动态信号分析仪的应用及原理

合集下载

网络分析仪基本操作介绍

网络分析仪基本操作介绍

网络分析仪基本操作介绍一、概述随着信息技术的飞速发展,网络已成为现代生活和工作中不可或缺的一部分。

为了更好地分析和优化网络性能,网络分析仪作为一种重要的测试工具被广泛应用。

网络分析仪基本操作介绍对于使用者来说至关重要,本文将详细介绍网络分析仪的基本操作,帮助读者更好地理解和使用这一强大的工具。

网络分析仪主要用于测量网络中的各项参数,如信号的频率响应、失真度、噪声系数等,以评估网络性能。

通过掌握网络分析仪的基本操作,使用者可以准确地分析网络中的各种问题,并找到相应的解决方案。

本文旨在让读者了解网络分析仪的基本功能、操作方法和使用注意事项,以便在实际应用中能够准确、高效地使用网络分析仪。

1. 介绍网络分析仪的重要性和应用领域随着互联网技术的飞速发展和信息通信技术的日益成熟,网络已经成为了我们日常生活与工作中不可或缺的重要部分。

为了确保网络的稳定、高效和安全运行,网络分析仪成为了必不可少的重要工具。

因此本文将为大家介绍网络分析仪的基本操作,本文将重点阐述的第一部分,是关于网络分析仪的重要性和应用领域。

在当今信息化社会,网络已经渗透到各行各业和千家万户的日常生活中。

无论是企业级的复杂网络系统,还是家庭用户的日常网络连接,网络的性能优化和故障排查成为了保证业务连续性和生活质量的关键环节。

网络分析仪在这一点上发挥着至关重要的作用,它可以对网络信号进行捕捉、分析和可视化处理,帮助工程师和IT专家迅速定位网络问题,提供准确的数据分析和解决方案。

因此网络分析仪是维护网络正常运行、提升网络性能的关键工具。

网络分析仪的应用领域非常广泛,几乎涵盖了所有涉及网络通信的领域。

以下列举几个主要应用领域:通信行业:在网络规划、部署和维护阶段,网络分析仪用于测试和优化无线和有线通信网络。

通过对信号质量的精确分析,确保通信的稳定和高效。

网络安全领域:网络分析仪通过深度分析网络流量和行为模式,有助于发现潜在的安全威胁,帮助防御各种网络安全攻击。

频谱分析仪的响应函数

频谱分析仪的响应函数

什么是频率响应函数动态信号分析仪的一个常见应用是测量机械系统的频率响应函数(FRF)。

这也称为网络分析,系统的输入和输出同时测量。

通过这些多通道测量,分析仪可以测量系统如何“改变”输入。

一个常见的假设是,如果系统是线性的,那么这个“变化”被频率响应函数(FRF)充分描述。

事实上,对于线性和稳定的系统,只要知道频率响应函数,就可以预测系统对任何输入的响应。

宽带随机、正弦、阶跃或瞬态信号在测试和测量应用中被广泛地用作激励信号。

图1说明了一个激励信号x,可以应用于一个UUT(测试单元),并生成一个或多个由y表示的响应,输入和输出之间的关系称为传递函数或频率响应函数,由H(y,x)表示。

一般来说,传递函数是一个复杂的函数,描述系统如何将输入信号的大小和相位作为激励频率的函数。

在各种激励条件下,对UUT系统的特性进行了实验测量。

这些特征包括:频率响应函数(FRF),通过以下参量描述: 增益频率函数。

相位频率函数。

共振频率,阻尼因素,总谐波失真,非线性。

利用宽带随机激励的FFT、交叉功率谱法测量频率响应。

宽带激励可以是高斯分布的真随机噪声信号,也可以是一个伪随机信号,其振幅分布可以由用户来定义。

宽带这一术语可能具有误导性,因为一个好的实现的随机激励信号应该是频带有限的,并由分析频率范围的上限控制。

也就是说,激励不应该激发高于测量仪器所能测量的频率。

随机发生器只产生频宽在分析频率范围内随机信号。

这也将把激发能量集中在有用的频率范围,以提高测试动态范围。

宽带随机激励的优点是它能在短时间内激发宽频段,因此总测试时间较短。

宽带激励的缺点是其频率能量在短时间内广泛传播。

每个频率点激发的能量贡献远小于总信号能量(大概是-30到-50dB小于总数)。

即使对于频率响应函数(FRF)估计有一个大的平均数字,宽带信号也不能有效地测量UUT的极端动态特性。

扫频正弦测量,优化了每个频率点的测量值。

由于激励信号是一个正弦波,在某一时刻其所有的能量都集中在一个频率上,改进了宽带激励中的动态范围不足的缺点。

动态信号分析仪安全操作及保养规程

动态信号分析仪安全操作及保养规程

动态信号分析仪安全操作及保养规程动态信号分析仪是一种被广泛应用于各类工业生产领域的高科技仪器设备,它能够通过采集物体振动的动态信号并将其进行分析,从而帮助用户检测出物体内部的缺陷和故障,辅助用户制定有效的维修和保养方案。

为了更好地保证动态信号分析仪的正常使用和延长其使用寿命,以下将为您介绍它的安全操作和保养规程。

安全操作1. 操作员应具备一定的技术知识在进行动态信号分析仪的操作时,操作员应具备一定的技术知识,了解其原理和工作方式。

如果是初次操作,操作员应事先进行相关的培训和指导,跟随有经验的人员参与实操,熟悉仪器的使用方法和操作流程,确保技能水平和安全意识符合要求。

2. 正确连接电源和信号线在接入电源前,应检查电源和电压是否符合动态信号分析仪的电气参数要求,避免供电不足或过大,导致设备损坏。

接线时应注意线路接法是否正确,电源线和信号线要分别接在相应的接口上,以免设备受到电击或触电事故发生。

3. 使用过程中应注意安全防护措施操作过程中应佩戴防静电手套,并注意保护设备不受损伤,设备外壳应经常擦拭,避免受到外界污染。

保持操作现场清洁、整洁、安全,避免绊倒、滑倒等意外事故的发生。

在设备运转时,应保持身体稳定,防止摇摆和跌倒。

4. 关闭设备前,应注意操作步骤在关闭设备之前,应先关闭设备的软件,在断开电源之前,给设备一定的停机时间,保证设备内的部件安全、准确、稳定地停止运转,然后再关掉电源,避免短路和电流浪涌对设备的损害。

保养规程1. 定期清理设备动态信号分析仪的频率转换器、计算机等部件上会积累灰尘、油污和异物,影响设备正常工作,因此需要定期进行清洗。

清洁时应避免使用含有酸性、碱性、易挥发的化学药品,轻微的灰尘可以用柔软的毛刷或清洁布擦拭。

2. 注意电源接口的保养动态信号分析仪的电源口很容易受到污染,长时间不进行干净的保养和维护,会使电源接口损坏,该接口损坏后会影响设备使用,因此要定期进行检查和清洁。

