专题28 利用导数研究函数的极值(解析版)

合集下载

利用导数研究函数的极值与最值

利用导数研究函数的极值与最值

利用导数研究函数的极值与最值导数是研究函数变化率的工具,通过导数可以研究函数的极值和最值。

在这篇文章中,我们将讨论如何利用导数来研究函数的极值和最值。

一、极值的定义和判断条件极值是指函数取得的最大值或最小值。

在数学上,函数f(x)在点x=c处取得极值的充分条件是f'(c)=0,并且f'(x)的符号在x=c的两侧改变。

具体来说,f'(x)大于0时,函数递增;f'(x)小于0时,函数递减。

而当f'(x)从正变为负或从负变为正时,就是函数取得极值的地方。

二、几何图形与导数的关系通过导数的大小和符号,我们可以推断函数的几何行为。

例如,当f'(x)>0时,函数f(x)是递增的,图像是向上的曲线;而当f'(x)<0时,函数f(x)是递减的,图像是向下的曲线。

当f'(x)=0时,函数可能达到极值点。

三、利用导数判断函数的极值1.求导数:首先求出函数f(x)的导数f'(x)。

2.解方程:解方程f'(x)=0,得到可能的极值点x=c。

3.判断符号:将极值点x=c代入f'(x),判断f'(x)的符号在c的两侧。

如果f'(x)从正变为负,或从负变为正,那么极值点x=c是函数的极值点。

4.检验:将极值点代入函数f(x)中,算出函数值f(c),判断是否是极值。

四、利用导数求函数的最值1.求导数:求出函数f(x)的导数f'(x)。

2.解方程:解方程f'(x)=0,得到可能的最值点x=c。

3.极值判断:判断c是否是函数的极值点,确定是否是最值点。

4.边界判断:检查函数在定义域的边界上的函数值,判断是否可能是最值。

5.比较:对于所有可能的最值点,比较它们的函数值,得到最大值和最小值。

五、利用导数求出临界点临界点是指导数不存在的点或者导数为零的点。

通过求导数,我们可以找到函数的临界点。

临界点可能是函数的极值点或最值点。

高考数学复习、高中数学 利用导数研究函数的极值、最值附答案解析

高考数学复习、高中数学  利用导数研究函数的极值、最值附答案解析

第3节 利用导数研究函数的极值、最值课标要求 1.借助函数的图象,了解函数在某点取得极值的必要条件和充分条件;2.能利用导数求某些函数的极大值、极小值以及给定闭区间上不超过三次的多项式函数的最大值、最小值,体会导数与单调性、极值、最大(小)值的关系。

【知识衍化体验】知识梳理1.导数与函数的极值 (1)函数的极小值与极小值点若函数f (x )在点x =a 处的函数值f (a )比它在点x =a 附近其他点的函数值 ,且f ′(a )=0,而且在x =a 附近的左侧 ,右侧 ,则点a 叫做函数的极小值点,f (a )叫做函数的极小值;(2)函数的极大值与极大值点若函数f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点的函数值 ,且f ′(b )=0,而且在x =b 附近的左侧 ,右侧 ,则点b 叫做函数的极大值点,f (b )叫做函数的极大值. 2.导数与函数的最值(1)函数f (x )在[a ,b ]上有最值的条件如果在区间[a ,b ]上函数y =f (x )的图象是一条 的曲线,那么它必有最大值和最小值.(2)求y =f (x )在[a ,b ]上的最大(小)值的步骤①求函数y =f (x )在(a ,b )内的 ;②将函数y =f (x )的各极值与 比较,其中 的一个是最大值, 的一个是最小值. 【微点提醒】1.对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件. 2.若函数f (x )在开区间(a ,b )内只有一个极值点,则相应的极值点一定是函数的最值点. 3.极值有可能是最值,但最值只要不在区间端点处取得,其必定是极值.基础自测1.函数f (x )=43x 3-6x 2+8x 的极值点是( )A .x =1B .x =-2C .x =-2和x =1D .x =1和x =22.(2016·四川高考卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =( D ) A .-4 B.-2C .4 D.23.函数f (x )=ln x -x 在区间(0,e]上的最大值为( ) A .1-e B .-1 C .-e D .04.若函数y =e x+mx 有极值,则实数m 的取值范围是( ) A .m >0 B .m <0 C .m >1 D .m <15.若函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.【考点聚焦突破】考点1 导数与函数的极值角度1 利用图像判断函数的极值情况 【例1-1】 已知函数y =f ′xx的图象如图所示(其中f ′(x )是定义域为R 的函数f (x )的导函数),则以下说法错误的是( )A .f ′(1)=f ′(-1)=0B .当x =-1时,函数f (x )取得极大值C .方程xf ′(x )=0与f (x )=0均有三个实数根D .当x =1时,函数f (x )取得极小值 规律方法由图像判断函数的极值,需关注两点:一是导函数图像与x 轴交点,可能得到函数的极值点;二是导函数的正负性可以得到原函数的单调性。

利用导数研究函数的极值-高中数学知识点讲解(含答案)

利用导数研究函数的极值-高中数学知识点讲解(含答案)

