定义证明二重极限

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义证wk.baidu.com二重极限
定义证明二重极限 就是说当点落在以点附近的一个小圈圈内的时候,f与a的差的绝对值会灰常灰常的接近。那么就说f在点的极限为a关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义,如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点p所对应的函数值都满足不等式那末,常数a就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于d的点,若对于任意给定的正数。,总存在正数a,使得对d内适合不等式0利用极限存在准则证明: 当x趋近于正无穷时,的极限为0;证明数列{xn},其中a>0,xo>0,xn=/2,n=1,2,…收敛,并求其极限。1)用夹逼准则:x大于1时,lnx>0,x_>0,故lnx/x_>0且lnx1),lnx/x_故的极限为02)用单调有界数列收敛:分三种情况,x0=√a时,显然极限为√ax0>√a时,xn-x=/2且xn=/2>√a,√a为数列下界,则极限存在.设数列极限为a,xn和x极限都为a.对原始两边求极限得a=/2.解得a=√a同理可求x0综上,数列极限存在,且为√时函数的极限: 以时和为例引入.介绍符号:的意义,的直观意义.定义 几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……时函数的极限: 由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=为使需有为使需有于是,倘限制,就有 例7验证例8验证单侧极限:1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有=§2函数极限的性质 教学目的:使学生掌握函数极限的基本性质。 教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。 教学重点:函数极限的性质及其计算。 教学难点:函数极限性质证明及其应用。 教学方法:讲练结合。 一、组织教学: 我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课: 函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性:th4若和都存在,且存在点的空心邻域,使,都有证设=註:若在th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:6.四则运算性质:利用极限性质求极限:已证明过以下几个极限: 这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1例2例3註:关于的有理分式当时的极限.例4例5例6例7证明二重极限不存在 如何判断二重极限不存在,是二元函数这一节的难点,在这里笔者对这一问题不打算做详细的讨论,只是略谈一下在判断二重极限不存在时,一个值得注意的问题。由二重极限的定义知,要讨论limx→x0y→y0f不存在,通常的方法是:找几条通过定点的特殊曲线,如果动点沿这些曲线趋于时,f趋于不同的值,则可判定二重极限limx→x0y→y0f不存在,这一方法一般人都能掌握,但是在找一些特殊曲线时,是有一定技巧的,不过不管找哪条曲线,这条曲线一定要经过,并且定点是这条曲线的非孤立点,这一点很容易疏忽大意,特别是为图方便,对于型如limx→x0y→y0fg的极限,在判断其不存在时,不少人找的曲线是f-g=0,这样做就很容易出错。例如,容易知道limx→0y→0x+yx2+y2=0,但是若沿曲线x2y-=0→时,所得的结论就不同→1)。为什么会出现这种情况呢?仔细分析一下就不难得到答案2若用沿曲线,一g=0趋近于来讨论,一0g,y。。可能会出现错误,只有证明了不是孤立点后才不会出错。o13a1673-38780l__0l02__02如何判断二重极限不存在。是二元函数这一节的难点,在这里笔者对这一问题不打算做详细的讨论。只是略谈一下在判断二重极限不存在时。一个值得注意的问题。