3. 驱动器的保养动态信号分析仪中的驱动器是重要部件,如果不注意保养就会出现摩擦、磨损等情况。

动态信号分析仪的特点都有哪些呢

动态信号分析仪的特点都有哪些呢

动态信号分析仪的特点都有哪些呢动态信号分析仪是用于测量和分析机械和电子设备中的振动、震动和噪音等动态信号的精密仪器。

它具有高精度、高速度、高灵敏度和高可靠性等特点。

本文将对动态信号分析仪的特点进行详细介绍。

1. 高精度动态信号分析仪采用了高精度、高速度的模数转换技术,可以对微弱的信号进行高精度的测量和分析。

它能够在高噪声环境下进行信号采集和分析,提高数据的可靠性和准确性。

同时,其具有高辨析度和高灵敏度,能够准确地检测和诊断机械设备中的故障和缺陷。

2. 高速度动态信号分析仪具备高速度的数据采集和处理能力,可以在短时间内采集和处理大量数据。

其采用了实时监测技术,能够对设备运行状态进行持续监测和分析,及时捕捉故障信号,快速反应和解决设备故障,有效提高设备的可靠性和安全性。

3. 多功能性动态信号分析仪具有多种功能,可以进行振动分析、频谱分析、时间频率分析、谐波分析、共振测试、幅值分析、相位分析等多项功能。

它能够满足不同范围的检测要求,适用于各种机械和电子设备中的振动、震动和噪音分析。

4. 易于操作动态信号分析仪采用了人性化的操作界面和简便的操作方式,可以快速上手操作。

同时,其具有自动化测试和诊断功能,能够自动识别和分析故障信号,提高工作效率和准确性。

此外,动态信号分析仪还支持远程监控和控制,使得远程工程师可以通过互联网等远程通信手段对设备进行监控和诊断。

5. 高可靠性动态信号分析仪采用了高品质的元器件和制造工艺,具有高可靠性和长寿命。

其外壳采用高强度、防水、防尘、防腐蚀的材料,能够在恶劣环境下工作。

同时,其具有自诊断和自校准功能,能够保证设备的稳定性和准确性。

6. 可拓展性动态信号分析仪具有良好的可拓展性,可以与其他测试设备、数字信号处理器等设备相连接,实现更为精细的检测和分析。

其支持多种接口和通讯协议,具有较高的兼容性和可扩展性。

综上所述,动态信号分析仪具有高精度、高速度、高灵敏度、高可靠性、多功能性、易于操作和可拓展性等多项特点,是工业领域中进行振动、震动和噪音分析的理想设备之一。

动态信号分析仪的特点都有哪些呢 分析仪操作规程

动态信号分析仪的特点都有哪些呢 分析仪操作规程

动态信号分析仪的特点都有哪些呢分析仪操作规程动态信号分析仪是一款便携式多通道并行同步采样的动态信号测试分析系统;包含动态信号测试分析系统所需的直流电压放大器、抗混滤波器、A/D转换器、DSP实动态信号分析仪是一款便携式多通道并行同步采样的动态信号测试分析系统;包含动态信号测试分析系统所需的直流电压放大器、抗混滤波器、A/D转换器、DSP实时信号处理系统、锂电池组及采样控制和计算机通讯的全部硬件;以及操作简便的管理和分析软件,用于多通道电压、电荷、ICP 传感器及4~20mA变送器的输出信号的采集和分析。

特点:高度便携:利用计算机的1394接口实时进行数据传送, 实现了热拔插和即插即用;并且较大程度上满足了对便携式仪器和采样速度的要求,测试系统不仅可在实验室使用,也可方便地应用于生产现场;高度集成:模块化设计的硬件,每个测量机箱可插入两个4通道数采和1通道转速测量模块;每台计算机可控制8通道数采和2通道转速同步并行采样,满足了多通道、高精度、高速动态信号的测量需求;每通道包含独立的DSP实时信号处理系统:可选择的模拟滤波 + DSP实时数字滤波,构成高性能抗混滤波器,还可根据转速周期,实时完成连续的整周期采样;每通道独立的16位A/D转换器:实现了多通道并行同步采样,通道间无串扰影响及采样速率不受通道数的限制,大大提高了系统的抗干扰能力;准确的采样速率:先进的DDS数字频率合成技术产生高精度、高稳定度的采样脉冲,保证了多通道采样速率的同步性、准确性和稳定性;数字磁带机信号记录功能:利用计算机海量的存储硬盘,长时间实时、无间断记录多通道信号;DMA方式传送数据:测试数据通过嵌入式实时操作环境下,DMA方式实时传送,保证了数据传送的高速、稳定、不漏码;先进的工艺:多层线路板,全贴片工艺,大大提高了硬件的可靠性和抗干扰能力;供电:智能化管理的可充电锂电池组供电;完全便携:防潮、防振设计,工作温度范围可拓宽至-10℃~60℃;信号适调器:配套各种可程控的信号适调器(包括电压适调模块、应变适调模块、电荷适调模块、双恒流源应变适调模块);不仅具有极强的抗干扰能力,而且由于参数由数采统一控制,系统的单位量纲实现了“傻瓜”设置。

网络分析仪培训资料

网络分析仪培训资料

网络分析仪培训资料在当今的电子通信领域,网络分析仪作为一种重要的测试测量仪器,发挥着不可或缺的作用。

无论是研发新型电子设备,还是对现有网络进行维护和优化,都离不开网络分析仪的精准测量和分析。

为了帮助大家更好地掌握网络分析仪的使用方法和技术,本文将对其进行详细的介绍和培训。

一、网络分析仪的基本原理网络分析仪是一种用于测量网络参数的仪器,它可以测量诸如反射系数、传输系数、阻抗、增益、相位等参数。

其基本原理是通过向被测网络施加激励信号,并测量响应信号,然后通过计算和分析得到网络的各种参数。

网络分析仪通常由信号源、接收机、测试装置和数据分析处理单元组成。

信号源产生特定频率和功率的测试信号,接收机用于测量被测网络的响应信号。

测试装置则将测试信号和响应信号进行适当的处理和转换,以便于数据分析处理单元进行计算和分析。

二、网络分析仪的类型根据不同的应用需求和测量精度,网络分析仪可以分为多种类型。

常见的有标量网络分析仪和矢量网络分析仪。

标量网络分析仪主要测量信号的幅度特性,如衰减和增益等。

它相对简单,价格较低,但无法提供相位信息。

矢量网络分析仪则不仅可以测量信号的幅度,还可以测量相位信息,能够更全面地描述被测网络的特性。

但矢量网络分析仪通常价格较高,操作也相对复杂。

此外,还有手持式网络分析仪和台式网络分析仪之分。

手持式网络分析仪便于携带,适用于现场测试;台式网络分析仪则精度更高,功能更强大,适用于实验室和研发环境。

三、网络分析仪的主要技术指标在选择和使用网络分析仪时,需要了解一些重要的技术指标,以确保其能够满足测量需求。

1、频率范围:网络分析仪能够测量的频率范围,这是根据具体的应用需求来选择的。

2、测量精度:包括幅度精度和相位精度,精度越高,测量结果越准确。

3、动态范围:表示网络分析仪能够测量的最大信号和最小信号之间的比值。

4、分辨率:指能够分辨的最小频率间隔和幅度变化。

四、网络分析仪的操作步骤1、连接设备首先,将网络分析仪与被测网络正确连接。

(完整)振动测量仪器知识

(完整)振动测量仪器知识

振动测量仪器知识一、概述(一)用途振动测量仪器是一种测量物体机械振动的测量仪器.测量的基本量是振动的加速度、速度和位移等,可以测量机械振动和冲击振动的有效值、峰值等,频率范围从零点几赫兹~几千赫兹。

外部联接或内部设置带通滤波器,可以进行噪声的频谱分析.随着电子技术尤其是大规模集成电路和计算机技术的发展,振动测量仪器的许多功能都通过数字信号处理技术代替模拟电路来实现。

这不仅使得电路更加简化,动态范围更宽,而且功能和稳定性也大大提高,尤其是可以实现实时频谱分析,使振动测量仪器的用途更加广泛。

(二)分类与特点振动测量仪器按功能来分:分为工作测振仪、振动烈度计、振动分析仪、激振器(或振动台)、振动激励控制器、振动校准器测量机械振动,具有频谱分析功能的称为频谱分析仪,具有实时频谱分析功能的称为实时频谱分析仪或实时信号分析仪,具有多路测量功能的多通道声学分析仪。

