数学建模竞赛题 A题出版社的资源配置问题作者:徐浩马国庆李晓波(2006年“高教”杯全国赛A题国家二等奖)B题艾滋病疗法评价及疗效预测(作者:刘坤邵定夫张亚兰2006年“高教”杯全国赛B题国家一等奖)作者:喻伟陶煜常晴(2006年“高教”杯全国赛B题国家二等)作者:毕强何涛梁晓刚(2006年“高教”杯全国赛B题国家二等奖)2006年全国大学生数学建模夏令营数学建模题目 B题:京沪铁路线中的列车调度模型武汉工大大学比赛论文mcm2003_A_王蝉娟_唐兵_隗勇mcm2003_A_万丽军_唐涛_陈正旭mcm2003_A王鹏_邓科_刘文慧mcm2003_B_王雨春_钟原_李霜icm2003_C_刘旺_董显_吴辉icm2003_C_夏立_成浩_易科mcm2004_b 厉化金_谷雨_曾祥智mcm2004_b_夏立_赵明杰_高婷中国科大老师对美国赛题目的讲解(题目可从往届试题处下载) MCM 1985 A题(王树禾教授)MCM 1985 B题(侯定丕教授)MCM 1986 A题(常庚哲教授,丁友东老师)MCM 1986 B题(李尚志教授)MCM 1988 A题(苏淳教授)MCM 1988 B题(侯定丕教授)MCM 1989 A题(赵林城老师)MCM 1989 B题(侯定丕教授)MCM 1990 A题(王树禾教授)MCM 1990 B题(王树禾教授)MCM 1991 A题(常庚哲教授,丁友东老师)MCM 1992 B题(侯定丕教授)MCM 1993 A题(苏淳教授)MCM。

数学建模历年题目分析方法

数学建模历年题目分析方法

建模更是一种精神】数学建模全国大赛历年题目分析以及参赛成功方法数学建模竞赛的赛题分析1. CUMCM历年赛题简析2. “彩票中的数学”问题3. 长江水质的评估、预测与控制问题4. 煤矿瓦斯和煤尘的监测与控制问题5. 其他几个数学建模的问题数学建模竞赛的规模越来越大,水平越来越高;竞赛的水平主要体现在赛题水平;赛题的水平主要体现:(1)综合性、实用性、创新性、即时性等;(2)多种解题方法的创造性、灵活性、开放性等;(3)海量数据的复杂性、数学模型的多样性、求解结果的不唯一性等。

纵览16年的本科组32个题目(专科组13个),从问题的实际意义、解决问题的方法和题型三个方面作一些简单的分析。

一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览:1992年:(A)作物生长的施肥效果问题(北理工:叶其孝)(B)化学试验室的实验数据分解问题(复旦:谭永基)1993年:(A)通讯中非线性交调的频率设计问题(北大:谢衷洁)(B)足球甲级联赛排名问题(清华:蔡大用)1994年:(A)山区修建公路的设计造价问题(西电大:何大可)(B)锁具的制造、销售和装箱问题(复旦:谭永基等)1995年:(A)飞机的安全飞行管理调度问题(复旦:谭永基等)(B)天车与冶炼炉的作业调度问题(浙大:刘祥官等)一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览:1996年:(A)最优捕鱼策略问题(北师大:刘来福)(B)节水洗衣机的程序设计问题(重大:付鹂)1997年:(A)零件参数优化设计问题(清华:姜启源)(B)金刚石截断切割问题(复旦:谭永基等)1998年:(A)投资的收益和风险问题(浙大:陈淑平)(B)灾情的巡视路线问题(上海海运学院:丁颂康)1999年:(A)自动化机床控制管理问题(北大:孙山泽)(B)地质堪探钻井布局问题(郑州大学:林诒勋)(C)煤矸石堆积问题(太原理工大学:贾晓峰)一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览:2000年:(A)DNA序列的分类问题(北工大:孟大志)(B)钢管的订购和运输问题(武大:费甫生)(C)飞越北极问题(复旦:谭永基)(D)空洞探测问题(东北电力学院:关信)2001年:(A)三维血管的重建问题(浙大:汪国昭)(B)公交车的优化调度问题(清华:谭泽光)(C)基金使用计划问题(东南大学:陈恩水)2002年:(A)汽车车灯的优化设计问题(复旦:谭永基等)(B)彩票中的数学问题(信息工程大学:韩中庚)(D) 球队的赛程安排问题(清华大学:姜启源)一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览2003年:(A)SARS的传播问题(集体)(B)露天矿生产的车辆安排问题(吉林大:方沛辰)(D)抢渡长江问题(华中农大:殷建肃)2004年:(A)奥运会临时超市网点设计问题(北工大:孟大志)(B)电力市场的输电阻塞管理问题(浙大:刘康生)(C)酒后开车问题(清华大学:姜启源)(D)公务员的招聘问题(信息工程大学:韩中庚)2005年:(A)长江水质的评价与预测问题(信息工大:韩中庚)(B)DVD在线租赁问题(清华大学:谢金星等)(C) 雨量预报方法的评价问题(复旦:谭永基)一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览2006年:(A)出版社的资源管理问题(北工大:孟大志)(B)艾滋病疗法的评价及预测问题(天大:边馥萍)(C)易拉罐形状和尺寸的设计问题(北理工:叶其孝)(D)煤矿瓦斯和煤尘的监测与控制问题(信息工程大学:韩中庚)2007年:(A)中国人口增长预测问题(清华大学:唐云)(B)“乘公交,看奥运”问题(吉大:方沛辰,国防科大:吴孟达)(C)“手机套餐”优惠几何问题(信息工程大学:韩中庚)(D)体能测试时间的安排问题(首都师大:刘雨林)一、CUMCM历年赛题的简析一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览2001年夏令营三个题:(A)三峡工程高坡开挖优化设计(三峡大学:李建林等)(B)城市交通拥阻的分析与治理(北京理工大学:叶其孝)(C)乳房癌的诊断问题(复旦大学:谭永基)2006年夏令营三个题:(A)教材出版业的市场调查、评估和预测方法问题(北工大:孟大志)(B)铁路大提速下的京沪线列车调度问题(信息工程大学:韩中庚)(C)旅游需求的预测预报问题(北京理工:叶其孝)2、从问题的实际意义分析32个问题从实际意义分析大体上可分为:工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等七个大类。