利用导数研究函数的极值(北京习题集)(教师版)一.选择题(共10小题)1.(2019春•西城区校级期中)设函数()(1)(2)x f x e x x =--,则( ) A .()f x 的极大值点在(1,0)-内 B .()f x 的极大值点在(0,1)内C .()f x 的极小值点在(1,0)-内D .()f x 的极小值点在(0,1)内2.(2017秋•海淀区校级期末)若函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x =-'的图象如图所示,则下列结论中一定成立的是( )A .函数()f x 有极大值f (3),极小值(1)f -B .函数()f x 有极大值(1)f -,极小值f (3)C .函数()f x 有极大值(1)f -,极小值f (1)D .函数()f x 有极大值f (3),极小值f (1)3.(2017秋•海淀区校级期末)如果函数323y x x ax =-+存在极值,则实数a 的取值范围是( ) A .(3,)+∞B .[3,)+∞C .(,3)-∞D .(-∞,3]4.(2018春•海淀区校级期末)如图,已知直线y kx m =+与曲线()y f x =相切于两点,则()()F x f x kx =-有( )A .1个极大值点,2个极小值点B .2个极大值点,1个极小值点C .3个极大值点,无极小值点D .3个极大值点,2个极小值点5.(2018•东城区二模)已知函数()sin f x x x =,现给出如下命题: ①当(4,3)x ∈--时,()0f x ; ②()f x 在区间(0,1)上单调递增; ③()f x 在区间(1,3)上有极大值;④存在0M >,使得对任意x R ∈,都有|()|f x M .其中真命题的序号是( ) A .①②B .②③C .②④D .③④6.(2018春•西城区校级期中)设函数()(2)1f x x lnx ax =--+,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A .13(0,)3ln + B .1(2,13]3ln +C .13(3ln +,1)D .13[3ln +,1)7.(2018春•西城区期末)已知函数()(1)x af x e x=-,若0(0,)x ∃∈+∞,0x 为()f x 的一个极大值点,则实数a 的取值范围是( ) A .(,0)-∞B .(4,)+∞C .(-∞,0)(4⋃,)+∞D .前三个答案都不对8.(2018春•东城区期末)已知函数()f x 的导函数()f x '是二次函数,且()y f x '=的图象关于y 轴对称,f '(3)0=,若()f x 的极大值与极小值之和为4,则(0)(f = ) A .2B .0C .2-D .4-9.(2018春•西城区校级期中)定义在R 上的函数()f x 和()g x ,其各自导函数()f x '和()g x '的图象如图所示,则函数()()()F x f x g x =-极值点的情况是( )A .只有两个极大值点,无极小值点B .无极大值点,只有两个极小值点C .有一个极大值点,无极小值点D .有一个极大值点,一个极小值点10.(2018•海淀区二模)如图,已知直线y kx =与曲线()y f x =相切于两点,函数()g x kx m =+,则函数()()()(F x g x f x =- )A .有极小值,没有极大值B .有极大值,没有极小值C .至少有两个极小值和一个极大值D .至少有一个极小值和两个极大值 二.填空题(共5小题)11.(2019春•西城区校级期中)函数3()12f x x x =-的极大值点是 ,极大值是 . 12.(2019春•西城区校级期中)已知函数()y f x =满足: (1)既有极大值,也有极小值; (2)[0x ∀∈,1],都有()0f x >.请你给出一个满足上述两个条件的函数()y f x =的例子 .13.(2017秋•海淀区校级期末)函数32()31f x x x =-+的极小值点为 .14.(2018春•海淀区期中)函数2()()x f x e x ax a =++在区间(0,1)上存在极值,则a 的取值范围是 15.(2018春•朝阳区期末)已知函数32()3f x x x a =--恰有3个不同的零点,则实数a 的取值范围是 .利用导数研究函数的极值(北京习题集)(教师版)参考答案与试题解析一.选择题(共10小题)1.(2019春•西城区校级期中)设函数()(1)(2)x f x e x x =--,则( ) A .()f x 的极大值点在(1,0)-内 B .()f x 的极大值点在(0,1)内C .()f x 的极小值点在(1,0)-内D .()f x 的极小值点在(0,1)内【分析】先对函数求导,然后结合导数与极值关系及二次函数的性质即可求解. 【解答】解:2()(1)x f x e x x '=--,令2()1g x x x =--结合二次函数的性质可知,()g x 在1(,)2-∞上单调递减,且(1)10g -=>,(0)10g =-<,故存在(1,0)m ∈-,当(,)x m ∈-∞时,()0g x >即()0f x '>,()f x 单调递增, 当(,0)x m ∈时,()0g x <即()0f x '<,()f x 单调递减, 故当x m =时,函数取得极大值且(1,0)m ∈-. 故选:A .【点评】本题主要考查了导数与极值关系的应用,体现了转化思想的应用.2.(2017秋•海淀区校级期末)若函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x =-'的图象如图所示,则下列结论中一定成立的是( )A .函数()f x 有极大值f (3),极小值(1)f -B .函数()f x 有极大值(1)f -,极小值f (3)C .函数()f x 有极大值(1)f -,极小值f (1)D .函数()f x 有极大值f (3),极小值f (1)【分析】由已知函数(1)()y x f x =-'的图象如图所示,列出表格可得单调性,进而判断出极值. 【解答】解:由已知函数(1)()y x f x =-'的图象如图所示, 可得:x(,1)-∞-1-(1,1)-1(1,3)3(3,)+∞()f x ' + 0-0 -0 +()f x单调递增 极大值 单调递减单调递减 极小值 单调递增由表格可得:函数()f x 有极大值(1)f -,极小值f (3). 故选:B .【点评】本题考查了利用导数研究单调性极值、方程与不等式的解法、数形结合方法,考查了推理能力与计算能力,属于中档题.3.(2017秋•海淀区校级期末)如果函数323y x x ax =-+存在极值,则实数a 的取值范围是( ) A .(3,)+∞B .[3,)+∞C .(,3)-∞D .(-∞,3]【分析】由函数32()3f x x x ax =-+有极值,易得函数的导函数在R 有两个零点,利用判断式构造出一个关于a 的不等式,解不等式即可得到答案. 【解答】解:函数32()3f x x x ax =-+.2()36f x x x a ∴'=-+,若函数32()3f x x x ax =-+在区间R 有极值, 则2()36f x x x a '=-+在R 内有两个零点, 可得△36120a =->,解得3a <. 故选:C .【点评】本题考查的知识点是函数在某点取得极值的条件,其中将问题转化为导函数的零点问题是解答此类问题最常用的办法.4.(2018春•海淀区校级期末)如图,已知直线y kx m =+与曲线()y f x =相切于两点,则()()F x f x kx =-有( )A.1个极大值点,2个极小值点B.2个极大值点,1个极小值点C.3个极大值点,无极小值点D.3个极大值点,2个极小值点【分析】对函数()()=-,求导数,根据条件判断()F x f x kx'与k的关系进行判断即可.f x【解答】解:直线y kx m=相切于两点,=+与曲线()y f xf x kx m+,∴+=有两个根,且()kx m f x()由图象知0m<,则()<,f x kx即则()()0=-,没有零点,F x f x kx=-<,则函数()()F x f x kx函数()f x有3个极大值点,2个极小值点,则()()'='-,F x f x k设()f x的三个极大值点分别为a,b,c,则在a,b,c的左侧,()'<,此时函数()()=-有3个极大值,F x f x kxf x kf x k'>,a,b,c的右侧()在d,e的左侧,()F x f x kx'>,此时函数()()=-有2个极小值,f x kf x k'<,d,e的右侧()故函数()()=-有5个极值点,3个极大值,2个极小值,F x f x kx故选:D.【点评】本题主要考查函数零点的判断以及极值的判断,利用图象求函数的导数,利用函数极值和导数之间的关系是解决本题的关键.综合性较强,有一定的难度.5.(2018•东城区二模)已知函数()sin=,现给出如下命题:f x x x①当(4,3)f x;x∈--时,()0②()f x在区间(0,1)上单调递增;③()f x在区间(1,3)上有极大值;④存在0f x M.M>,使得对任意x R∈,都有|()|其中真命题的序号是()A.①②B.②③C.②④D.③④【分析】分析函数()sin=的图象和性质,进而逐一分析给定四个命题的真假,可得答案.f x x x【解答】解:当(4,)f x<,故①为假命题;∈--时,sin0xπx>,()0()sin cos f x x x x '=+,当(0,1)x ∈时,()0f x '>恒成立,故()f x 在区间(0,1)上单调递增,故②为真命题;f '(1)sin1cos10=+>,f '(3)sin33cos30=+<,且()f x '在在区间(1,3)上连续,故存在0(1,3)x ∈,使0(1,)x x ∈时,()0f x '>,0(x x ∈,3)时,()0f x '<, 故当0x x =时,()f x 取极大值,故③为真命题; 由函数()sin f x x x =不存在最大值和最小值,故不存在0M >,使得对任意x R ∈,都有|()|f x M .故④为假命题, 故选:B .【点评】本题考查的知识点是利用导数研究函数的单调性,利用导数研究函数的极值,难度中档.6.