振动测量仪器按采用技术来分:分为模拟振动计、数字化振动计和多通道实时信号分析仪。

振动测量仪器按测量对象来分:分为测量机械振动的通用振动计,测量振动对人体影响的人体(响应)振动计、测量环境振动的环境振动仪和振动激励控制器。

●工作测振仪特点通常是手持式,操作简单、价格便宜,只测量并显示振动的加速度、速度和位移等。

以前用电表显示测量值,现在都是用数字显示。

通常不带数据储存和打印功能,用于一般振动测量。

振动烈度计是指专用于测量振动烈度(10 Hz~1000 Hz频率范围的速度有效值)的振动测量仪器。

●实时信号分析仪特点实时信号分析仪是一种数字频率分析仪,它采用数字信号处理技术代替模拟电路来进行振动的测量和频谱分析。

当模拟信号通过采样及A/D转换成数字信号后,进入数字计算机进行运算,实现各种测量和分析功能。

实时信号分析仪可同时测量加速度、速度和位移,均方根、峰值(Peak)、峰—峰值(Peak—Peak)检波可并行工作。

不仅分析速度快,而且也能分析瞬态信号,在显示器上实时显示出频谱变化,还可将分析得到的数据输出并记录下来.●动态信号测试和分析系统特点包含多路高性能数据采集、多功能信号发生、基本信号分析,还可以选择高级信号分析;以及模态分析、故障分析等应用。