公交车调度论文分解

公交车调度论文分解

关于公交车调度问题摘要随着国民生活水平的提高,公共交通问题也日益重要起来,而公交车调度是制约公共交通的重要因素。

根据题中所给的数据,建立数学模型对公交车调度问题进行分析。

对于问题一:首先,根据城市中某条公交线路各个时段的客流信息,得出了公交车公司的最大客容量,发车车次,发车时间间隔。

运用MATLAB编程,计算出各个时段的最大客容量,在满足公交满载率的情况下得出日最少发车车次为460次,其中上行线230车次,下行线230车次,用LINGO计算出发车时间间隔,并给出公交车发车时刻调整表。

基于公交车从起始站运行到终点站的用时为44分钟,且时间间隔应为整分间隔,可算出早高峰所需最少车辆为58辆。

其次,一个合理的公交车调度方案应该考虑公交公司的最大利益和乘客的满意度两个方面。

故建立了满意度分析模型,在此模型中,运用了层次分析法。

对满意度进行了分析计算。

结合整数规划模型中的结果可求得满意的分析模型中公交公司与乘客双方之间满意度,并且使二者和达到最大,同时双方满意度之差最小,得到上下行的最优满意度(0.8688,0.8688)。

最后,综合了公交车公司的最大客容量、发车车次、公交公司满意度等方面因素,且以公交公司所发的车次最小为目标,乘客的等待时间和公交载客率为约束条件提出了整数规划模型。

此模型是把公交车调度问题抽象成数学模型来表达,从考虑发车车次最小出发,满足各项约束条件,寻求最优解。

运用LINGO编程,可计算出公交公司日发车车次最小值为461次。

因此该解法是在满足乘客的情况下求的最优解。

乘客的等待时间的满意度为100%,但是从舒适度考虑,上行和下行分别有11和9人不满意。

这个结果为满意度模型和整数规划模型的中间情况,故此模型的建立是合理的。

关键词:整数规划满意度MATLAB LINGO一问题的重述公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

2001年全国大学生数学建模竞赛参考答案

2001年全国大学生数学建模竞赛参考答案

2001年全国大学生数学建模竞赛参考答案A 题 血管的三维重建 参考答案以每个管道内的点为球心,可作内含于管道的球,其中具有最大半径的球记为该点的最大内含球。

容易证明最大内含球和管道曲面相切,且在同一截平面内中轴线上的点为球心的最大内含球具有最大的半径,即滚动球半径。

由此可设计相应的算法。

第一,最大内含球和管道曲面相切,意味着球心和管道边界上的点最短距离为最大内含球的半径。

为此需计算边界,方法如下: 首先定义象素(x ,y )的领域:4-领域,其周围的四个象素,包括(x-1,y ),(x ,y-1),(x ,y+1)8-领域,其周围的八个象素,包括(x+1,y ),(x ,y-1),(x ,y+1),(x+1,y-1),(x-1,y+1),(x+1,y+1), 则边界点是4-领域(8-领域)的颜色值不全相同的象素点,由图象可得管道边界,由此估算最大含球的半径(若更精细得到内外两边界,则能估算最大内含球半径的大小范围)。

第二,在同一截平面内中轴线上的点为球心的最大内含球具有最大的半径。

为找到中轴线上的点,有多种方法。

方法之一是分割象素到足够小,遍历管道内所有子象素点,求各个内部子象素点的最大内含球半径。

第三,上述方法可求的中轴线上与给顶截平面的交点和在该点的半径。

若要得到更多的点,需计算两相邻截平面之间与其平行的平面和中轴线的交。

与已知截平面不同的是该平面内特征函数未知,为判断平面上某点是否为管道内的点,以其在相邻截平面上的领域点是否在管道内部为准。

综上所述,解决本问题的关键在于几何推理;计算机图象处理的边界提取技术,及算发设计。

参考算法:1、 对每个Z 平面,计算管道的边界(或内外边界)。

2、 分割象素为较小的子象素点,把Z 平面管道的子象素点作为候选点(穷举法)。

3、 计算候选点到所有边界上的最小距离,即最大内含球的半径。

4、 挑选具最大半径的候选点作为中轴线与切片的交点。

5、 为求相邻两Z 平面之间的平行平面与中轴线的交,首先挑选在该截面内有可能的管道内部点作为候选,重复3、4。

公交车调度

公交车调度

公交车调度关于公交车调度的数学模型摘要:本文根据典型的一个工作日两个运行方向各站上下车的乘客数量统计,首先探讨了如何利用平滑法来确定一个有价值并且效率高的车辆运行时刻表,使其满足乘客的舒适性和公交公司低成本的服务;接着,又利用最优化的基本思想,对此问题进行了进一步的讨论,得到了最小配车辆的数量,然后针对满意度的评价水平问题,建立了几个良好刻画公司以及乘客满意度的满意度函数并求出了乘客与公交公司双方的满意度。