(2018春•西城区校级期中)设函数()(2)1f x x lnx ax =--+,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A .13(0,)3ln + B .1(2,13]3ln +C .13(3ln +,1)D .13[3ln +,1)【分析】设()(2)g x x lnx =-,()1h x ax =-,问题转化为存在唯一的整数0x 使得0()g x 在直线1y ax =-的下方,求导数判断单调性,数形结合可得g (1)h (1)1a =-且h (3)31a g =-(3)3ln =,h (2)g >(2),解关于a 的不等式组可得.【解答】解:设()(2)g x x lnx =-,()1h x ax =-,由题意知存在唯一的整数0x 使得0()g x 在直线()1y h x ax ==-的下方, 2()1g x lnx x'=+-, ∴当2x 时,()0g x '>,当01x <时,()0g x '<,当1x =时,g (1)0=,当1x =时,h (1)10a =-<,即1a . 直线1y ax =-恒过定点(0,1)-且斜率为a ,由题意结合图象可知,存在唯一的整数02x =,0()0f x <,故h (2)21a g =->(2)0=,h (3)31a g =-(3)3ln =,解得11323ln a+<. 故选:B .【点评】本题考查导数的运用:判断单调性,涉及数形结合和转化的思想,属中档题.7.(2018春•西城区期末)已知函数()(1)x afx e x=-,若0(0,)x ∃∈+∞,0x 为()f x 的一个极大值点,则实数a 的取值范围是( ) A .(,0)-∞B .(4,)+∞C .(-∞,0)(4⋃,)+∞D .前三个答案都不对【分析】求导数,根据函数2()g x x ax a =-+的图象有2(0)00240g a a a >⎧⎪⎪>⎨⎪=->⎪⎩解得4a >,即可得到实数a 的取值范围即可.【解答】解:22()xx ax a f x e x -+'=,若0(0,)x ∃∈+∞,0x 为()f x 的一个极大值点,则函数2()g x x ax a =-+的图象应该如下:则2(0)00240g a a a >⎧⎪⎪>⎨⎪=->⎪⎩解得4a >;故实数a 的取值范围为(4,)+∞. 故选:B .【点评】本题考查函数在某点取得极值的条件,属于基础题.8.(2018春•东城区期末)已知函数()f x 的导函数()f x '是二次函数,且()y f x '=的图象关于y 轴对称,f '(3)0=,若()f x 的极大值与极小值之和为4,则(0)(f = ) A .2B .0C .2-D .4-【分析】设出函数的解析式()f x ,求出函数的导数,利用函数的极值关系求解b ,然后推出结果. 【解答】解:函数()f x 的导函数()f x '是二次函数, 且()y f x '=的图象关于y 轴对称, f '(3)0=,则(3)0f '-=,可设导函数为:2()9f x ax a '=-,函数的解析式设为:31()93f x ax ax b =-+,若()f x 的极大值与极小值之和为4, 则f (3)(3)4f +-=,可得:92792724a a a a b --++=, 解得2b =. 则(0)2f b ==. 故选:A .【点评】本题考查函数的极值以及函数的导数的应用,函数的奇偶性的应用,考查分析问题解决问题的能力. 9.(2018春•西城区校级期中)定义在R 上的函数()f x 和()g x ,其各自导函数()f x '和()g x '的图象如图所示,则函数()()()F x f x g x =-极值点的情况是( )A .只有两个极大值点,无极小值点B .无极大值点,只有两个极小值点C .有一个极大值点,无极小值点D .有一个极大值点,一个极小值点【分析】根据函数的单调性结合函数的图象判断函数的极值点的个数即可. 【解答】解:()()()F x f x g x '='-', 由图象得()f x '和()g x '有2个交点, 从左到右分分别令为a ,b ,故(,)x a ∈-∞时,()0F x '<,()F x 递减, (,)x a b ∈时,()0F x '>,()F x 递增, (,)x b ∈+∞时,()0F x '>,()F x 递减,故函数()F x 有一个极大值点,一个极小值点, 故选:D .【点评】本题考查了函数的单调性、极值点问题,考查导数的应用以及数形结合思想,是一道中档题.10.(2018•海淀区二模)如图,已知直线y kx =与曲线()y f x =相切于两点,函数()g x kx m =+,则函数()()()(F x g x f x =- )A .有极小值,没有极大值B .有极大值,没有极小值C .至少有两个极小值和一个极大值D .至少有一个极小值和两个极大值【分析】()F x 表示两图象上横坐标相同时,纵坐标的差,根据函数图象即可判断出结论. 【解答】解:设y kx =与()f x 的切点横坐标分别为1x ,2x ,12()x x <, 设()f x 的另一条斜率为k 的切线与()f x 图象的切点横坐标为3x ,如图所示:而()()F x kx m f x =+-表示直线()g x 的点(x ,())g x 与()f x 上的点的(x ,())f x 的纵坐标的差,显然,()F x 在1(0,)x 上单调递减,在1(x ,3)x 上单调递增,在3(x ,2)x 上单调递减,在2(x ,)+∞上单调递增, 1x ∴,2x 为()F x 的极小值点,3x 为()F x 的极大值点. 1()F x ∴,2()F x 为()F x 的极小值,3()F x 为()F x 的极大值.故选:C .【点评】本题考查了函数图象的几何意义,函数极值的意义,属于中档题. 二.填空题(共5小题)11.(2019春•西城区校级期中)函数3()12f x x x =-的极大值点是 2 ,极大值是 . 【分析】先对函数求导,然后结合导数与极值关系即可求解. 【解答】解:22()1233(4)f x x x '=-=-,当2x >或2x <-时,()0f x '<,函数单调递减,当22x -<<时,()0f x '>,函数单调递增,故函数的极大值点为2x =,此时函数取得极大值f (2)16=.故答案为:2,16.【点评】本题主要考查了利用导数求解函数的极值,属于基础试题.12.(2019春•西城区校级期中)已知函数()y f x =满足:(1)既有极大值,也有极小值;(2)[0x ∀∈,1],都有()0f x >.请你给出一个满足上述两个条件的函数()y f x =的例子 sin 2y x =+ .【分析】令()sin 2f x x =+,利用导数可求得其极值,即满足(1),再由正弦函数的有界性,分析该函数满足(2),从而可得答案.【解答】解:令()sin 2f x x =+,则()cos f x x '=, 当[22x k ππ∈-,2]()2k k Z ππ+∈时,()0f x ', 当(22x k ππ∈-,32]()2k k Z ππ+∈时,()0f x ', ∴当2()2x k k Z ππ=+∈时,()f x 取得极大值3; 当2()2x k k Z ππ=-∈时,()f x 取得极小值1;即()y f x =既有极大值,也有极小值;因为1sin 1x -,所以1sin 23x +,即[0x ∀∈,1],都有()0f x >.故答案为:sin 2y x =+.【点评】本题考查了利用导数研究函数的极值,考查函数的单调性与值域,属于基础试题.13.(2017秋•海淀区校级期末)函数32()31f x x x =-+的极小值点为 2 .【分析】首先求导可得2()36f x x x '=-,解2360x x -=可得其根,再判断导函数的符号分析函数的单调性,即可得到极小值点.【解答】解:2()36f x x x '=-令2()360f x x x '=-=得10x =,22x =且(,0)x ∈-∞时,()0f x '>;(0,2)x ∈时,()0f x '<;(2,)x ∈+∞时,()0f x '>故()f x 在2x =出取得极小值.故答案为2.【点评】本题考查函数的极值问题,属基础知识的考查.熟练掌握导数法求极值的方法步骤是解答的关键.14.(2018春•海淀区期中)函数2()()x f x e x ax a =++在区间(0,1)上存在极值,则a 的取值范围是 (1,0)-【分析】2()()x f x e x ax a =++在区间(0,1)上存在极值,等价于()(2)()0x f x e x x a '=++=在区间(0,1)有解,即可求出a 的范围【解答】解:2()()x f x e x ax a =++,2()[(2)2](2)()x x f x e x a x a e x x a ∴'=+++=++,2()()x f x e x ax a =++在区间(0,1)上存在极值,()(2)()0x f x e x x a ∴'=++=在区间(0,1)有解,即0x a +=在区间(0,1)有解,01a ∴<-<,解得10a -<<,故答案为:(1,0)-.【点评】本题主要考查了利用导数和函数极值的关系,以及参数的取值范围,考查运算求解能力、推理论证能力,化归与转化思想.15.(2018春•朝阳区期末)已知函数32()3f x x x a =--恰有3个不同的零点,则实数a 的取值范围是 (4,0)- .【分析】求出函数的导数,解关于导函数的不等式,求出函数的极值,结合函数的零点的个数得到关于a 的不等式组,解出即可.【解答】解:2()363(2)f x x x x x '=-=-,令()0f x '>,解得:2x >或0x <,令()0f x '<,解得:02x <<,故()f x 在(,0)-∞递增,在(0,2)递减,在(2,)+∞递增,故()()0f x f a ==-极大值,()f x f =极小值(2)4a =--,若函数()f x 恰有3个不同的零点,则只需040a a ->⎧⎨--<⎩,解得:40a -<<, 故答案为:(4,0)-.【点评】本题考查了函数的单调性问题,极值问题,考查导数的应用以及函数 的零点问题,是一道常规题.。