动态信号分析仪简介

动态信号分析仪简介

Agilent Technologies 35670A Dynamic Signal AnalyzerProduct OverviewThe Agilent 35670A is a portable two- or four-channel dynamic signal analyzer with the versatility to be several instruments at once. Rugged and portable, it’s ideal for field work. Yet it has the performance and functionality required for demanding R&D applications. Optional features optimize the instrument for troubleshooting mechanical vibration and noise problems, characterizing control systems, or general spectrum and network analysis.Take the Agilent 35670Awhere it’s needed!Whether you’re moving an instrument around the world or around the lab, portability is a real benefit. Small enough to fit under an airplane seat, the 35670A goes where it’s needed. But there’s more to portability than size. Like a nominal 12- to 28-Volt DC power input and self-contained featuresthat do not require externalhardware, such as built-inpiezoelectric integrated circuitpower supply, analog trigger andtachometer inputs, and optionalcomputed order tracking.Versatile enough to beyour only instrument forlow frequency analysisWith the 35670A, you carry severalinstruments into the field in onepackage. Frequency, time, andamplitude domain analysis are allavailable in the standardinstrument. Build on that capabilitywith options that either add newmeasurement capability or enhanceall measurement modes.Versatile two- or four-channel high-performanceFFT-based spectrum/network analyzer122 µHz to 102.4 kHz 16-bit ADCKey SpecificationsFrequency Range:102.4 kHz 1 channel51.2 kHz 2 channel25.6 kHz 4 channelDynamic Range:90 dB typicalAccuracy:±0.15 dBChannel Match:±0.04 dB and ±0.5 degreesReal-time Bandwidth: 25.6 kHz/1 channelResolution:100, 200, 400 & 800 linesTime Capture:0.8 to >6 Msamples (option UFC)Source Types:Random, Burst random,Periodic chirp, Burst chirp, Pinknoise, Sine, Swept-Sine (option1D2),Arbitrary (option 1D4)The Agilent 35670Ashown with fourchannels (option AY6)AY6Add Two Channels (Four Total)1D0Computed Order Tracking1D1Real-Time OctaveMeasurementsUK4Microphone Adapter andPower Supply1D2Swept-Sine Measurements1D3Curve Fit and Synthesis1D4Arbitrary Waveform Source1C2Agilent Instrument BASIC1001D0 - 1D4 bundle2Agilent 35670ADynamic Signal AnalyzerShown with option AY6 - Add Two ChannelsInput Channels•Analog A-weighted fil-ters (switchable)•Transducer sensitivity input•Engineering units: g, m/s 2, m/s, m, in/s 2, in/s, in, mil, kg, dyn, lb,N, and pascals •Built-in 4 mAconstant current power supply(17 cm) display Display area is not compromised by portabilityPrecisionMeasurements •16-bit ADC•±0.15 dB spectrum amplitude accuracy •±0.04 dB, ±0.5degrees channel match (full scale)•90 dB dynamic range (typical)•130 dB dynamic range with swept-sine (option 1D2)•Up/Down autorange •Up only autorangeMath FunctionsPowerful math and data editing functions to quickly modify meas-urement results. (Curve fit and frequency responsesynthesis available with option 1D3.)Built-In 3.5 inch Flexible Disk Drive Store instrument states,programs, time captured data, waterfall data,trace data, limits, math functions, data tables,and curve fit/synthesis tables.Supported disk formats are HP-LIF andMS-DOS. Internal RAM may also beformatted as storage disk.Powerful Markers Extract information from measurement data with trace and special markers:•Individual Trace •Coupled Trace•Absolute or Relative •Peak Search •Harmonic •Band•Sideband Power •Waterfall•Time Parameter •Frequency and DampingVersatileMeasurement Modes Standard and optionalmeasurement modes include:•FFT Analysis•Real-Time Octave Analysis (option 1D1)•Order Analysis (option 1D0)•Swept-Sine (option 1D2)•Correlation Analysis •Histogram Analysis •Time CaptureAll measurement options may be retrofitted.RPM Display Read RPM in any measurement modeAgilent Instrument BASIC (Option 1C2)Develop a customuser-interface, integrate several instruments and peripherals into a system using the 35670A as the system controller, or simply automate measurements.Online Help Applications oriented help is just a few keystrokes away.Source Types •Random Noise •Burst Random Noise •Periodic Chirp •Burst Chirp •Pink Noise •Fixed Sine •Arbitrary Waveform Source (Option 1D4)•Swept-Sine Source (Option 1D2) Note: The source is located on the front panel of a standard two-channel 35670A.GPIB ConnectorIntegrate the35670A with otherinstruments andperipherals forsystem operationor printing/plotting.System controllerfor GPIB (IEEE-488.1and 488.2) compati-ble instrumentationvia AgilentInstrument BASIC(option 1C2).Provides direct con-trol of GPIB printers,plotters,and HP SS80 diskdrives.Serial PortPlot to HP-GLplotters or print toHP-GL and rasterprinters.Parallel PortPlot to HP-GL plottersor print to HP-GL andraster printers.DC PowerAccepts 12 to 28 voltsdc (nominal). Use the35250A power cable forDC power source con-nection, or the 35251Apower cable with ciga-rette-lighter adapter.Low Noise FanFan may be turnedoff for acousticapplications.Running speed dependsonambienttemperature.External MonitorDrive a VGA monitorfor remote viewing bylarge groups.Tachometer(42 Volt Peak Max)No external signalconditioning hardwarerequired. Readsfrequency (RPM) onselected levelsbetween ±20 Volts.External Trigger(42 Volt Peak Max)No external signalconditioning hardwarerequired. Triggers onselected levelbetween ±10 Volts.KeyboardUse a standard PCkeyboard to title data,edit Agilent InstrumentBASIC programs,or to operate theinstrument.Power SelectSwitch betweenAC and DC powersources withoutinterrupting instru-ment operation.AC PowerUniversal powersupply will operatewith anycombination ofvoltage between100 and 240 VACand line frequencybetween 47 and440 Hz. Themaximum powerrequirement is350 VA.34Laboratory-qualitymeasurements in the fieldObtain all of the performance of your bench-top analyzer in a portable instrument.Ease-of-usePortability, versatility, and perfor-mance are valued attributes, but to be really valuable an instrument must also be easy to use. The 35670A has a friendly front panel,plus online help that’s alwaysavailable to answer your questions.An interactive measurement state lets you configure the instrumentsetup from a single display.Two spectrums of road induced vibration measured at different speeds are comparedusing the front/back modeof the Agilent 35670A.FFT-based spectrum analyzers, such as the 35670A, are ideal for measuring the spectra of low-frequency signals like speech or mechanical vibration. Transient components,usually missed with swept-frequency analyzers, are easily measured and displayed at speeds fast enough to follow trends. The 35670A has both the performance and features required to take full advantage of this technology.16-Bits for High PerformanceWith a 16-bit ADC (90 dB typical dynamic range) and a real-time bandwidth of 25.6 kHz, you can be sure nothing will be missed. Resolve signals using 100 to 1600 lines resolution, or for really close-in analysis, use frequency zoom to resolve signals with up to 61 µHz resolution. Use time or RPM arming to develop waterfalls of sequential vibration spectra for trend analysis or for an overview of device vibration.Power and Linear SpectrumsMatch your spectrum measurement mode to the signal being tested. Use linear spectrum analysis to measure both the amplitude and phase of periodic signals such as the spectra of rotating machinery.Power spectrum analysis is provided for averaging nonrepetitive signals.AveragingVarious averaging modes let you further refine spectrum analysis measurements. Time averaging extracts repetitive signals out of the noise while rms averagingreduces the noise to its mean value.Exponential averaging, available for both time and rms averaging, is useful for reducing the noise while following changing signals—tracking the resonance shifts in a fatiguing structure for example.Spectrum Analysis5Time DomainUse your spectrum analyzer as alow-frequency oscilloscope or view signals in the time and frequency domains simultaneously. (Note: anti-alias filters can be switched off.) Special markers for time-domain data facilitate extraction of key control system performance parameters: overshoot, rise time,setting time, and delay time.Data TableUse a tabular format to keep track of key frequencies in the spectra of rotating machinery. The amplitude and frequency of the signal and a 16-character entry label field are listed for each selected point.Automatic Units ConversionDisplay vibration data in the units of your choice. Select g, m/sec 2, in/sec 2, m/s, in/s, m, mil, inch, Kg, lb, N, dyn,or pascals as appropriate for your application.The instrument automatically converts frequency-domain data from specified input transducer units to the units you select for display. For example, accelerometer data is automatically converted and displayed as mils when mils are selected. Of course, dB, dBV, dBm and volts are available for electrical applications.MarkersMarkers streamline analysis by helping you select and display specific data. Marker functions include marker to peak, next right peak, and coupled markers for selecting points in multiple data displays. Markers readouts are absolute or relative to your selected reference.Special MarkersThree special marker functions facilitate analysis of your spectral data. Sideband markers aid analysis of modulation signals. Use thisfunction to quickly locate sidebands in the complicated spectra of rotating machines. A band-power marker reads the total power in a selected band of frequencies and a total harmonic distortion marker lets you calculate total harmonic distortion without including the effects of noise.Measurement results at key frequencies can be labeled and listed using data table.Harmonic markers are used to calculate the THD of a signal without including the effects of noise.Simultaneousdisplay of frequency and time domain data facilitates analysis of gear mesh vibration.6The 35670A has the flexibility to make measurements of both electrical networks and mechanical devices. FFT-based network analysis is fast enough to allow real-time adjustments of circuit parameters while the swept-sine option provides exacting measurements over more than six frequency decades, and a 130 dB dynamic range.SourceSelect the optimum stimulus for each application—random noise,periodic chirp, pink noise, fixed sine, burst random, and burst chirp.For zoomed network analysismeasurements, the source is band-translated to match the zoom span at frequencies up to 51.2 kHz. An optional arbitrary source lets you test your product using real-world signals. A ±10 Volt DC source offset facilitates tests of control systems.Impact TestingForce and exponential windows allow impact testing for modal and structural analysis. Quality measurements are ensured using preview and accept/reject during averaging. A 4 mA constant current transducer power supply is built-in for true portability.Frequency ResponseMeasurementsLimits are used for go/no go testing in production. The response of an accelerometer is being checked inthis example.Characteristics of a selected resonance are automatically calculated from an impact measurement using the frequency and damping marker.LimitsTest network measurements against preset limits. Up to 800 separate line segments are available for setting upper and lower limits.Limits are also used for testing spectrum measurements.Four Channels (option AY6)Test up to three devicessimultaneously with a four-channel 35670A. Channel one is the common reference channel and two, three,and four are the response channels.Alternatively, select channels one and three as reference channels for two totally independent network measurements. See option AY6 description for more information.7MarkersA frequency and damping marker provides the resonant frequency and the damping ratio of single-degree-of-freedom frequency response measurements.Gain and phase margin markers extract key frequency-domain stability data from frequency response measurements of control systems.Signal Injection for Control LoopsUse one of three Agilent signal injection devices for testing control loops. The 35280A summing junction provides convenient DC to 1 MHz signal injection for most control loops. Use the 35281A clip-on transformer when it is not possible to temporarily open the loop, or use the 35282A signal injection transformer when secondary voltages are up to 600 Vpk.Capture transient events or time histories for complete analysis in any measurement mode (except swept-sine). Use either the entire time-capture record or a selected region of interest for repetitive analysis in the FFT, octave, order track, correlation or histogram instrument modes.Standard 16 Mbytes of memory for deep time-capture capability.Time CaptureAn interval of time-capture data has been selected for analysis in the octave mode.8Taking the measurement is only half the job. Raw measurement data must be stored, recalled, printed,plotted, integrated with other data for analysis, and reported. The 35670A has a variety of tools to help you finish the job.Enhanced Data Transfer Utilities for PCsStandard Data Format (SDF)Utilities, provided with the 35670A,allow you to easily move data from the instrument to wherever it’s needed:Using Measurement ResultsSelf-contained—no ratio synthesizer or tracking filter required Order Maps Order Tracking RPM or Time Trigger Display RPM ProfileTrack Up to Five Orders/Channel Up to 200 Orders Composite Power RPM MeasurementsOrder tracking facilitates evaluation of spectra from rotating machines by displaying vibration data as a function of orders (or harmonics)rather than frequency.All measurement spectra is normalized to the shaft RPM.Now you can have order tracking without compromising portability.Traditional analog order tracking techniques require external tracking filters and ratio synthesizers. With Agilent’s computed order tracking algorithm, external hardware is gone.Because order tracking isimplemented in the software, data is more precise and your job is easier. Compared to traditional analogorder tracking techniques, computed order tracking offers:Computed Order Tracking(Option 1D0)The slice marker feature is used to select and display an order or suborder from an order map.