最后,我们对新提出的模型进行了模型的评价和模型改进方向的讨论,并对如何采集公交车客运量的数据,提出了几个中肯的建议,完成了对关于公交车调度问题的较为详细而合理的讨论。

(一)问题重述公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,第3-4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。

运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

(二)定义与符号说明1、T( I )------ 第I个时段( I=1、2……18 )2、A( J )------ 第J个公交车站(J=1、2……15 )3、P( I )------ 在第I个时段内的配车量4、L( I )------ 在第I个时段内的客流量5、G( I )------ 在第I个时段内的满载率6、S( I )------ 在第I个时段内的乘客候车时间期望值7、V--------- 客车在该线路上运行的平均速度8、ΔL(J)---第J-1个公交车站到第J个公交车站之间的距离9、ΔT(I)------第I个时段内相邻两辆车发车间隔时间10、L----- 收、发车站之间的距离(三)模型的假设基本假设:1、乘客在各个时段内到达公交车站的时间均服从均匀分布2、乘客上车的时间可以忽略不计。

数学建模-2001年的公交车调度问题

数学建模-2001年的公交车调度问题

第三篇公交车调度方案的优化模型2001年 B题公交车调度公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,表3-1给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。

运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

站名A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 站间距(公里) 1.6 0.5 1 0.73 2.04 1.26 2.29 1 1.2 0.4 1 1.03 0.53 5:00-6:00 上371 60 52 43 76 90 48 83 85 26 45 45 11 0 下0 8 9 13 20 48 45 81 32 18 24 25 85 57 6:00-7:00 上1990 376 333 256 589 594 315 622 510 176 308 307 68 0 下0 99 105 164 239 588 542 800 407 208 300 288 921 615 7:00-8:00 上3626 634 528 447 948 868 523 958 904 259 465 454 99 0 下0 205 227 272 461 1058 1097 1793 801 469 560 636 1871 1459 8:00-9:00 上2064 322 305 235 477 549 271 486 439 157 275 234 60 0 下0 106 123 169 300 634 621 971 440 245 339 408 1132 759 9:00-10:00 上1186 205 166 147 281 304 172 324 267 78 143 162 36 0 下0 81 75 120 181 407 411 551 250 136 187 233 774 483 10:00-11:00 上923 151 120 108 215 214 119 212 201 75 123 112 26 0 下0 52 55 81 136 299 280 442 178 105 153 167 532 385 11:00-12:00 上957 181 157 133 254 264 135 253 260 74 138 117 30 0 下0 54 58 84 131 321 291 420 196 119 159 153 534 340 12:00-13:00 上873 141 140 108 215 204 129 232 221 65 103 112 26 0 下0 46 49 71 111 263 256 389 164 111 134 148 488 333 13:00-14:00 上779 141 103 84 186 185 103 211 173 66 108 97 23 0 下0 39 41 70 103 221 197 297 137 85 113 116 384 263 14:00-15:00 上625 104 108 82 162 180 90 185 170 49 75 85 20 0 下0 36 39 47 78 189 176 339 139 80 97 120 383 239 15:00-16:00 上635 124 98 82 152 180 80 185 150 49 85 85 20 0 下0 36 39 57 88 209 196 339 129 80 107 110 353 22916:00-17:00 上1493 299 240 199 396 404 210 428 390 120 208 197 49 0 下0 80 85 135 194 450 441 731 335 157 255 251 800 557 17:00-18:00 上2011 379 311 230 497 479 296 586 508 140 250 259 61 0 下0 110 118 171 257 694 573 957 390 253 293 378 1228 793 18:00-19:00 上691 124 107 89 167 165 108 201 194 53 93 82 22 0 下0 45 48 80 108 237 231 390 150 89 131 125 428 336 19:00-20:00 上350 64 55 46 91 85 50 88 89 27 48 47 11 0 下0 22 23 34 63 116 108 196 83 48 64 66 204 139 20:00-21:00 上304 50 43 36 72 75 40 77 60 22 38 37 9 0 下0 16 17 24 38 80 84 143 59 34 46 47 160 117 21:00-22:00 上209 37 32 26 53 55 29 47 52 16 28 27 6 0 下0 14 14 21 33 78 63 125 62 30 40 41 128 92 22:00-23:00 上19 3 3 2 5 5 3 5 5 1 3 2 1 0 下0 3 3 5 8 18 17 27 12 7 9 9 32 21站名A0 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 站间距(公里) 1.56 1 0.44 1.2 0.97 2.29 1.3 2 0.73 1 0.5 1.62 5:00-6:00 上22 3 4 2 4 4 3 3 3 1 1 0 0 下0 2 1 1 6 7 7 5 3 4 2 3 9 6:00-7:00 上795 143 167 84 151 188 109 137 130 45 53 16 0 下0 70 40 40 184 205 195 147 93 109 75 108 271 7:00-8:00 上2328 380 427 224 420 455 272 343 331 126 138 45 0 下0 294 156 157 710 780 849 545 374 444 265 373 958 8:00-9:00 上2706 374 492 224 404 532 333 345 354 120 153 46 0 下0 266 158 149 756 827 856 529 367 428 237 376 1167 9:00-10:00 上1556 204 274 125 235 308 162 203 198 76 99 27 0 下0 157 100 80 410 511 498 336 199 276 136 219 556 10:00-11:00 上902 147 183 82 155 206 120 150 143 50 59 18 0 下0 103 59 59 246 346 320 191 147 185 96 154 438 11:00-12:00 上847 130 132 67 127 150 108 104 107 41 48 15 0 下0 94 48 48 199 238 256 175 122 143 68 128 346 12:00-13:00 上706 90 118 66 105 144 92 95 88 34 40 12 0 下0 70 40 40 174 215 205 127 103 119 65 98 261 13:00-14:00 上770 97 126 59 102 133 97 102 104 36 43 13 0 下0 75 43 43 166 210 209 136 90 127 60 115 309 14:00-15:00 上839 133 156 69 130 165 101 118 120 42 49 15 0 下0 84 48 48 219 238 246 155 112 153 78 118 346 15:00-16:00 上1110 170 189 79 169 194 141 152 166 54 64 19 0 下0 110 73 63 253 307 341 215 136 167 102 144 425 16:00-17:00 上1837 260 330 146 305 404 229 277 253 95 122 34 0 下0 175 96 106 459 617 549 401 266 304 162 269 784 17:00-18:00 上3020 474 587 248 468 649 388 432 452 157 205 56 0 下0 330 193 194 737 934 1016 606 416 494 278 448 1249 18:00-19:00 上1966 350 399 204 328 471 289 335 342 122 132 40 0 下0 223 129 150 635 787 690 505 304 423 246 320 1010 19:00-20:00 上939 130 165 88 138 187 124 143 147 48 56 17 0 下0 113 59 59 266 306 290 201 147 155 86 154 398 20:00-21:00 上640 107 126 69 112 153 87 102 94 36 43 13 0 下0 75 43 43 186 230 219 146 90 127 70 95 319 21:00-22:00 上636 110 128 56 105 144 82 95 98 34 40 12 0 下0 73 41 42 190 243 192 132 107 123 67 101 290 22:00-23:00 上294 43 51 24 46 58 35 41 42 15 17 5 0 下0 35 20 20 87 108 92 69 47 60 33 49 136公交车调度方案的优化模型*摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。