利用导数研究函数的极值

利用导数研究函数的极值

利用导数研究函数的极值要利用导数研究函数的极值,首先需要了解什么是极值以及极值的判定条件。

在微积分中,极值是指函数在其中一点附近取得的最大值或最小值。

函数的极值可以有两种类型:局部极值和全局极值。

1.局部极值:函数在其中一点附近取得的最大值或最小值称为局部极值。

极大值表示函数取得的最大值,极小值表示函数取得的最小值。

2.全局极值:函数在整个定义域内取得的最大值或最小值称为全局极值。

全局极值可以是局部极值中最大的值或最小的值。

接下来,我们将利用导数进行极值的研究。

根据极值的定义,我们可以得到以下判定条件:1.一阶导数的零点:如果函数在其中一点的一阶导数为零,那么该点可能是极值点。

2.二阶导数的符号:如果函数在其中一点的二阶导数为正,那么该点可能是极小值点;如果二阶导数为负,那么该点可能是极大值点。

现在,我们来具体介绍如何通过导数研究函数的极值。

1.首先,求出函数的一阶导数。

一阶导数表示了函数在每一点的变化率。

将一阶导数设置为零,求解方程,可以得到导数的零点,即可能的极值点。

2.然后,求出函数的二阶导数。

二阶导数表示了函数的变化率的变化率,即加速度。

通过二阶导数的符号可以判断极值是极小值还是极大值。

3.分析导数的零点和二阶导数的符号,确定极值点。

如果对于其中一点,一阶导数为零且二阶导数为正,那么该点是极小值点;如果一阶导数为零且二阶导数为负,那么该点是极大值点。

需要注意的是,以上只是判定条件,并不代表确定该点一定是极值点。

在判定的基础上,还需要进行极值的验证。

验证的方法可以使用导数的一阶和二阶的判断性质,例如利用导数的增减性、凸凹性等性质,来进一步确定函数的极值点。

不过,对于更复杂的函数,有时在求导的过程中会遇到难以处理的情况,这时可以考虑使用其他方法,如拉格朗日乘数法、平方差和法等。

综上所述,利用导数研究函数的极值主要通过求导、求导数的零点和二阶导数的符号进行判定,并通过验证来确定极值点。

同时,需要注意在复杂的情况下使用其他方法进行研究。

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析1.已知函数 (R).(1)当时,求函数的极值;(2)若函数的图象与轴有且只有一个交点,求的取值范围.【答案】(1)当时, 取得极大值为;当时, 取得极小值为.(2)a的取值范围是.【解析】(1)遵循“求导数,求驻点,讨论驻点两侧导数值符号,确定极值”.(2)根据= ,得到△= = .据此讨论:①若a≥1,则△≤0,此时≥0在R上恒成立,f(x)在R上单调递增 .计算f(0),,得到结论.②若a<1,则△>0,= 0有两个不相等的实数根,不妨设为.有.给出当变化时,的取值情况表.根据f(x1)·f(x2)>0, 解得a>.作出结论.试题解析:(1)当时,,∴.令="0," 得. 2分当时,, 则在上单调递增;当时,, 则在上单调递减;当时,, 在上单调递增. 4分∴当时, 取得极大值为;当时, 取得极小值为. 6分(2)∵= ,∴△= = .①若a≥1,则△≤0, 7分∴≥0在R上恒成立,∴ f(x)在R上单调递增 .∵f(0),,∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点. 9分②若a<1,则△>0,∴= 0有两个不相等的实数根,不妨设为.∴.当变化时,的取值情况如下表:x x(x,x)x++11分∵,∴.∴=.同理. ∴.令f(x1)·f(x2)>0, 解得a>.而当时,, 13分故当时, 函数f(x)的图象与x轴有且只有一个交点.综上所述,a的取值范围是. 14分【考点】应用导数研究函数的极值、单调性及函数的图象,分类讨论思想.2.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值3.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)min=f(1)=0,∴a≤0,故a最大值为0.4.已知函数,是函数的导函数,且有两个零点和(),则的最小值为()A.B.C.D.以上都不对【答案】B【解析】,由题意,当或时,,当时,,因此的最小值是,选B.【考点】函数的极值与最值.5.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则 ().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴x=1不是函数f(x)的极值点.当k=2时,f′(x)=(x-1)(xe x+e x-2),显然f′(1)=0,且x在1的左边附近f′(x)<0,x在1的右边附近f′(x)>0,∴f(x)在x=1处取到极小值.6.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是______.【答案】(,2)【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2.7.设函数f(x)=x e x,则().A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点【答案】D【解析】∵f(x)=x e x,∴f′(x)=e x+x e x=e x(1+x).∴当f′(x)>0时,则x>-1,函数y=f(x)是增函数,同理可求,x<-1时函数f(x)为减函数.∴x=-1时,函数f(x)取得极小值.8.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是().A.(0,2]B.(0,2)C.[,2)D.(,2)【答案】D【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2,故选D.9.若函数在区间内有极值,则实数的取值范围是 .【答案】【解析】因为函数在区间内有极值,所以导数在区间内必有零点,于是.【考点】1.导数的公式与法则;2.函数的零点.10.某人进行了如下的“三段论”推理:如果,则是函数的极值点,因为函数在处的导数值,所以是函数的极值点.你认为以上推理的 ( ) A.大前提错误B.小前提错误C.推理形式错误D.结论正确【答案】A【解析】本题中,如果,则是函数的极值点是错误的.若是函数的极值点,则函数在的左右两侧异号,而否则尽管有,都不能说明是函数的极值点.如,其导数,函数在上是增函数.所以不是函数的极值点.因此本题是大前提错误.【考点】推理与证明、导数、函数的极值11.在处有极小值,则实数为 .【答案】1【解析】由得,又在处有极小值,故,解得或,当时,有,函数在单调递增,在单调递减,故在处有极小值;当时,有,函数在单调递增,在单调递减,故在处有极大值.综上可知.【考点】利用导数处理函数的极值12.已知函数.(1)当时,求函数的极值;(2)求函数的单调区间.【答案】(1),无极大值;(2)见解析.【解析】(1)先找到函数的定义域,在定义域内进行作答,在条件下求出函数的导函数,根据函数的单调性与导数的关系,判断函数的极值;(2)先求出函数的导函数,其导函数中含有参数,所以要进行分类讨论,对分三种情况,,进行讨论,分别求出每种情况下的函数的单调增区间和单调减区间.试题解析:(1)函数的定义域是, 1分当时,,所以在上递减,在上递增,所以函数的极小值为,无极大值; 4分(2)定义域, 5分①当,即时,由,得的增区间为;由,得的减区间为; 7分②当,即时,由,得的增区间为和;由,得的减区间为; 9分③当,即时,由,得的增区间为和;由,得的减区间为; 11分综上,时,的增区间为,减区间为;时,的增区间为和,减区间为;时,的增区间为和,减区间为. 13分【考点】1、对数函数的定义域;2、含参数的分类讨论思想;3、函数的单调性与导数的关系;4、解不等式;5、求函数的极值.13.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),;(2).【解析】(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.试题解析:(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵, 11分∴在上是增函数,又,∴, 12分∴在上无实数根. 13分综上,的值为. 14分【考点】1.用导数求切线的斜率;2.用导数求函数最值.14.已知函数,当时取得极小值,则等于()A.B.C.D.【答案】D【解析】由,解得,当;当;当,故在处取得最小值,即,则,所以,故选D.【考点】导数的极值点求法,导数的极值求解.15.对于三次函数,给出定义:设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的“拐点”。

中学数学 利用导数研究函数的极值和最值(含答案)

中学数学  利用导数研究函数的极值和最值(含答案)

专题4 利用导数研究函数的极值和最值专题知识梳理1.函数的极值(1)函数极值定义:一般地,设函数在点附近有定义,如果对附近的所有的点,都有,就说是函数的一个极大值,记作y极大值=,是极大值点。

如果对附近的所有的点,都有.就说是函数的一个极小值,记作y 极小值=,是极小值点。

极大值与极小值统称为极值.(2)判别f (x 0)是极大、极小值的方法:若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值. (3)求可导函数f (x )的极值的步骤: ①确定函数的定义区间,求导数 ; ①求出方程的定义域内的所有实数根;①用函数的导数为的点,顺次将函数的定义域分成若干小开区间,并列成表格.标出在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值。

①根据表格下结论并求出需要的极值。

2. 函数的最值(1)定义:若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最大值,记作;若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最小值,记作;(2)在闭区间上图像连续不断的函数在上必有最大值与最小值. (3)求函数在上的最大值与最小值的步骤: ①求在内的极值;①将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值, 从而得出函数在上的最值。

考点探究)(x f x 0x 0f (x )<f (x 0)f (x 0))(x f f (x 0)x 0x 0f (x )>f (x 0)f (x 0))(x f f (x 0)x 00x 0)(0='x f 0x )(x f 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '¢f (x )=00)(x f ')(x f I x 0x ÎI f (x )£f (x 0))(0x f y max =f (x 0))(x f I x 0x ÎI f (x )³f (x 0))(0x f y min =f (x 0)[]b a ,)(x f []b a ,)(x f []b a ,)(x f (,)a b )(x f f (a ),f (b ))(x f []b a ,考向1 利用导数研究函数的极值 【例】已知函数x xx f ln 1)(+=,求函数()f x 的极值. 【解析】因为1()ln f x x x =+,所以2111'()x f x x x x-=-+=,令,得x =1,列表:所以是f x 的极小值1,无极大值。