•For general digital signal processingand filtering , translate data files to formats compatible with MATLAB and MATRIX X , Data Set 58, or ASCII for use in popular spreadsheets.•For specific applications, useapplication software that reads SDF files directly, such as STARModal and STARAcoustics from SMS and CADA-PC from LMS.•Transfer data to and from the 35665A, 3566A, 3567A, 3562A,3563A.•Use the viewdata feature to display data on your PC or to convert to the HP-GL format for transfer to Microsoft’s Word for Windows or Lotus’ AMI PRO word processing software.•Convert between HP-LIF and MS-DOS ®formats.•Read data files into a program.Documented ResultsThe 35670A supports a variety of GPIB, serial and parallel printers and plotters for direct hardcopy output.The internal 3.5 inch flexible disk drive stores data, instrument states,HP-GL plots and Agilent Instrument BASIC programs in HP-LIF or MS-DOS formats for future recall or use on HP workstations or a personal computer.Entire display screens can be import-ed directly into your word processing program by plotting HP-GL files to your named DOS file. HP-GL files are interpreted and displayed directly by Microsoft’s Word for Windows and AMI PRO from Lotus Development Corp.•Improved dynamic range athigh orders•More accurate tracking of rapidly changing shaft speeds•Accurate RPM labeled spectra with exact RPM trigger arm •Wide 64:1 ratio of start to stop RPMsOrder MapUse order maps for an overview of vibration data versus RPM or time.Display the amplitude profile of individual orders and suborders using the slice marker function. Alternatively, use trace markers to select individual traces for display.MS-DOS and Microsoft are U.S. registered trademarks of Microsoft Corp.9Order TrackingMeasure only the data you need.Order tracking lets you measure the amplitude profile of up to five orders plus composite power simultaneously on each channel. Up to four orders or three orders and composite power can be dis-played simultaneously.RPM ProfileUse RPM profile to monitor the variation of RPM with time during order tracking measurements.Composite PowerComposite power provides the total signal power in a selected channel as a function of RPM.Run-Up and Run-Down MeasurementsRun-up and run-down measurements of any order are made using external trigger as the phase reference.Display the results as bode or polar plots; both are available.Markers allow convenient notation of important shaft speeds.OrbitsObtain oscilloscope-quality orbit measurements with your 35670A.Unlike traditional FFT analyzers, the 35670A equipped with computed order tracking displays a selected number of loops (usually one) as theshaft RPM is varied.Order tracking is used to simultaneously display up to four orders or a combination of orders,composite power and RPM profile.Markers are used to annotate shaft speeds at selected points in a run-up measurement.Oscilloscope-quality orbit diagrams mean you carry only one instrument onto the shop floor.10Real-Time Third Octave to 40 kHz ANSI S1.11-1986 Filter Shapes Microphone Inputs and Power A-Weighted Overall SPLRPM or Time-Triggered Waterfalls Eliminate the expense and inconvenience of multiple instruments in the field. With optional real-time octave analysis,and the optional microphoneadapter and power supply, you have a complete real-time octave analyzer added to your 35670A at a fraction of the cost of a second instrument.Now you can carry both your FFT and real-time octave analyzers to the job site in the same hand.Real-Time 1/3-Octave to 40 kHz on One ChannelWith two input channels of1/3-octave real-time measurements at frequencies up to 20 kHz, you get all of the information you’ll ever need to understand the noise performance of your product. No misinterpreted measurementsbecause transient components were missed. When the frequency range requirement is 10 kHz or less, use four channels to characterize spatial variations. For those exceptional circumstances, use 1/3-octave resolution at frequencies up to 40 kHz on a single channel.Resolutions of 1/1- and 1/12-octave are also available.Real-Time Octave Measurements (Option 1D1)Microphone Adapter and Power Supply (Option UK4)Overall sound pressure level and A-weighted sound pressure level can be displayed with the octave bands individually, together, or not at all.A fan-off mode lets you use the instrument in the sound field being measured.ANSI S1.11-1986All octave filters comply with filter shape standards ANSI S1.11-1986(Order 3, type 1-D), DIN 45651, and IEC 225-1966. An 80 dB dynamic range for the audio spectrumprovides the performance required by acousticians. Switchable analog A-weighting filters in the input channels comply fully with bothANSI S1.4-1983 and IEC 651-1979 Type 0.Advanced AnalysisUse waterfall displays of octave data for an overview of device noise versus time or RPM. Display individual frequency bands as a function of RPM or time using the slice marker function. Alternatively,use trace markers to select individual traces for display.A pink noise source is available for testing electro-acoustic devices.Sound LevelMeter MeasurementsPeak hold, impulse, fast, slow, and L eq are all provided with optional Real-time Octave Measurements. All measurements conform toIEC 651-1979 Type 0 - Impulse.Real-time 1/3-octave measurements at frequenciesup to 40 kHz.T his waterfall display of a flyover test can be analyzed trace-by-trace or by selecting time slices along thez-axis.Agilent 35670A with option UK4 microphone adapter and power supply.11130 dB Dynamic Range Logarithmic or Linear Sweeps “Auto” Frequency Resolution While FFT-based network analysis is fast and accurate, swept-sine measurements are a better choice when the device under test has a wide dynamic range or coversseveral decades of frequency e swept-sine measurements to extend the network measurement capabilities of the 35670A.Network Analysis Over a 130 dB RangeWith traditional swept-sine, the 35670A is optimally configured to measure each individual point in the frequency response. The result is a 130 dB dynamic range. With FFT-based network analysis, all frequency points are stimulated simultaneously and the instrument configures itself to measure thehighest amplitude response—thereby limiting the dynamic range.Characterize Nonlinear NetworksUse the auto-level feature to hold the input or output amplitude constant during a sweep. This provides the device response for a specific signal amplitude. With FFT-based network analysis using random noise, the randomamplitudes of the stimulus tend to “average out” the non-linearities and therefore does not capture thedependency of the response on the stimulus amplitude.Logarithmic SweepTest devices over more than six decades of frequency range using logarithmic sweep. In this mode,the frequency is automatically adjusted to provide the same resolution over each decade offrequency range. With FFT-network analysis, resolution is constant—not a problem when measuring over narrow frequency ranges.FlexibleMake the measurement your way.Independently select logarithmic or linear sweep, sweep up or down,automatic or manual sweep, and autoresolution.Automatic Frequency ResolutionUse autoresolution to obtain the fastest sweep possible without sacrificing accuracy. With autoresolution, the 35670Aautomatically adjusts the frequency step according to the deviceresponse. High rates of amplitude and phase change are matched with small frequency steps. Low rate-of-change regions are quickly measured with larger frequency steps.Test Multiple Devices SimultaneouslyIncrease throughput in production.Swept-sine measurements up to 25.6 kHz can be made on three devices simultaneously using swept-sine on a four-channel 35670A. Channel one is the common reference channel for these measurements.Alternatively, channels one and three can be designated asindependent reference channels for two totally independent swept-sine measurements.Swept-Sine Measurements(Option 1D2)The stability of a control loop is quickly character-ized using the gain and phase margin marker function.12Agilent Instrument BASIC (Option 1C2)Realize the advantages of using your instrument with a computer without sacrificing portability. Agilent Instrument BASIC provides the power of a computer inside your 35670A.Keystroke RecordingMost program development begins with keystroke recording. Each keystroke is automatically saved as a program instruction as you set up your measurement using the front panel. The recorded sequence can be used as the core of asophisticated program or run as an automatic sequence.Program entry and editing Program debugging Memory allocation Relation operators General math Graphics control Graphics plotting Graphics axes and labeling Program controlBinary functions Trigonometric operations String operations Logical operators GPIB control Mass storage Event initiated branching Clock and calendar General device I/O Array operationsOver 200 Agilent InstrumentBASIC Commands13Add Two Channels (Option AY6)Curve Fit and Synthesis (Option 1D3)51.2 kHz Frequency Range On One and Two Channels 25.6 kHz Frequency Range On Four ChannelsOne or Two Reference Channels Enhance your productivity by adding two additional inputchannels to your portable analyzer.Having four channels often means the difference between solving a problem in the field and having to schedule time in a test bay.Monitor four signals simultaneously or use channel one as thereference channel for up to three simultaneous cross-channel measurements. Two totally independent cross-channel measurements are made by selecting channels one and three as independent reference channels.All channels are sampled e triaxial measurements to simul-taneously characterize the motion of mechanical devices in three axes. For control systems, simultaneously measure several points in a single loop.20 Poles/20 Zeros Curve Fitter Frequency Response Synthesis Pole/Zero, Pole/Residue and Polynomial FormatUse curve fit and synthesis in the 35670A to take the guesswork out of your design process. The 20-pole and 20-zero multiple-degree-of-freedom curve fitter calculates a mathematical model of your system or circuit from measured frequency response data.The model can be expressed in pole/zero, pole/residue, orpolynomial format.Curve fit provides an exact mathematical model of your circuit or device.Transfer the circuit model to the synthesis function to experiment with design modifications. Add and delete poles and zeros, change gain factors, time delays, or frequency scaling, then synthesize the frequen-cy response from the modified model. Design modifications are tested without ever touching a sol-dering iron.14Standard 16 Mbytes RAMArbitrary Waveform Source (Option 1D4)Expand the data storage and time-capture capacity of your 35670A.Frequency or Time Domain Entry Data EditStore Up to Eight Arbitrary WaveformsTest your products using real-world signals. Measure a signal in either the time or frequency domain, then output it via the arbitrary waveform source. Use math functions and data edit to obtain precisely the output waveform you need. An arbitrary waveform may be output once or repeatedly.Standard source types can beoptimized for specific applications.For example, random noise can be shaped to improve the effectivedynamic range of your measurement.Alternatively, you can use data edit and math functions to create an arbitrary waveform.Use time capture as a digital tape recorder, then playback captured signals through the arbitrarywaveform source.Math functions are used to optimize a burst chirp signal for a frequency response measurement.Expand the data storage and time-capture capacity of your 35670A.Number of Spectra Stored Per ChannelStandard 16 MbyteFFT - 1 Channel 11400FFT- 2 Channels 2600FFT - 4 Channels 33001/3-Octave Spectra 448000Time Capture 1>6 MSamplesStandard 2 Mbyte Nonvolatile RAMUse the 2 Mbyte nonvolatile RAM in environments too harsh for the 3.5inch flexible disk drive. The memory functions as a high-speed disk for storage of the following information.•Instrument Setup States •Trace Data•User Math Definitions •Limit Data•Time Capture Buffers•Agilent Instrument BASIC Programs •Waterfall Display Data •Curve Fit/Synthesis Tables •Data TablesInformation stored in nonvolatile RAM is retained when the power is off.1Conditions: Preset with instrument mode switched to 1 channel.2Conditions: Preset3Conditions: Preset with instrument mode switched to 4 channels.4Conditions: Preset with instrument mode switched to octave.。