国赛数模冲刺必看公交调度一等奖论文

国赛数模冲刺必看公交调度一等奖论文

第三篇 公交车调度方案的优化模型2001年 B 题 公交车调度公共交通是城市交通的重要组成部分,作好公交车的调度对 于完善城市交通环境、改进市民出行状况、提高公交公司的经济 和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车 的调度问题,其数据来自我国一座特大城市某条公交线路的客流 调查和运营资料。

该条公交线路上行方向共14 站,下行方向共13 站,表3-1给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型 号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20 公里/小时。

运营 调度要求,乘客候车时间一般不要超过10 分钟,早高峰时一般不要超过5 分钟,车辆满载率不应 超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包 括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司 双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题 的要求,如果要设计更好的调度方案,应如何采集运营数据。

表3-1某路公交汽车各时组每站上下车人数统计表上行方向:A13开往A0站名 A13A12 A11 A10 A9 0.73 76 A8 2.04 90 A7 1.26 48 A62.29 83 A5 A4 A3 A2 A1 A0 站间距(公里)5:00-6:001.6 0.5 1 1 1.2 0.4 1 1.03 0.53 上 下 上 下 上 下 上 下 上 下371 060 8 52 9 43 13 85 32 26 18 45 24 45 25 11 85 0 57 0 20 48 45 81 6:00-7:00 7:00-8:00 8:00-9:009:00-10:001990376 333 256 99 105 164 3626634 528 447 205 227 272 2064 322 305 235 106 123 169 1186 205 166 147 81 75 120 151 120 108 52 55 81 181 157 133 54 58 84 141 140 108 46 49 71 141 103 84 39 41 70 104 108 82 589 239 948 461 477 300 281 181 215 136 254 131 215 111 186 103 162 78 594 588 868 315 542 523 622 800 958 510 176 308 307 68 407 208 300 288 921 904 259 465 454 99 0615 00 1058 1097 1793 801 469 560 636 1871 1459 549 634 304 407 214 299 264 321 204 263 185 221 180 189 180271 621 172 411 119 280 135 291 129 256 103 197 90 486 971 324 551 212 442 253 420 232 389 211 297 185 339 185439 157 275 234 60 0 0 440 245 339 408 1132 759 267 78 143 162 36 250 136 187 233 774 201 75 123 112 26 178 105 153 167 532 260 74 138 117 30 196 119 159 153 534 221 65 103 112 26 164 111 134 148 488 0 483 0 010:00-11:00 上 923下 0 385 0 11:00-12:00上 957 下 0340 0 12:00-13:00 上 873下 0 333 0 13:00-14:00上 779 173 66 108 97 23 下 0137 85 113 116 384 263 0 14:00-15:00 上 625170 49 139 80 150 49 75 97 120 383 85 85 20 85 20 下 0 36 39 47 82176 80239 015:00-16:00上 63512498 152下36 16:00-17:00 上 1493299 240 199 80 85 135 17:00-18:00 上 2011379 311 230 39 57 88 396 194 497 257 167 108 91 209 404 450 479 694 165 237 85 196 210 441 296 573 108 231 50 339 428 731 586 957 201 390 88 129 80 107 110 353 390 120 208 197 49 335 157 255 251 800 508 140 250 259 61 229 0 下 0557 0 下 0110 118 171 124 107 89 390 253 293 378 1228 793 18:00-19:00 上 691194 53 93 82 22 0 336 0 下 045642250163714348 55 23 43 17 32 14 3 80 46 34 36 24 26 21 2 150 89 131 125 428 19:00-20:00 上 350 89 83 60 59 52 62 5 27 48 22 34 16 30 1 48 64 38 46 28 40 3 47 66 204 37 47 160 27 41 128 11 下 0 63 116 75 108 40 196 77 139 0 20:00-21:00 上 304 72 9 下 0 38 80 84 143 47 117 0 21:00-22:00 上 209 53 55 29 6 下 0 19 0 33 78 63 125 5 92 0 22:00-23:00 上 5 5 3 2 9 1 下 33 58 18 17 27 12 7 9 32 21 表3-1(续) 某路公交汽车各时组每站上下车人数统计表 下行方向:A0 开往A13站名 A0A2 1.56 3 A31 A4 0.442 A5 1.2 A6 A7 A8 1.3 A9 2 A10 A11 A12 A13 站间距(公里) 5:00-6:00 0.97 2.29 0.73 1 1 1 0.5 1.62 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下 上 下22 0 4 4 4 3 3 3 0 3 0 9 0 2 1 1 6 7 7 5 3 4 2 6:00-7:00 7:00-8:00 795 0 143 70 167 40 84 151 184 420 710 404 756 235 410 155 246 127 199 105 174 102 166 130 219 169 253 305 459 468 737 328 635 138 266 112 186 105 190188 205 455 780 532 827 308 511 206 346 150 238 144 215 133 210 165 238 194 307 404 617 649 