导数与函数的极值、最值 解析版

导数与函数的极值、最值 解析版

导数与函数的极值、最值【考试提醒】1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.掌握利用导数研究函数最值的方法.4.会用导数研究生活中的最优化问题.【知识点】1.函数的极值(1)函数的极小值函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点处的函数值都小,f′(a)=0;而且在点x =a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点处的函数值都大,f′(b)=0;而且在点x= b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求函数y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件【核心题型】题型一 利用导数求解函数的极值问题根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.命题点1 根据函数图象判断极值1(2024·四川广安·二模)已知函数f x =ax+1e x,给出下列4个图象:其中,可以作为函数f x 的大致图象的个数为()A.1B.2C.3D.4【答案】D【分析】对a的情况进行分类讨论,借助于导数对函数的单调性进行分析即可判断函数的大致图象.【详解】由题意知,f x 定义域为R,当a=0时,f x =e x,由指数函数的单调性可知函数f x 单调递增,可对应①;当a>0时,f x =ax+a+1e x,令f x =0可得:x=-a+1a<0,所以当x∈-∞,-a+1a时,f x<0,当x∈-a+1a ,+∞时,f x >0,所以,函数f x 先减后增,且当x<-1a时,f x <0,此时可对应②;当a<0时,f x =ax+a+1e x,当f x =0时x=-a+1a,当x∈-∞,-a+1a时,f x >0,当x∈-a+1a ,+∞时,f x <0,所以,函数f x 先增后减,当a<-1时,x=-a+1a<0,且此时0<-1a<1,所以可对应③,当-1<a<0时,x=-a+1a>0,此时-1a>1,所以可对应④.故选:D2(23-24高三上·黑龙江·阶段练习)如图是函数y=f x 的导函数y=f x 的图象,下列结论正确的是()A.y=f x 在x=-1处取得极大值B.x=1是函数y=f x 的极值点C.x=-2是函数y=f x 的极小值点D.函数y=f x 在区间-1,1上单调递减【答案】C【分析】根据导函数的正负即可求解y=f x 的单调性,即可结合选项逐一求解.【详解】由图象可知:当x<-2时,f x <0,f x 单调递减,当x≥-2时,f x ≥0,f x 单调递增,故x=-2是函数y=f x 的极小值点,y=f x 无极大值.故选:C3(2023·河北·模拟预测)函数f(x)=1x4-1x2的大致图象是()A. B.C. D.【答案】D【分析】先判断函数的奇偶性,再利用导数法判断.【详解】解:因为函数f (x )=1x4-1x 2的定义域为:x |x ∈R ,x ≠0 ,且f -x =f x ,所以函数f x 是偶函数,当x >0时,f x =-4x -51-12x 2 ,令fx =0,得x =2,当0<x <2时,f x <0,当x >2时,f x >0,所以当x =2时,f x 取得极小值,故选:D4(2024高三·全国·专题练习)已知函数f (x )的导函数f ′(x )的图象如图所示,则下列结论正确的是()A.曲线y =f (x )在点(1,f (1))处的切线斜率小于零B.函数f (x )在区间(-1,1)上单调递增C.函数f (x )在x =1处取得极大值D.函数f (x )在区间(-3,3)内至多有两个零点【答案】D【详解】解析:由题意,得f ′(1)=0,所以曲线y =f (x )在点(1,f (1))处的切线斜率等于零,故A 错误;当x ∈(-1,1)时,f ′(x )<0,所以f (x )在(-1,1)上单调递减,故B 错误;当-2<x <1时,f ′(x )<0,f (x )单调递减,当x >1,f ′(x )<0,f (x )单调递减,所以x =1不是f (x )的极值点,故C 错误;当x ∈(-3,-2)时,f ′(x )>0,f (x )单调递增,当x ∈(-2,3)时,f ′(x )≤0,f (x )单调递减,所以当f (-2)<0时,f (x )在(-3,3)上没有零点;当f (-2)=0时,f (x )在(-3,3)上只有一个零点;当f (-2)>0时,f (x )在(-3,3)上有两个零点.综上,函数f (x )在区间(-3,3)内至多有两个零点,故选D .命题点2 求已知函数的极值5(2024·宁夏银川·一模)若函数f (x )=x 2-ax -2 e x 在x =-2处取得极大值,则f (x )的极小值为()A.-6e 2B.-4eC.-2e 2D.-e【答案】C【分析】由题意求出a 的值,进而求出f x ,再解出极小值即可.【详解】因为函数f (x )=x 2-ax -2 e x 在x =-2处取得极大值,则f x =x 2+2-a x -2-a ⋅e x ,x ∈R 且f -2 =0,即4-22-a -2-a =0,所以a =2;所以f x =x 2-2x -2 ⋅e x ,f x =x 2-4 ⋅e x =x +2 x -2 e x ,令f x =0,则x =2或x =-2,由x ∈-∞,-2 ,f x >0,x ∈-2,2 ,f x <0,x ∈2,+∞ ,f x >0,所以f x 在-∞,-2 ,2,+∞ 上单调递增,在-2,2 上单调递减.所以函数f x 在x =-2处取得极大值,f 极小=f 2 =-2e 2.故选:C .6(2023·全国·模拟预测)函数f x =2x -tan x -π在区间-π2,π2的极大值、极小值分别为()A.π2+1,-π2+1B.-π2+1,-3π2+1C.3π2-1,-π2+1D.-π2-1,-3π2+1【答案】D【分析】求出f x ,由f (x )<0、f (x )>0可得答案.【详解】由题意,得f(x )=2-sin x cos x =2-1cos 2x =2cos 2x -1cos 2x,当x ∈-π2,-π4 ∪π4,π2 时,2cos 2x -1<0,f (x )<0;当x ∈-π4,π4时,2cos 2x -1>0,f (x )>0.所以f (x )在-π2,-π4 上单调递减,在-π4,π4 上单调递增,在π4,π2上单调递减.当x =-π4时,f (x )取得极小值,为f -π4 =-3π2+1;当x =π4时,f (x )取得极大值,为f π4 =-π2-1.故选:D .7(多选)(2024·全国·模拟预测)已知f (x )=e xx,x >0,-x 2-4x -1,x ≤0, 则方程f 2(x )-(k +3)f (x )+3k =0可能有( )个解.A.3 B.4C.5D.6【答案】BCD【分析】方程f 2(x )-(k +3)f (x )+3k =0得f (x )=3或f (x )=k ,作出函数图象,数形结合判断解的个数.【详解】f (x )=e x x x >0 ,有f(x )=e x x -1 x 2,当0<x <1时f (x )<0,f (x )单调递减;当x >1时f (x )>0,f (x )单调递增,当x =1时,f (x )有极小值f 1 =e.f (x )=-x 2-4x -1x ≤0 ,由二次函数的性质可知,f (x )在-∞,-2 上单调递增,在-2,0 上单调递减,当x =-2时,f (x )有极大值f (-2)=3.由f (x )=e xx,x >0,-x 2-4x -1,x ≤0 的图象如图所示,由f 2(x )-(k +3)f (x )+3k =0得f (x )=3或f (x )=k ,由图象可知f (x )=3有3个解,f (x )=k 可能有1,2,3,4个解,故方程f 2(x )-(k +3)f (x )+3k =0可能有4,5,6,7个解.故选:BCD .【点睛】方法点睛:函数零点的求解与判断方法:(1)直接求零点:令f x =0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间a ,b 上是连续不断的曲线,且f a ⋅f b <0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点8(2024·辽宁鞍山·二模)f x =x 2e -x 的极大值为.【答案】4e2【分析】借助导数研究函数的单调性即可得其极大值.【详解】f x =2xe -x +x 2-e -x =2x -x 2 e -x =-x x -2 e -x ,当x ∈-∞,0 ∪2,+∞ 时,f x <0,当x ∈0,2 时,f x >0,故f x 在-∞,0 、2,+∞ 上单调递减,在0,2 上单调递增,故f x 有极大值f 2 =22e -2=4e2.