由二重极限的定义知,要讨论limf不存在,通常x—’10y—’y0的方法是:找几条通过定点的特殊曲线,如果动点沿这些曲线趋于时,f趋于不同的值,则可判定二重极限limf不存在,这一方i—’10r’y0法一般人都能掌握,但是在找一些特殊曲线时,是有一定技巧的,不过不管找哪条曲线,这条曲线一定要经过,并且定点是这条曲线的非孤立点,这一点很容易疏忽大意,特别是为图方便,对于型如2的极限,在判卜’iogx,yy—·y0断其不存在时,不少人找的曲线是f一g:0,这样做就很容易出错。3当沿曲线y=-x+x_趋于时,极限为lim/x_=-1;当沿直线y=x趋于时,极限为limx_/2x=0。故极限不存在。4x-y+x_+y_f=————————x+y它的累次极限存在:x-y+x_+y_limlim————————=-1y->0x->0x+yx-y+x_+y_limlim————————=1x->0y->0x+y当沿斜率不同的直线y=mx,->时,易证极限不同,所以它的二重极限不存在。 例1、用数列极限定义证明:limn?2?0 n??n2?7n?2时n?22n2nn?2224|2?0|?2?2?2????? nn?7n?7n?7n?nn?1n?n2上面的系列式子要想成立,需要第一个等号和不等号、、均成立方可。第一个等号成立的条件是n>2;不等号成立的条件是2n4,即n>2;不等号成立的条件是n?,故取n=max{7, 2?44}。这样当n>n时,有n>7,n?。??4因为n>7,所以等号第一个等号、不等式、、能成立;因为n?,所以不等号成立的条件是1??|不等式能成立,因此当n>n时,上述系列不等式均成立,亦即当n>n时, 在这个例题中,大量使用了把一个数字放大为n或n?2?0|??。n2?7n的方法,因此,对于具体的数,.......2可把它放大为的形式......kn...............n?4?0 n??n2?n?1n?4n?4n?4时n?n2n2|2?0|?2?2???? n?n?1n?n?1n?n?1n2n22不等号成立的条件是n?,故取n=max{4, },则当n>n时,上面的不等式都成??例2、用数列极限定义证明:lim立。 注:对于一个由若干项组成的代数式,可放大或缩小为这个代数式的一部分。如:................................n2?n?1?n2n2?n?1?nn?n?n22n2?n?1n例3、已知an?,证明数列an的极限是零。2n11证明:???0,欲使|an?0|?||????成立22n?111??解得:n??1,由于上述式子中的等式和不等号对于任意的正整n?1?1数n都是成立的,因此取n?,则当n>n时,不等号成立,进而上述系列等式由不等式?和不等式均成立,所以当n>n时,|an?0|??。 在上面的证明中,设定0???1,而数列极限定义中的?是任意的,为什么要这样设定?这样设定是否符合数列极限的定义? 在数列极限定义中,n是一个正整数,此题如若不设定0???1,则n?就有1?可能不是正整数,例如若?=2,则此时n=-1,故为了符合数列极限的定义,先设定0???1,这样就能保证n是正整数了。 那么对于大于1的?,是否能找到对应的n?能找到。按照上面已经证明的结论,当?=0.5时,有对应的n1,当n>n1时,|an?0|<0.5成立。因此,当n>n1时,对于任意的大于1的?,下列式子成立:|an?0|<0.5<1<?,亦即对于所有大于1的?,我们都能找到与它相对应的n=n1。因此,在数列极限证明中,?可限小。只要对于较小的?能找到对应的n,则对于较大的?... 就自然能找到对应的n。 极限定义证明 趋近于正无穷,根号x分之sinx等于0x趋近于负1/2,2x加1分之1减4x的平方等于2这两个用函数极限定义怎么证明?x趋近于正无穷,根号x分之sinx等于0证明:对于任意给定的ξ>0,要使不等式|sinx/√x-0|=|sinx/√x||sinx/√x|_sinx_/ξ_,∵|sinx|≤1∴只需不等式x>1/ξ_成立, 所以取x=1/ξ_,当x>x时,必有|sinx/√x-0|同函数极限的定义可得x→+∞时,sinx/√x极限为0.x趋近于负1/2,2x加1分之1减4x的平方等于2证明:对于任意给定的ξ>0,要使不等式|1-4x_/2x+1-2|=|1-2x-2|=|-2x-1|=|2x+1|需要0g=max{f1,....fm};然后求极限就能得到limg=max{a1,...am}。 其实这个看起来显然,但对于求极限能放到括号里面,但真要用极限定义严格说明却和上面的证明差不多。 有种简单点的方法,就是max
相关文档
最新文档