测量结果的不确定度分析

测量结果的不确定度分析

测量结果的不确定度分析发表时间:2020-12-25T11:38:11.783Z 来源:《城镇建设》2020年29期作者:郭媛媛,刘晓丽[导读] 机械零件加工的质量检查技术是一门高度技术性的学科。

质量检查人员必须逐一检查制造过程中的设计要求是否得到满足。

郭媛媛,刘晓丽商丘工学院机械工程学院,河南商丘 476000摘要:机械零件加工的质量检查技术是一门高度技术性的学科。

质量检查人员必须逐一检查制造过程中的设计要求是否得到满足。

精密机器最重要的是精度,精度除了静态和准静态精度还有动态精度,而动态精度由刚性保证,所以要关注的就变成精度和刚性,其中动态精度和刚性都表现为振动,而振动可以通过检测位移量来反映。

如何开始检查机械零件,如何选择测量工具和检查工具,以及使用哪些测试方法和手段来提高检查效率,以避免错误检测和漏检。

建立适当的检查过程是机械零件质量检查的首要前提。

本文主要研究机械零件的检测和质量控制系统。

关键词:机械零件;测量结果;不确定度0 引言研究机械零件测量的不确定度是新一代GPS(几何技术规范)发展的要求,是产品控制的要求。

随着新世纪测量不确定度技术水平的发展,新一代GPS系列标准逐渐被国内外科研人员和科研机构认同,其水平可以衡量国家层面的科技和制造业水平。

不确定度理论是新一代GPS标准体系的重要理论基础,研究和完善不确定度的工程应用技术,是当前新一代GPS标准应用研究的重点之一[1]。

1 测量结果的不确定度评估测量系统的不确定性一般源于自测量人员,测量装置,测量方法和外部环境四个部分,被分为A类不确定性和B类不确定性两种。

A类型不确定性可以通过分析一系列观测数据的统计规律来评估,一般集中在重复实验的测量结果中。

B类不确定性通常根据经验或相关标准确定的概率分布进行评估[2],一般源于测量系统本身和外部环境。

所以,研究人员在分析一个测量结果的不确定性时,第一要清楚影响测量结果不确定性的组成因素并分类;第二,根据合适的评估方法来进行评估,从而获取不确定性成分;最后也是最重要的,按照一定的步骤合成不确定度的分量,最终得到系统测量结果的不确定度和扩展不确定度的组合。

基于动态信号分析仪的便携式振动校准器的测量方法

基于动态信号分析仪的便携式振动校准器的测量方法

基于动态信号分析仪的便携式振动校准器的测量方法董平【摘要】It can also provide rapid calibration and inspection for those measuring, monitoring and recording system which be connected with. Based on the working principle of the portable vibration calibration and window function theory, taking dynamic signal analyzer (B&K PULSE 3560C) and standard accelerometer set (8305 / 2626) for detecting tool, using the experimental data as the evidence, this paper studies and sums up the effect degree of detection data’s accuracy influenced by the selection of window function during the process of the portable vibration calibrator detection.% 以便携式振动校准器工作原理和窗函数理论为基础,以B&K公司的PULSE 3560C动态信号分析仪和标准加速度计套组8305/2626为检测工具,以实验数据为佐证,研究并归纳出便携式振动校准器检测过程中窗函数的选择对检测数据准确性的影响程度【期刊名称】《上海计量测试》【年(卷),期】2012(000)004【总页数】3页(P10-12)【关键词】便携式振动校准器;动态信号分析仪;窗函数【作者】董平【作者单位】江苏省计量科学研究院【正文语种】中文0 引言振动校准器是一种便于携带并能用于测振仪和振动传感器(压电加速度探头)的校准激励器。

AVANT系列振动台检定系统(动态信号分析系统)

AVANT系列振动台检定系统(动态信号分析系统)

AVANT系列振动台检定系统(动态信号分析系统)美国VICON TECH.INTERNATIONAL公司振动台检定方案描述本方案采用国家计量检定规程JJG948-1999 和JJG 190-1997 标准。

适用于数字式电动振动试验系统。

本振动台检定系统由一台AVANT 系列动态信号分析仪、一台笔记本电脑和四个单向传感器、一个三向传感器ICP 加速度传感器构成。

系统框架如下图示:其中振动台的工作状态经传感器测量传输到动态信号分析仪,在计算机上显示分析结果。

AVANT 系列动态信号分析系统是基于双DSP 处理器,高质量的动态信号分析系统。

系统采用国际上最先进的分布式系统结构、低噪声硬件的设计技术、浮点数字滤波技术和24 位分辨率的ADC/DAC。

系统动态范围高110dB,采样频率96~192KHz。

AVANT 系列动态信号分析系统提供实时信号采集、分析、存贮,具有时域分析、频域分析、统计分析、三维瀑布图分析等多类分析功能。

4~16 通道同步输入通道独立的模拟抗混叠滤波器和160dB/OCT 数字滤波器量程分为:±0.1V、±1V、±10V24 位模数转换器(ADC)动态范围110dB谐波失真:-100dB 的谐波失真+噪声通道匹配:相位0.5°;幅值±0.05dB采样频率为96~192KHz耦合方式有AC 单端、AC 双端、DC 单端、DC 双端、ICP信噪比大于100dB频率精度达0.001%时域分析功能:时域采样、自相关分析、互相关分析、轨迹图频域分析功能:实时谱分析、自功率谱、互功率谱、功率谱密度、传递函数、相干函数、FFT、冲击响应谱检定项目正弦振动的检定操作数字式振动台控制仪产生检定所需的正弦激励信号(定频信号或扫频信号),通过安装在振动台台面上的传感器将振动台台面上的振动频率和幅值数据采集回AVNAT 系列动态信号分析系统,再由分析系统计算出功率、谐波失真等测试值。

减震器实验报告

减震器实验报告

一、实验目的1. 了解减震器的基本原理和结构;2. 掌握减震器的性能测试方法;3. 分析减震器的各项性能指标;4. 评估减震器的实际应用效果。

二、实验原理减震器是一种能够减小或消除机械振动和冲击的装置,广泛应用于各类机械设备中。

本实验主要针对汽车减震器进行研究,其工作原理为:当汽车行驶过程中,减震器通过油液的流动来吸收和消耗能量,从而减小车身和悬挂系统的振动。

三、实验仪器与设备1. 减震器实验台:用于模拟汽车悬挂系统,对减震器进行加载和测试;2. 动态信号分析仪:用于采集减震器的振动信号,分析其性能;3. 计算机及相关软件:用于数据处理和分析;4. 减震器:实验对象。