故答案为:4e2命题点3 已知极值(点)求参数9(2024·全国·模拟预测)设x 1,x 2为函数f x =x x -2 x -a (其中a >0)的两个不同的极值点,若不等式f x 1 +f x 2 ≥0成立,则实数a 的取值范围为()A.1,4B.0,4C.0,1D.4,+∞【答案】A【分析】导函数为二次函数,x 1,x 2为对应的一元二次方程的两根,由f x 1 +f x 2 ≥0,代入函数解析式,结合韦达定理化简,可解出实数a 的取值范围.【详解】因为f x =x x -2 x -a ,所以f x =3x 2-22+a x +2a .又函数f x 有两个不同的极值点x 1,x 2,所以Δ=4a 2-2a +4 >0,x 1+x 2=22+a3,x 1x 2=2a 3.解法一:由f x 1 +f x 2 ≥0,得x 31+x 32-a +2 x 21+ x 22 +2a x 1+x 2 ≥0,即x 1+x 2 x 1+x 2 2- 3x 1x 2 -a +2 x 1+x 2 2-2x 1x 2 +2a x 1+ x 2 ≥0∗ .将x 1+x 2,x 1x 2的值代入(*)式,得a 2-5a +4≤0,解得1≤a ≤4,故选:A .解法二:函数y =ax 3+kx a ≠0 为奇函数,图象的对称中心为0,0 ,则函数y =a x -m 3+k x -m +n 图象的对称中心为m ,n 设g x =ax 3+bx 2+cx +d =a x -m 3+k x -m +n ,a x -m 3+k x -m +n =ax 3-3amx 2+3am 2+k x +n -am 3-km ,比较系数,有-3am =b 3am 2+k =c n -am 3-km =d,解得m =-b 3a ,k =c -b 23a ,n =2b 327a2-bc 3a +d =g -b3a 所以函数g x =ax 3+bx 2+cx +d a ≠0 图象的对称中心为-b 3a ,g -b3a,即若f x 存在两个相异的极值点x 1,x 2,则其对称中心为点x 1,f x 1 和点x 2,f x 2 的中点,即f x 1 +f x 2 2=f x 1+x22.由题设得f x 1 +f x 2 ≥0,即f x 1+x 22 ≥0,即f 2+a3≥0,所以a >0,a +23a +23-2 a +23-a ≥0,解得1≤a ≤4.故选:A .10(2024·四川绵阳·三模)若函数f x =12ax 2-x +b ln x a ≠0 有唯一极值点,则下列关系式一定成立的是()A.a >0,b <0B.a <0,b >0C.ab <14D.ab >0【答案】C【分析】求导,构造函数g x =ax 2-x +b a ≠0 ,利用二次函数零点的分布,结合分类讨论以及极值点的定义即可求解.【详解】fx =ax -1+b x =ax 2-x +b x,令g x =ax 2-x +b a ≠0 ,Δ=1-4ab ,若Δ=1-4ab ≤0,则g x =ax 2-x +b ≥0或g x =ax 2-x +b ≤0,此时f x 单调,不存在极值点,故不符合题意,若Δ=1-4ab >0,则方程g x =ax 2-x +b =0有两个实数根,由于f x =12ax 2-x +b ln x a ≠0 有唯一极值点,故g x =ax 2-x +b =0只能有一个正实数根,若另一个实数根为0,此时b =0,显然满足条件,若令一个实数根为负根,则ba <0,故ab <0,结合选项可知,ab <14一定成立,故选:C11(2024·辽宁·一模)已知函数f x =x 3+ax 2+bx +a 2在x =-1处有极值8,则f 1 等于.【答案】-4【分析】求导,即可由f -1 =8且f -1 =0求解a ,b ,进而代入验证是否满足极值点即可.【详解】f x =3x 2+2ax +b ,若函数f x 在x =-1处有极值8,则f -1 =8,f-1 =0,即-1+a -b +a 2=83-2a +b =0,解得:a =3,b =3或a =-2,b =-7,当a =3,b =3时,f x =3x 2+6x +3=3(x +1)2≥0,此时x =-1不是极值点,故舍去;当a =-2,b =-7时,f x =3x 2-4x -7=3x -7 x +1 ,当x >73或x <-1时,f x >0,当-1<x <73,f x <0,故x =-1是极值点,故a =-2,b =-7符合题意,故f x =x 3-2x 2-7x +4,故f 1 =-4.故答案为:-412(2024·全国·模拟预测)已知函数f x =ln x -x 2+ax -2a ∈R .(1)若f x 的极值为-2,求a 的值;(2)若m ,n 是f x 的两个不同的零点,求证:f m +n +m +n <0.【答案】(1)1(2)证明见解析【分析】(1)对函数f x 求导,再根据函数与导数的关系研究函数f x 的性质,即可得解;(2)由题意f m +n +m +n =1m -n m -n m +n -ln m n ,再设m >n >0,t =mn,进而构造函数g t =t -1t +1-ln t t >1 ,利用函数的单调性进行证明即可.【详解】(1)由题知f x 的定义域为0,+∞ ,fx =1x -2x +a =-2x 2+ax +1x.由f x =0可得2x 2-ax -1=0,解得x 1=a -a 2+84(舍去),x 2=a +a 2+84,且ax 2=2x 22-1,∴f x 在0,x 2 上单调递增,在x 2,+∞ 上单调递减,∴f x 有极大值f x 2 =ln x 2-x 22+ax 2-2=ln x 2-x 22+2x 22-1 -2=ln x 2+x 22-3.设h x =ln x +x 2-3,则h x 在0,+∞ 上单调递增,且h 1 =-2,故x 2=1,即a +a 2+84=1,解得a =1.(2)由条件可得f m =ln m -m 2+am -2=0,f n =ln n -n 2+an -2=0,两式相减,可得ln mn -m 2-n 2 +a m -n =0,故a =m +n -ln m nm -n,f m +n +m +n =1m +n-2m +n +a +m +n=1m +n -ln m nm -n =1m -n m -n m +n -ln m n.不妨设m >n >0,t =mn,则t >1,要证f m +n +m +n <0,只需证明m -n m +n -ln mn<0,即证t -1t +1-ln t <0.设g t =t -1t +1-ln t t >1 ,则gt =2t +12-1t =2t t +1 2t t +1 2=-t 2+1t t +1 2<0,∴g t 在1,+∞ 上单调递减,g t <1-11+1-ln1=0,故f m +n +m +n <0.【点睛】方法点睛:(1)研究函数零点、极值时,一般需要求导分析函数、导函数的单调性,并结合特值进行分析判断;(2)证明有关零点的不等式时,需要观察不等式,构造常用函数g t =t -1t +1-ln t t >1 证明即可.题型二 利用导数求函数最值求含有参数的函数的最值,需先求函数的定义域、导函数,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.命题点1 不含参函数的最值13(2024·陕西·模拟预测)∀x ∈1,2 ,有a ≥-x 2ln x +x 2恒成立,则实数a 的取值范围为()A.e ,+∞B.1,+∞C.e2,+∞ D.2e ,+∞【答案】C【分析】构造函数μx =-x 2ln x +x 2,x ∈1,2 ,求导可得函数的单调性,即可求解最值μx max =μe =e 2,进而a ≥μx max 即可.【详解】由a ≥-x 2ln x +x 2在x ∈1,2 上恒成立,令μx =-x 2ln x +x 2,x ∈1,2 ,则μ x =-2x ln x -x +2x =-2x ln x +x =x -2ln x +1 .令μ x =0,则x =e ,当x ∈1,e 时,μ x >0,故μ x 在1,e 上单调递增;当x ∈e ,2 时,μ x <0,故μ x 在e ,2 上单调递减;则μx ≤μe =e 2,所以a ≥e2故选:C14(2024·四川·模拟预测)已知f x =x 2-2x +a ln x -x ,若存在x 0∈0,e ,使得f x 0 ≤0成立,则实数a 的取值范围是.【答案】-1,+∞【分析】先用导数证明不等式x -ln x -1≥0,然后对a ≥-1和a <-1分类讨论,即可得出结果.【详解】设g x =x -ln x ,则g x =1-1x =x -1x,从而当0<x <1时g x <0,当x >1时g x >0.所以g x 在0,1 上递减,在1,+∞ 上递增,故对任意x >0有x -ln x =g x ≥g 1 =1,即x -ln x -1≥0.一方面,当a ≥-1时,由于f 1 =1-2-a =-1-a ≤0,故存在x 0=1使得f x 0 ≤0成立;另一方面,当a <-1时,由于对任意x ∈0,e 都有f x =x 2-2x +a ln x -x =x -1 2-1+a ln x -x =x -1 2+-a x -ln x -1=x -1 2+-a x -ln x -1 +-a -1≥0+0+-a -1 (这里用到x -1 2≥0,-a >0,x -ln x -1≥0)=-a -1>0,所以对任意x ∈0,e 都有f x >0.