109 195 272 849 333 856 162 498 120 320 108 256 92 137 147 343 545 345 529 203 336 150 191 104 175 95 130 93 45 53 75 138 16 40 109 126 444 120 428 76 108 271 2328 380 294 2706 374 266 1556 204 427 156 492 158 274 100 183 59 224 157 224 149 125 80 331 374 354 367 198 199 143 147 107 122 88 45 0 0 265 373 958 153 46 237 376 1167 99 27 136 219 556 8:00-9:00 0 0 9:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:000 0 902 0 157 147 103 130 94 276 50 82 59 96 48 68 40 65 43 60 49 78 64 18 154 438 15 128 346 0 59 185 41 847 0 132 48 67 0 48 143 34 706 0 90 118 40 66 12 98 13 0 261 0 70 40 205 97 127 102 136 118 155 152 215 277 401 432 103 104 90 119 36 770 0 97 126 43 59 75 43 209 101 246 141 341 229 549 388 127 42 115 309 15 118 346 19 839 0 133 84 156 48 69 120 112 166 136 253 266 452 416 342 304 147 147 94 0 48 153 54 1110 170 110 1837 260 175 3020 474 330 1966 350 189 73 79 0 0 63 167 95 102 144 425 122 34 162 269 784 205 56 278 448 1249 132 40 246 320 1010 330 96 146 106 248 194 204 150 88 0 0 304 157 494 122 423 48 587 193 399 129 165 59 0 0 934 1016 606 471 787 187 306 153 230 144 243289 690 124 290 87 335 505 143 201 102 146 95 0 0 939 0 223 130 113 107 75 56 86 43 70 40 6717 0 59 155 36 154 398 640 0 126 43 69 13 95 12 0 319 0 43 219 82 90 127 34 636 0 110 73128 4156 98 4219213210712310129022:00-23:00 上下294433551202420468758 359241694247156017335 0108 49 136 公交车调度方案的优化模型*摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。

数学建模-2001年的公交车调度问题教学内容

数学建模-2001年的公交车调度问题教学内容

数学建模-2001年的公交车调度问题第三篇公交车调度方案的优化模型2001年 B题公交车调度Array公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。

下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。

该条公交线路上行方向共14站,下行方向共13站,表3-1给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。

公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。

运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。

试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。

如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化模型*摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。

并提供了关于采集运营数据的较好建议。

在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。

模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度范围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。

公交车调度问题的研究

公交车调度问题的研究
表" 参数 ! !%& !%&’ !%( !%(’ 平均满载率!! )&%*1 *#%&1 *)%+1 &!%+1 模拟上行方向所得营运指标值 平均候车时间 ’ $%&& $%&& +%#+ *%#$ 所需总车辆 0 )$ )$ )# )# 总发车次数 %" #*! #’’ #+$ #$"
综合考虑以上参数, 当 ! " !%( 时, 各项指标比较适当, 平均满载率较高, 平均候车时间较 短, 所需车辆与总发车次数适中, 所以我们选取 ! " !%(。 下面我们给出 ! " !%( 时的具体模拟结果及统计指标。 结果: (见表 #) ! 各时段内单程发车次数 总车次 % " " % # " #+$。

!
问题分析
我们分析该问题为一带软时间窗的单车型运输问题。 由已知条件无法确定是单车场问题
还是多车场问题, 故我们分别建立两个模型: 双车场模型和单车场模型。 其中, 双车场模型认为 即均可作为始发站和终点站, 上行和下行路线独 车站 ! !? 和车站 ! $ 分别有车场 ! 和 " 存车, 立运行; 单车场模型认为 ! $ 车站有转运能力但没有存车能力, 这样实际上可将单车场方式理 解为环线行驶。
ቤተ መጻሕፍቲ ባይዱ! ##
符号说明: ( !, (已知) ( # )第 ! 次车到第 # 站时上车与下车的人数之差; ( !, ( !, ( ! * ", ( !, ("#! ) # )第 ! 次车离开第 # 站时站台上的滞留人数; ) # )" ) #) #) +( * ( !, # * ") * , ( !, ( !, ( !, ( !, ( ! * ", , # )第 ! 次车离开第 # 站时车上的人数; , # )" , # * ")+ ( # )+ ) ( !, # )* ) #) ( !, ( !, ( !, ・ -. ’ # )为第 ! 次车离开第 # 站时站台上滞留者的滞留时间; ’ # )" ) #) ( !, 为第 ! 次车离开第 # 站时的满载率, ( !, ( !, #) # )" , #) $ "!! ; ! ! % ", % # 为一天单程所发的车次总数; & ", & # 为单程站台总数; # / $ 模拟结果及统计指标分析 我们选取参数 ! " !%&, 所得结论如表 "。 ( 表中只给出上行方向 !%&’, !%( 进行模拟运行, 值) :