四、实验方法1. 减震器性能测试:在实验台上,对减震器进行加载,采集其振动信号,分析其阻尼系数、固有频率等性能指标;2. 减震器疲劳寿命测试:通过循环加载,观察减震器的磨损情况,评估其疲劳寿命;3. 减震器实际应用效果测试:在实车上进行测试,观察减震器在实际应用中的性能表现。

五、实验步骤1. 准备实验台,将减震器安装在实验台上;2. 连接动态信号分析仪,采集减震器的振动信号;3. 对减震器进行加载,观察其振动情况,记录相关数据;4. 对减震器进行疲劳寿命测试,记录磨损情况;5. 将减震器安装在实车上,进行实际应用效果测试;6. 对实验数据进行处理和分析,得出结论。

六、实验结果与分析1. 减震器性能测试结果:通过实验,得到减震器的阻尼系数为0.25,固有频率为10Hz,符合设计要求;2. 减震器疲劳寿命测试结果:经过10000次循环加载,减震器未出现明显磨损,其疲劳寿命满足设计要求;3. 减震器实际应用效果测试结果:在实车上进行测试,减震器表现出良好的减震性能,有效降低了车身和悬挂系统的振动。

七、结论通过本次实验,我们了解了减震器的基本原理和结构,掌握了减震器的性能测试方法,分析了减震器的各项性能指标,并评估了其在实际应用中的效果。

实验结果表明,该减震器具有良好的减震性能和疲劳寿命,能够满足设计要求,具有较好的实际应用价值。

DH5922N动态信号测试分析系统技术参数

DH5922N动态信号测试分析系统技术参数

DH5922N动态信号测试分析系统技术参数
1.测试频率范围:该系统可以测试的频率范围为0Hz至10MHz,可以对低频信号和高频信号进行测试。

2.动态范围:系统的动态范围为120dB,可以检测到很小的信号,同时也可以处理非常大的信号。

3.采样率:采样率是系统测量信号的重要指标,DH5922N动态信号测试分析系统的采样率为1GS/s,可以满足高速信号的测量需求。

4.采样深度:采样深度是系统测量精度的重要指标,DH5922N动态信号测试分析系统的采样深度为16位,可以提供高精度的信号测量结果。

5.输入阻抗:输入阻抗是系统对测量信号的负载能力,DH5922N动态信号测试分析系统的输入阻抗为50Ω,可以适应不同的信号源。

6.功率量程:系统的功率量程为-90dBm至+20dBm,可以测量非常小和非常大的信号功率。

7. 数据接口:DH5922N动态信号测试分析系统提供多种数据接口,包括USB、Ethernet和GPIB,可以方便地连接到计算机或其他设备。

8.测量模式:系统提供多种测量模式,包括时域测量、频域测量、频谱分析、波形捕捉等,可以根据需求进行灵活的信号分析。

9.显示器:DH5922N动态信号测试分析系统配备7英寸彩色液晶显示屏,可以直观地显示信号波形、频谱等测量结果。

10. 外形尺寸:系统的外形尺寸为440mm×260mm×100mm,重量为
3kg,便于携带和使用。

总结:DH5922N动态信号测试分析系统具有广泛的测试频率范围、较大的动态范围、高采样率和精度、适应不同信号源的输入阻抗、多种数据接口和测量模式等特点,可以满足各种信号测试和分析的需求。

DH5922N动态信号测试分析系统使用说明书(USB3.0)V1.0

DH5922N动态信号测试分析系统使用说明书(USB3.0)V1.0

DH5922N动态信号测试分析系统使用说明书V1.0江苏东华测试技术股份有限公司目录第一章入门指南 (1)1.1认识产品、附件及选件 (1)1.2仪器介绍 (3)1.2.1 前面板 (3)1.2.2 后面板 (4)1.3DH5611A-8同步时钟盒的介绍 (5)1.3.1前面板 (5)1.3.2后面板 (5)第二章系统要求 (7)2.1电源要求 (7)2.2环境要求 (7)2.3计算机系统要求 (8)2.3.1 硬件配置要求 (8)2.3.2 系统要求 (8)第三章安装与调试 (9)3.1连接信号线 (9)3.2DH5611A-8同步时钟盒的连接 (11)3.2.1单个同步时钟盒的连接 (11)3.2.2多个同步时钟盒的连接 (12)3.3DH5922N的连接 (12)3.3.1 单台仪器连接 (12)3.3.2 多台仪器连接 (13)3.3.3 电源线的连接 (13)3.4开机顺序 (14)3.5安装USB3.0驱动 (14)3.6软件安装与卸载 (15)3.6.1 安装 (15)3.6.2 卸载 (17)3.7W INDOWS7防火墙设置 (18)第四章传感器连接及测量内容设定 (26)4.1传感器连接方法 (26)4.2常见灵敏度的表示方法 (29)第五章过程测量 (26)5.1接口设置和参数管理 (26)5.2设置存储规则 (27)5.3设置测量通道 (28)5.3.1测量通道总体描述 (28)5.3.2电压/IEPE测量 (30)5.3.3应变应力/桥式传感器 (30)5.3.4电荷测量 (31)5.3.5铂电阻测温 (32)5.3.6电流测试 (32)5.3.7传感器信息 (33)5.3.8信号源通道 (33)5.3.9转速测量通道 (34)5.4实时测量 (35)5.5数据显示 (35)第六章数据处理和分析 (37)6.1显示统计信息 (37)6.2设置分析通道 (37)6.3数据回放 (38)6.4报告输出 (39)第七章常见故障及解决办法 (42)7.1仪器类故障 (42)7.2适调器类故障 (42)7.3传感器类故障 (42)7.4附件类和外部原因引起的故障 (43)第八章注意事项 (44)附录 (45)附录一DH5922N技术指标 (45)附录二调理器技术指标(选件) (47)附录三桥路的连接 (50)附录四W IN8系统下USB3.0驱动安装前系统设置 (52)附录五DH5922N引脚定义 (55)附录六版本说明 (56)第一章 入门指南1.1 认识产品、附件及选件产品图片名称型号描述DH5922N 动态信号测试分析系统(16通道) 通用型动态信号测试分析系统,应用范围广,可完成应力应变、振动(加速度、速度、位移)、冲击、声学、温度、压力等各种物理量的测试和分析。

信号分析仪原理

信号分析仪原理

信号分析仪原理
信号分析仪是一种用于分析电信号频谱和特性的仪器。

它通过将输入信号转换为频谱图并显示在屏幕上,帮助工程师或研究人员深入了解信号的频谱分布、频率成分、幅度、相位和其他属性。

信号分析仪的工作原理基于频谱分析技术。

频谱表示信号在各个频率上的能量分布情况。

信号分析仪首先将输入信号进行采样,并将其转换为数字信号。

然后,数字信号经过数学运算,如傅里叶变换,将信号从时域转换到频域。

这些运算能够将信号分解为不同频率的成分。

在转换到频域后,信号分析仪将频谱图显示在屏幕上。

频谱图通常由横轴表示频率,纵轴表示幅度或功率,显示信号在不同频率上的能量分布情况。

工程师或研究人员可以通过观察频谱图来分析信号的频谱特性,如频率成分、频谱形状、幅度变化等。

信号分析仪还具有其他功能,如频谱平坦度测试、频谱演示、时域波形显示等。

频谱平坦度测试用于评估信号在不同频率上的幅度平坦度,对于一些通信系统或音频设备的性能评估十分重要。

频谱演示功能可以将频谱图按照一定节奏或周期进行动态展示,有助于观察信号的周期性变化。

时域波形显示功能可以显示信号的时域波形,对于观察信号的时域特性也十分有用。

总之,信号分析仪通过频谱分析技术将信号从时域转换到频域,并显示在屏幕上,帮助工程师或研究人员深入了解信号的频谱
特性。

它是电子测试和研究领域中常用的仪器之一,广泛应用于通信、无线电、音频、音视频等领域。

模态损伤识别实验报告(3篇)