综上,a 的取值范围是-1,+∞ .故答案为:-1,+∞ .【点睛】关键点点睛:对于求取值范围问题,本质上就是要确定一个集合,使得命题成立的充要条件是参数属于该集合. 故本题中我们从两个方面入手,证明了存在x 0∈0,e 使得f x 0 ≤0的充要条件是a ∈-1,+∞ ,即可解决问题15(2024·上海徐汇·二模)如图,两条足够长且互相垂直的轨道l 1,l 2相交于点O ,一根长度为8的直杆AB 的两端点A ,B 分别在l 1,l 2上滑动(A ,B 两点不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP ⊥AB ,则△OAP 面积的取值范围是.【答案】(0,63]【分析】令∠OAB =x 0<x <π2,利用直角三角形边角关系及三角形面积公式求出△OAP 的面积函数,再利用导数求出值域即得.【详解】依题意,设∠OAB =x 0<x <π2,则OA =AB cos x =8cos x ,AP =OA cos x =8cos 2x ,因此△OAP 的面积f (x )=12OA ⋅AP sin x =32sin x cos 3x ,0<x <π2,求导得f (x )=32(cos 4x -3sin 2x cos 2x )=32cos 4x (1-3tan 2x ),当0<x <π6时,f (x )>0,当π6<x <π2时,f (x )<0,即函数f (x )在0,π6 上递增,在π6,π2上递减,因此f (x )max =f π6 =32×32 3×12=63,而f (0)=f π2 =0,则0<f (x )≤63,所以△OAP 面积的取值范围是(0,63].故答案为:(0,63]16(2024·全国·模拟预测)已知函数f x =ln x .(1)求函数g x =f xx的最值.(2)证明:xe x-14x 4-e 2-34x 3-ef x >0(其中e 为自然对数的底数).【答案】(1)最大值为g e =1e,无最小值;(2)证明见解析.【分析】(1)先求出函数的导数,根据导数得出函数的单调区间,从而得出函数的最值.(2)不等式转化为e x-14x3-e2-34x2-e ln xx>0,结合(1)知ln xx≤1e,从而证明:ex-14x3-e2-34x2-1≥0,再结合导数求函数的最小值证得结果.【详解】(1)由题意知g x =ln xx,定义域为0,+∞,从而g x =1-ln x x2.所以当x∈0,e时,g x >0;当x∈e,+∞时,g x <0.所以函数g x 在0,e上单调递增,在e,+∞上单调递减.所以函数g x 的最大值为g e =1e,无最小值.(2)欲证xe x-14x4-e2-34x3-ef x >0,只需证e x-14x3-e2-34x2-e ln xx>0.由(1)知ln xx≤1e,从而e ln xx≤1,当且仅当x=e时取等号.下面证明:e x-14x3-e2-34x2-1≥0.设h x =e x-14x3-e2-34x2-1,x>0,则h x =e x-34x2-e2-32x.设H x =e x-34x2-e2-32x,则H x =e x-32x-e2-32.设F x =e x-32x-e2-32,则Fx =e x-32,故当x∈0,ln 3 2时,F x <0;当x∈ln32,+∞时,F x >0.所以函数F x 在0,ln 3 2上单调递减,在ln32,+∞上单调递增.由于F0 =5-e22<0,F2 =e2-32>0,F ln32=32-32ln32-e2-32<0,故设存在唯一的x0∈ln 3 2 ,2,使F x0 =0,且当x∈0,x0时,F x <0,当x∈x0,+∞时,F x >0.故函数H x 在0,x0上单调递减,在x0,+∞上单调递增.又H0 =1,H1 =e-e22+34=4e+3-2e24<0,H2 =e2-3-e2-3=0,所以存在唯一的x1∈0,1,使H x1=0,故当x∈0,x1∪2,+∞时,H x >0;当x∈x1,2时,H x <0.从而函数h x 在0,x1,2,+∞上分别单调递增,在x1,2上单调递减.因为h0 =e0-0-0-1=0,h2 =e2-2-e2-3-1=0,所以h x ≥0在0,+∞上恒成立,当且仅当x=2时取等号.因为取等条件不相同,所以e x-14x3-e2-34x2-e ln xx>0恒成立,即xe x-14x4-e2-34x3-ef x >0成立.【点睛】本题第(2)问考查的是利用导数证明不等式.证明时有三个关键点:一是不等式的等价变形,由第(1)问的提示可知,需要把所证明的不等式两端同时除以x,使不等式等价转化为e x-14x 3-e 2-34x 2-e ln xx>0;二是放缩法的应用,由(1)知ln x x ≤1e ,从而e ln x x ≤1,此时只需再证明不等式e x-14x 3-e 2-34x 2-1≥0即可;三是构造函数h x =e x-14x 3-e 2-34x 2-1,通过求导研究h x 的单调性,进一步求得h x 的最小值,在研究h x 单调性的过程中,需要注意特殊点、端点,以及隐零点的讨论.命题点2 含参函数的最值17(2024·四川成都·模拟预测)已知函数f (x )=e x -12(a +1)x 2-bx (a ,b ∈R )没有极值点,则ba +1的最大值为()A.e2B.e 2C.eD.e 22【答案】B【分析】转化为f (x )=e x -1a +1x -b ≥0恒成立,构造函数,求导,得到其单调性和最值,从而得到b ≤1a +1+ln a +1 a +1,故b a +1≤ln a +1 +1a +12,换元后,构造函数,求导得到其单调性和最值,求出答案.【详解】函数f x =e x -12a +1x 2-bx 没有极值点,∴f (x )=e x -1a +1x -b ≥0,或f (x )≤0恒成立,由y =e x 指数爆炸的增长性,f (x )不可能恒小于等于0,∴f (x )=e x -1a +1x -b ≥0恒成立.令h x =e x -1a +1x -b ,则h x =e x -1a +1,当a +1<0时,h x >0恒成立,h x 为R 上的增函数,因为e x ∈0,+∞ 是增函数,-1a +1x -b ∈-∞,+∞ 也是增函数,所以,此时h (x )∈-∞,+∞ ,不合题意;②当a +1>0时,h x =e x -1a +1为增函数,由h x =0得x =-ln a +1 ,令h x >0⇔x >-ln a +1 ,h x <0⇔x <-ln a +1 ,∴h x 在-∞,-ln a +1 上单调递减,在-ln a +1 ,+∞ 上单调递增,当x =-ln a +1 时,依题意有h x min =h -ln a +1 =1a +1+ln a +1 a +1-b ≥0,即b ≤1a +1+ln a +1 a +1,∵a +1>0,∴ba +1≤ln a +1 +1a +12,令a +1=x (x >0),u x =ln x +1x2x >0 ,则u x =x -ln x +1 ⋅2x x4=-2ln x +1x 3,令u x >0⇔0<x <1e ,令u x <0,解得x >1e,所以当x =1e 时,u x 取最大值u 1e=e2.故当a +1=1e,b =e 2,即a =e e -1,b =e 2时,b a +1取得最大值e 2.综上,若函数h x 没有极值点,则b a +1的最大值为e2.故选:B .【点睛】关键点睛:将函数没有极值点的问题转化为导函数恒大于等于0,通过构造函数,借助导数研究函数的最小值,从而得解.18(23-24高三下·重庆·阶段练习)若过点a ,b 可以作曲线y =ln x 的两条切线,则()A.b >ln aB.b <ln aC.a <0D.b >e a【答案】A【分析】设切点坐标为(x 0,y 0),由切点坐标求出切线方程,代入坐标(a ,b ),关于x 0的方程有两个不同的实数解,变形后转化为直线与函数图象有两个交点,构造新函数由导数确定函数的图象后可得.【详解】设切点坐标为(x 0,y 0),由于y =1x ,因此切线方程为y -ln x 0=1x 0(x -x 0),又切线过点(a ,b ),则b -ln x 0=a -x 0x 0,b +1=ln x 0+ax 0,设f (x )=ln x +ax,函数定义域是(0,+∞),则直线y =b +1与曲线f (x )=ln x +a x 有两个不同的交点,f (x )=1x -a x 2=x -ax 2,当a ≤0时,f (x )>0恒成立,f (x )在定义域内单调递增,不合题意;当a >0时,0<x <a 时,f (x )<0,f (x )单调递减,x >a 时,f (x )>0,f (x )单调递增,所以f (x )min =f (a )=ln a +1,结合图象可知b +1>ln a +1,即b >ln a .故选:A .19(2024·全国·模拟预测)函数f x =x +2 ln x +1 -ax 只有3个零点x 1,x 2,x 3x 1<x 2<x 3<3 ,则a +x 2的取值范围是.