公交车调度问题数学建模论文

公交车调度问题数学建模论文

2011年数学建模论文——对公交车调度问题的研究摘要:本文根据所给的客流量及运营情况排出公交车调度时刻表,以及反映客运公司和乘客的利益有多个指标,建立了乘客的利益及公司利益两个目标函数的多目标规划数学模型。

基于多目标规划分析法,进行数值计算,从而得到原问题的一个明确、完整的数学模型,并在模型扩展中运用已建的计算机模拟系统对所得的结果和我们对于调度方案的想法进行分析和评价。

首先通过数据的分析,并考虑到方案的可操作性,将一天划为;引入乘客的利益、公司利益作为两个目标函数,建立了两目标优化模型。

通过运客能力与运输需求(实际客运量) 达到最优匹配、满载率高低体现乘客利益;通过总车辆数较少、发车次数最少表示公司利益建立两个目标函数。

应用matlab中的fgoalattain进行多目标规划求出发车数,以及时间步长法估计发车间隔和车辆数。

关键字:公交车调度;多目标规划;数据分析;数学模型;时间步长法,matlab一问题的重述:1、路公交线路上下行方向各24站,总共有L 辆汽车在运行,开始时段线路两端的停车场中各停放汽车m辆,每两车可乘坐S人。

这些汽车将按照发车时刻表及到达次序次发车,循环往返地运行来完成运送乘客的任务。

建立数学模型,根据乘客人数大小,配多少辆车、多长时间发一班车使得公交公司的盈利最高,乘客的抱怨程度最小。

假设公交车在运行过程中是匀速的速度为v。

1路公交车站点客流量见下表从新汽车站出发到市检察院站点名称新汽车站汉庭花园天九湾电信公司天九湾车场西环小区步行街上车人数11 3 1 1 1 2 下车人数1 0 0 0 4 等待时间3.8 5 2 1.5 2站点名称实验小学莆一中后门十字街旧汽车站新街口市农行上车人数5 1 3 4 8 3下车人数1 0 0 1 0 1 等待时间3.8 3 5.3 14.1 3.8站点名称市公交公司中国银行凤凰山八十亩小区石室路口市公交稽证处上车人数3 1 3 3 2 2 下车人数2 3 3 9 2 3 等待时间1.7 1 0.52.5 2.2 5.5 站点名称北磨交通花园三信家园市政府龙桥市场市检察院上车人数2 0 0 0 0 0 下车人数4 2 25 7 10 等待时间4从市检察院出发到新汽车站站点名称市检察院龙桥市场市政府三信家园交通花园北磨上车人数17 3 0 1 2 7 下车人数0 1 1 1 1 4 等待时间3.5 1.2 2.84.8 2.6 4站点名称市公交稽证处石室路口八十亩小区凤凰山中国银行市公交公司上车人数2 3 1 5 8 3 下车人数1 0 12 2 1 等待时间3.3 1.6 5 4 0 9 站点名称市农行新街口旧汽车站十字街莆一中后门实验小学上车人 2 0 2 4 1 0数下车人数2 7 2 5 2 2 等待时间3.4 6 5 1站点名称步行街西环小区天九湾车场天九湾电信公司汉庭花园新汽车站上车人数0 0 1 0 0 0 下车人数3 1 24 3 14 等待时间11 已知数据及问题的提出我们要考虑的是莆田市的一路公交线路上的车辆调度问题。

全国数学建模比赛优秀论文点评

全国数学建模比赛优秀论文点评

2005年A题:长江水质的评价和预测编者按:本文用差分方程和回归分析的方法对问题作了正确、恰当的分析处理,结果合理。

具有一定的创造性。

编者按:本文构造了“s”型的变权函数,对属于不同水质类别的同种污染指标进行了动态加权;根据7个观测站的位置将干流分为8段,计算中间6段的排污量,将本段内所有污染源等效为一个段中央的连续稳定源,计算出其对该段段末观测站浓度的影响值。

以上两点具有独到想法。

全文思路正确。

表述清晰,假设可靠。

编者按:本文思路清晰,表述流畅,文章特点是:对不同水质指标用不同方法做标准化处理,再综合评价,主要污染源位置的确定和未来水质发展趋势预测等问题中均有完整的数学模型。

不足之处是,没有结合长江水质的整体评价。

编者按:本文结构完整,表述清晰。

自定义了综合污染指数,综合评价的思路有可取之处;分段考虑了主要污染源所在,对结果做了尝试性的解释,但未考虑两观测站间单位长度的污染量;用时间序列建模及处理污水量的规划问题思路清晰,但一次累加拟和模型中多项式指数的作用和含义不够明确。

值得一提的还有,最后的建议中与前面的结果相互印证。

编者按:本文思路清晰,论述疏密有致,许多细微之处稍显匠心。

构造了模糊评价指数可以很好的整合不同水质的影响因素;在未来10年的预测中,兼顾了长江流量与污水总量两者的共同影响(文中是对长江流量在不同置信水平的下限预测分析的)。