模态损伤识别实验报告(3篇)

第1篇一、实验背景与目的随着现代工程结构的日益复杂化,对结构健康监测和损伤识别技术的要求越来越高。

模态损伤识别技术作为一种有效的结构健康监测手段,通过对结构振动模态参数的检测和分析,可以实现对结构损伤的快速定位和评估。

本实验旨在通过模态损伤识别技术,对钢筋混凝土梁进行损伤检测,验证该方法在实际工程中的应用价值。

二、实验材料与设备1. 实验材料:钢筋混凝土梁(尺寸:长×宽×高= 3m×0.2m×0.25m)2. 实验设备:- 动态信号分析仪:用于采集和记录结构振动信号- 传感器:加速度传感器,用于测量结构振动加速度- 位移传感器:用于测量结构振动位移- 信号调理器:用于放大和滤波信号- 数据采集卡:用于采集传感器信号三、实验方法与步骤1. 实验准备:- 将钢筋混凝土梁固定在实验台上,确保梁处于水平状态。

- 将加速度传感器和位移传感器分别安装在梁的两侧,并与动态信号分析仪和信号调理器连接。

- 调整传感器和信号调理器的参数,确保信号采集的准确性。

2. 结构振动信号采集:- 在梁的中部施加激励力,使梁产生振动。

- 利用动态信号分析仪采集梁的振动加速度和位移信号,记录振动信号的时间历程。

3. 模态分析:- 利用模态分析软件对采集到的振动信号进行处理,提取结构的模态参数,包括频率、阻尼比和振型等。

4. 损伤识别:- 根据结构的模态参数变化,利用损伤识别算法对梁的损伤进行定位和评估。

5. 实验结果分析:- 对实验结果进行分析,验证模态损伤识别技术的有效性。

四、实验结果与分析1. 实验结果:- 通过模态分析,得到了梁的频率、阻尼比和振型等模态参数。

- 根据损伤识别算法,成功定位了梁的损伤位置和损伤程度。

2. 实验分析:- 实验结果表明,模态损伤识别技术可以有效地对钢筋混凝土梁进行损伤检测。

- 损伤识别算法能够准确识别梁的损伤位置和损伤程度,为结构健康监测和维修提供了重要依据。

动态信号分析仪操作规程,1200字

动态信号分析仪操作规程,1200字

动态信号分析仪操作规程动态信号分析仪操作规程一、引言动态信号分析仪是一种广泛应用于工程领域的测试仪器,用于分析和测量信号的频率、幅度、相位等参数。

准确地操作动态信号分析仪对于得到可靠的测试结果至关重要。

本操作规程旨在指导操作人员正确地使用动态信号分析仪进行测试。

二、安全须知1. 操作人员应熟悉该仪器的安全操作方法和相关规程。

2. 操作人员应穿戴符合要求的个人防护装备,包括耳塞、护目镜等。

3. 在使用过程中,应注意防止电击、触电等风险。

禁止在潮湿环境中操作仪器。

4. 当发生电器故障、烟雾或异味时,应立即停止使用并通知维修人员。

三、仪器准备1. 检查仪器的外观是否完好无损。

2. 确认仪器与电源的连接是否牢固可靠。

3. 检查测量电缆和传感器是否正常工作。

四、仪器设置1. 打开仪器电源,确保仪器处于正常工作状态。

2. 根据测试需求选择适当的测量模式和参数设置。

3. 设置参考信号源,校准仪器零点和增益。

五、进行测试1. 将被测信号正确连接到仪器的输入端口。

2. 调整测试信号的频率、幅度等参数,确保测量范围和分辨率符合要求。

3. 开始数据采集前,应等待足够的稳定时间,确保测试结果的准确性。

4. 运行测试程序,记录测量数据。

5. 检查测试结果是否符合预期,并及时记录和报告异常情况。

6. 完成测试后,关闭仪器电源,并及时清理和归档数据。

六、维护和保养1. 定期检查和校准仪器,确保其工作状态和测试精度。

2. 清洁仪器外壳和按键,防止灰尘积累或影响操作。

3. 确保仪器周围环境干燥、通风良好,避免潮湿和高温环境。

4. 定期更换电池和消耗品,避免因电力不足或耗尽导致测试中断。

5. 对于长期闲置的仪器,应采取适当的防护措施,避免损坏或老化。

七、故障排除在测试过程中,如果出现异常情况,操作人员应及时停止测试并进行故障排除。

如果无法解决问题,应通知维修人员进行维修。

八、结束语本操作规程对动态信号分析仪的使用进行了详细介绍和规范,希望能帮助操作人员正确操作仪器,提高测试效果和结果的可靠性。

动态应变仪的工作原理

动态应变仪的工作原理

动态应变仪的工作原理
动态应变仪通常由传感器、信号采集器和数据处理器组成。

在使用前,需要将传感器安装在待测试材料的表面,并将信号采集器连接到传感器上。

当待测试材料受到快速、瞬间性负载时,传感器将测量到应变信号,并将信号发送到信号采集器中。

信号采集器会将信号转换成数字信号,并通过数据处理器进行处理和分析。

动态应变仪的工作原理基于应变测量原理,即根据材料受到力的变化而引起的相应变形来测量材料的应变响应。

传感器通常采用电阻应变片或光纤布拉格光栅等技术来测量应变信号。

动态应变仪的工作原理还基于传感器技术,即通过将传感器安装在待测试材料的表面,利用传感器测量材料表面的应变信号来反映材料的应变响应。

总之,动态应变仪的工作原理基于应变测量原理和传感器技术,通过测量材料在快速、瞬间性负载下的应变响应来评估材料的性能。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在现代测试技术中动态信号分析仪是重要的测试设备,既可用于系统动态特性的测量也可用于稳态分析,还可用于强度试验以及频谱分析。

动态信号分析仪的应用有动态数据采集、机械振动分析、振动控制系统分析、声学分析、结构分析等领域。

目前各国生产的动态信号分析仪型号规格很多性能也各异,如美国晶钻仪器公司的CoCo-80X和CoCo-90X动态信号分析仪,它是一款手持式仪器,同时具有数据动态数据记录功能,它有4/8/16输入通道,最高采样率102.4KHz,最高150dB的动态范围,数字滤波器有效防止削波等,自带电池与内存,特别适合野外实时数据采集与分析,在桥架结构监测、大型机械状态监测、高校振动试验、汽车NVH模态分析、航空航天高铁隧道监测、环境噪声监测、声学分析等,功能有频谱分析及相关函数、结构模态分析、动平衡、路径采集点检、旋转机械阶次跟踪、倍频程和声级计、全身振动、阈值检测、冲击响应谱和正弦扫频、包络分析、数据采集等。

★动态信号分析仪原理
动态信号分析仪一般由如下几个部分组成:
1.防混叠低通滤波器。

2.模拟到数字转换器ADC。

3.数字信号处理器:数字变频,数字滤波,数字信号处理(如FFT等频率分析函数)等。

4.控制和显示。

杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,负责产品销售、技术支持与产品维护,是机械状态监测、振动噪声测试、动态信号分析、动态数据采集、应力应变测试等领域的供应商,提供手持一体化动态信号分析系统、多通道动态数据采集系统、振动控制系统、多轴振动控制系统、三综合试验系统和远程状态监测系统等。

更多详情请拨打联系电话或登录杭州锐达数字技术有限公司咨询。

相关文档
最新文档