编者按:通过数学建模方法,本文对长江水域受污染的情况作出比较全面和量化的评价,对污染源进行了比较深入的分析,得出明确的结论,同时也对长江未来的水质情况和污水处理形势做出量化的科学预测。

特别值得推荐的是,作者对于污染源的特点和水质的不同性质进行了分类,对于控制水质与污水处理的策略具有积极的参考作用。

作为大学生能够在短时间内,在一个问题中拓出多处有创意的概念和方法,实在难能可贵。

虽然文章仍有不足,仍希望引起读者关注,以期提高中国大学生的创造性能力。

2005年B、D题:DVD在线租赁编者按:文章较好的理解了题目的意思,应用二项分布处理问题一,反映了作者对随机问题的理解和处理;以满意度最大为目标建立了0-1规划模型,利用Array Lingo软件求解得到会员的分配方案;问题三的解决是以分阶段建立双目标规划,虽没能完整解决该问题,但分析问题、解决问题的思想方法值得推荐。

[小学]数学建模大赛历年试题

[小学]数学建模大赛历年试题

数学建模大赛历年试题1.MCM(美国大学生数学建模竞赛)1985 A题动物群体管理1985 B题战略物资存储管理1986 A题水道测量数据1986 B题应急设施的位置1987 A题盐的贮存1987 B题停车场1988 A题确定走私船的位置1988 B题两辆铁路平板车的装货问题1989 A题蠓的分类1989 B题飞机排队1990 A题药物在大脑中的分布1990 B题扫雪问题1991 A题估计水箱的流水量1991 B题最小费用极小生成树1992 A题航空控制雷达的功率1992 B题应急电力修复系统1993 A题加速餐厅剩菜堆肥的生成1993 B题倒煤台的操作方案1994 A题建筑费用1994 B题计算机传输1995 A题单螺旋线1995 B题教师薪金分配1996 A题海底探测1996 B题竞赛论文的评定1997 A题疾走龙属问题1997 B题开会决策1998 A题MRI扫描仪1998 B题学生等级划分1999 A题小型星撞击1999 B题非法集会1999 C题大地污染2000 A题空中交通控制2000 C题大象的数量2002 A题风和喷水池2002 B题航空公司超员订票2003 A题特技人员2003 B题GAMMA刀治疗计划2004 A题指纹是独一无二的吗?2004 B题更快的快通系统2.CUMCM(全国大学生数学建模竞赛)1993年A题非线性交调的频率设计1993年B题球队排名问题1994年A题逢山开路1994年B题锁具装箱1995年A题一个飞行管理模型1995年B题天车与冶炼炉的作业调度1996年A题最优捕鱼策略1996年B题节水洗衣机1997年A题零件的参数设计1997年B题截断切割1998年A题投资的收益和风险1998年B题灾情巡视路线1999年A题自动化车床管理1999年B题钻井布局2000年A题DNA序列分类2000年B题钢管定购和运输2001年A题血管的三维重建2001年B题公交车调度2002年A题车灯线光源的优化设计2002年B题彩票中的数学2003年A题SARS的传播2003年B题露天矿生产的车辆安排2004年A题奥运会临时超市网点设计2004年B题电力市场的输电阻塞管理。

美赛国赛数学建模知识

美赛国赛数学建模知识

数学建模知识——之参考资料一、数学建模竞赛中应当掌握的十类算法1.蒙特卡罗算法该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。

2.数据拟合、参数估计、插值等数据处理算法比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。

3.线性规划、整数规划、多元规划、二次规划等规划类问题建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现。

4.图论算法这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5.动态规划、回溯搜索、分治算法、分支定界等计算机算法这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。

6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7.网格算法和穷举法网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8.一些连续离散化方法很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9.数值分析算法如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10.图象处理算法赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。

二、数学软件的主要分类有哪些?各有什么特点?数学软件从功能上分类可以分为通用数学软件包和专业数学软件包,通用数学包功能比较完备,包括各种数学、数值计算、丰富的数学函数、特殊函数、绘图函数、用户图形届面交互功能,与其他软件和语言的接口及庞大的外挂函数库机制(工具箱)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2001年BD题《公交车调度》题目、论文、
点评
2001年B\\D题《公交车调度》
题目、论文、点评
公交车调度问题的研究董强刘超慧...
本题为带软时间窗的单线路单车型的公交调度问题,针对其多目标、多变量的动态特点,我们为满足不同的实际需求建立多个目标规划模型:双车场模型和单车场模型。

双车场模型的主要目标是使运客能力与运输需求(实际客运量)达到最优匹配,单车场模型的主要目标是使乘客的平均不方便程度和公交公司的成本达最小,其目的都是为了兼顾乘客与公司双方的利益。

两个模型的主体都是采用时间步长法,模拟实际的运营过程,从而得出符合实际要求的调度方案:静态调度和动态调度方案。

公交车调度问题的研究.pdf (192.23 KB)
公交车调度的规划数学模型薄立军要尉鹏
本文根据有序样本聚类的Fisher算法,给出一种蜂值曲线的优化方法,通过该方法我们得出了上行客流峰值为5个,其峰值区间为5:00-6:00,6:00-9:00,9:00-16:00,16:00-18:00,18:00-23:00;下行客流峰值为5个,其峰值区间为:5:00-7:00,7:00-9:00,9:00-16:00,16:00-
19:00,19:00-23:00。

然后,依据峰值区间建立确定发车间隔的算法Ⅰ模型和算法Ⅱ模型,对两种算法模型计算结果进行比较分析,得出结论:两个间隔高峰类时间段用算法Ⅰ进行求解,其余3个类时间段用算法Ⅱ进行求解。

在各个时间段结合处用光滑法进行优化处理,并以处理后的数据为基础制定出两个起点站的发车时刻表,并求出全线共需47辆车,乘客对方案的满意程度为98.2%,公交公司的满意程度为76.23%。

最后,运用随机服务系统的相关理论建立随机规划模型,给出概率灵敏度的误差分析,进而得出采集运营数据的较好方案。

公交车调度的规划数学模型.pdf (191.94 KB)
公交车调度吕鹏张文夫
本文利用多目标优化方法建立了公交车调度的数学模型。

首先通过数据分析,并考虑到方案的可操作性,将一天划分为早高峰前,早高峰,早高峰和晚高峰之间,晚高峰及晚高峰后5个时段;引入车辆的平均满载率,乘客的等待抱怨程度及拥挤抱怨程度作为三个目标函数,建立了三目标优化模型;通过加权,将三个目标函数合并为一个目标函数。

运用MATLAB数学软件计算出了上行、下行各个时段发车的时间间隔:上行各时段时间间隔分别为5、2、4、3、15,下行各时段时间间隔分别为10、2、5、3、8(单位:分钟);所需总车辆数为52辆,共发车534次,公交公司的平均满载率82.094%,抱怨顾客的百分比为0.91%。

通过模型检验得出所求模型较为稳定。

最后,通过对原始数据的
分析和处理,得出在进入和离开乘客高峰时期,局部缩短采集数据时间间隔是改善调度方案的有效方法。

公交车调度.pdf (139.07 KB)
对于公交汽车调度问题的求解张无非张驰
为了根据所给的客流量及运营情况排出公交车调度时刻表,并尽可能地满足乘客与公交公司双方的利益,我们建立了基于图形分析的模型一和基于计算机模拟的模型二,并在模型扩展中运用已建的计算机模拟系统对所得的结果和我们对于优化调度方案的想法进行分析和评价。

公交车辆调度所要处理的数据量是巨大的,所以如何有效地重组、利用已知数据是我们建立模型一的突破口。

我们首先对数据进行处理,得到了各站在各个时刻等待上车的人数曲线Di(t)与净上车人数曲线Bi(t)。

平移Di(t)与Bi(t),平移的距离就是起始站到各站的时间。

经过适当叠加后我们得到了D(t)与B(t)两根新的曲线。

在tj-1至tj时段内对D(t)、B(t)进行积分得到值的分别是累计乘上tj发现班车的总人数和tj发出班车在全程内的最大车上人数,前者与收益有关,后者和汽车载客量有关。

这样,所有和制定发车表有关的信息都被包涵在了两根曲线D(t)、B(t)中,而时刻表的制定更是简单地转化成了沿时间轴对B(t)包围的面积进行划分,划分直线的间距就是发车间距。

为了满足双方利益,我们建立了效用函数来保护双方的利益,比如在惩罚函数的监督下使公司发车间隔严格按照给定的要求;而公司也会尽量增加发车间隔以增加车辆满
载率。

由此制定的方案是能够让双方都满意的。

结合程序,公司只需输入题中给出的数据便可得到最佳汽车调度表,包括共需车辆数、起始时刻两头车辆分配和发车时刻表,具有很强的可操作性。

对于公交汽车调度问题的求解.pdf (213.03 KB)
关于公交车调度的优化问题傅昌建杨彩霞
本文主要是研究公交车调度的最优策略问题。

我们建立了一个以公交车的利益为目标函数的优化模型,同时保证等车时间超过10分钟(或者超过5分钟)的乘客人数在总的等车乘客数所占的比重小于一个事先给定的较小值a。

首先,利用最小二乘法拟事出各站上(下)车人数的非参数分布函数,求解时先用一种简单方法估算出最小配车数43辆。

然后依此为参照值,利用Maple优化工具得到一个整体最优解:最小配车数为48辆,并给出了在公交车载客量不同条件下的最优车辆调度方案,使得公司的收税佃得到最大,并且
乘客等车的时间不宜过长,最后对整个模型进行了推广和评价,指出了有效改进方向。

关于公交车调度的优化问题.pdf (165.09 KB)
公交车调度优化模型李成功脱小伟.
本文主要研究了一条公交线路在其每时段内各个车站点的客流统计数据为已知情况下的车辆运行计划时刻表的制定问题。

一般情况下,公交公司在调查研究取得的一定数据的基础上都是按
“接连开出”的方法安排工作日的车辆行车调度表,使得在运行期内,一组车辆“负贯而出,再贯而入”,而我们主要研究了随着时间和空间上客流不均衡性的变化,车辆应如何调度的规律,建立了目标规划模型。

实现了“有早出,有晚出”,车辆有多有少的调度计划。

在保证一定效益和顾客满意的情况下,使在岗车辆的总运行时间最短。

所有的计算都在计算机上实现,得出了调度时刻表,且最少的车辆数为42,顾客与公交公司的满意程度比为0.68:0.46。

公交车调度优化模型.pdf (142.94 KB)
公交车调度问题的数学模型谭泽光姜启源
给出本问题的背景、建模思路、一个具体的确定性数学模型,及相应的计算结果。

公交车调度问题的数学模型.pdf (129.78 KB)
建模需要思想,也需要数学训练和手上功夫—B题综合评述刘宝光
本文对于2001年全国大学生数学建模竞赛B题的解答,从模型框架、模型建立和模型求解等三个方面给出评述。

建模需要思想,也需要数学训练和手上功夫—B题综合评述.pdf (163.67 KB)。

相关文档
最新文档