【答案】2,10ln23【分析】由题意对函数求导,为判断导数与零的大小关系,对导数再次求导求其最值,利用分类讨论思想,结合零点存在性定理,建立不等式组,可得答案.【详解】函数f x =x +2 ln x +1 -ax 的定义域为-1,+∞ ,则f x =ln x +1 +x +2x +1-a .设g x =f x ,则g x =1x +1-1x +1 2=xx +1 2,所以当x ∈-1,0 时,g x <0,f x 单调递减,当x ∈0,+∞ 时,g x >0,f x 单调递增,所以f x ≥f 0 =2-a .当2-a ≥0,即a ≤2时,f x ≥0,f x 单调递增,且f 0 =0,此时f x 只有1个零点,不满足题意;当2-a <0,即a >2时,由f1e a -1 =ln 1e a -1+1+1e a-1+21ea -1+1-a =e a +1-2a >0,f e a -1 =ln e a -1+1 +e a-1+2e a-1+1-a =1+1ea >0存在m ∈-1,0 ,n ∈0,+∞ ,使得f m =0,f n =0,当x ∈-1,m ∪n ,+∞ 时,f x >0;当x ∈m ,n 时,f x <0,所以f x 在-1,m 上单调递增,在m ,n 上单调递减,在n ,+∞ 上单调递增,又f 0 =0,易知f m >0,f n <0,由f1ea-1 =1ea-1+2 ln1ea-1+1-a1ea-1=-2ae -a <0,f e a -1 =e a -1+2 ln e a -1+1 -a e a -1 =2a >0,则f x 在-1,m ,n ,+∞ 上各有1个零点,此时满足题意.所以a >2,且x 2=0.由x 3<3,得f 3 =5ln4-3a >0,得a <10ln23.所以a +x 2的取值范围是2,10ln23.故答案为:2,10ln23.【点睛】关键点点睛:本题的关键是对a 分a ≤2和a >2讨论,当a >2时,需要利用零点存在性定理证明其满足题意,再根据x 3<3,则f 3 =5ln4-3a >0,解出即可.4.2024·北京海淀·一模)已知函数f (x )=xe a -12x .(1)求f (x )的单调区间;(2)若函数g (x )=f (x )+e -2a ,x ∈(0,+∞)存在最大值,求a 的取值范围.【答案】(1)f (x )的增区间为-∞,2 ,减区间为(2,+∞)(2)a ≥-1【分析】(1)对函数求导,得到f(x )=ea -12x 1-12x ,再求出f(x )>0和f(x )<0对应的x 取值,即可求出结果;(2)令h (x )=f (x )+e -2a ,对h (x )求导,利用导数与函数单调性间的关系,求出h (x )的单调区间,进而得出h (x )在(0,+∞)上取值范围,从而将问题转化成2e a -1+e -2a ≥e -2a 成立,构造函数m (x )=e x -1+e -2x ,再利用m (x )的单调性,即可求出结果.【详解】(1)易知定义域为R ,因为f (x )=xe a -12x ,所以f(x )=e a -12x -12xe a -12x =e a -12x 1-12x ,由f (x )=0,得到x =2,当x <2时,f (x )>0,当x >2时,f (x )<0,所以,函数f (x )的单调递增区间为-∞,2 ,单调递减区间为2,+∞ .(2)令h (x )=f (x )+e -2a ,则h (x )=f (x ),由(1)知,函数f (x )的单调递增区间为-∞,2 ,单调递减区间为2,+∞ ,所以h (x )在x =2时取得最大值h (2)=2e a -1+e -2a ,所以当x >2时,h (x )=xe a -12x +e -2a >e -2a =h (0),当0<x <2时,h (x )>h (0),即当x ∈(0,+∞)时,h (x )∈h (0),h (2) ,所以函数g (x )=xea -12x +e -2a 在(0,+∞)存在最大值的充要条件是2e a -1+e -2a ≥e -2a ,即2e a -1+e -2a +e -2a 2=e a -1+e -2a ≥0,令m (x )=e x -1+e -2x ,则m (x )=e x -1+e -2>0恒成立,所以m (x )=e x -1+e -2x 是增函数,又因为m (-1)=e -2-e -2=0,所以m (a )=e a -1+e -2a ≥0的充要条件是a ≥-1,所以a 的取值范围为-1,+∞ .【点睛】关键点点晴:本题的关键在于第(2)问,构造函数h (x )=xe a -12x +e -2a ,利用函数单调性得到x ∈(0,+∞)时,h (x )∈h (0),h (2) ,从而将问题转化成2e a -1+e -2a ≥e -2a ,构造函数m (x )=e x -1+e -2x ,再利用m (x )的单调性来解决问题【课后强化】基础保分练一、单选题1(2023·广西·模拟预测)函数f x =x 3+ax 在x =1处取得极小值,则极小值为()A.1B.2C.-2D.-1【答案】C【分析】求出函数f (x )的导数,利用极小值点求出a 值,再借助导数求出极小值作答.【详解】依题意,f x =3x 2+a ,因为函数f (x )在x =1处取得极小值,则f 1 =3+a =0,解得a =-3,此时f x =3x 2-3=3(x +1)(x -1),当x <-1或x >1时,f (x )>0,当-1<x <1,时f (x )<0,因此函数f (x )在-∞,-1 ,1,+∞ 上单调递增,在(-1,1)上单调递减,所以函数f x =x 3-3x 在x =1处取得极小值f (1)=-2.故选:C2(2024·四川凉山·二模)若f x =x sin x +cos x -1,x ∈-π2,π ,则函数f x 的零点个数为()A.0B.1C.2D.3【答案】C【分析】求导,研究函数单调性,极值,画图,根据图象得零点个数.【详解】f x =sin x +x cos x -sin x =x cos x ,当x ∈-π2,0 时,f x <0,f x 单调递减,当x ∈0,π2 时,f x >0,f x 单调递增,当x ∈π2,π 时,f x <0,f x 单调递减,又f -π2 =π2-1>0,f 0 =0,f π2 =π2-1>0,f π =-2<0,则f x =x sin x +cos x -1的草图如下:由图象可得函数f x 的零点个数为2.故选:C .3(2024·黑龙江哈尔滨·一模)在同一平面直角坐标系内,函数y=f x 及其导函数y=f x 的图象如图所示,已知两图象有且仅有一个公共点,其坐标为0,1,则()A.函数y=f x ⋅e x的最大值为1B.函数y=f x ⋅e x的最小值为1C.函数y=f xe x的最大值为1 D.函数y=f xe x的最小值为1【答案】C【分析】AB选项,先判断出虚线部分为y=f x ,实线部分为y=f x ,求导得到y=f x ⋅e x在R上单调递增,AB错误;再求导得到x∈(-∞,0)时,y=f(x)e x单调递增,当x∈(0,+∞)时,y=f(x)e x单调递减,故C正确,D错误.【详解】AB选项,由题意可知,两个函数图像都在x轴上方,任何一个为导函数,则另外一个函数应该单调递增,判断可知,虚线部分为y=f x ,实线部分为y=f x ,故y =f x ⋅e x+f x ⋅e x=f x +f x⋅e x>0恒成立,故y=f x ⋅e x在R上单调递增,则A,B显然错误,对于C,D,y =f (x)e x-f(x)e xe x2=f (x)-f(x)e x,由图像可知x∈(-∞,0),y =f (x)-f(x)e x>0恒成立,故y=f(x)e x单调递增,当x∈(0,+∞),y =f (x)-f(x)e x<0,y=f(x)e x单调递减,所以函数y=f(x)e x在x=0处取得极大值,也为最大值,f0e0=1,C正确,D错误.故选:C4(2024·陕西安康·模拟预测)已知函数f x =ae2x+be x+2x有2个极值点,则()A.0<a<b216B.b>0C.a<4bD.b>2a【答案】A【分析】求出函数的导函数,令t=e x,依题意可得关于t的方程2at2+bt+2=0有两个不相等的正实根t1、t2,则2a≠0Δ>0t1+t2>0t1t2>0,即可判断.【详解】函数f x =ae2x+be x+2x的定义域为R,且f x =2ae2x+be x+2,依题意f x =0有两个不相等实数根,令t=e x,则关于t的方程2at2+bt+2=0有两个不相等的正实根t1、t2,所以2a ≠0Δ=b 2-16a >0t 1+t 2=-b 2a >0t 1t 2=1a >0,所以0<a <b216,b <0.故选:A5(2024·全国·模拟预测)已知函数f x =a sin x +cos xe x+x 在0,π 上恰有两个极值点,则实数a的取值范围是()A.0,22e π4B.-∞,e πC.0,e πD.22e π4,+∞【答案】D【分析】函数f x 在0,π 上恰有两个极值点,fx 在0,π 上有两个变号零点,分离常数得a =e x 2sin x,转化为两函数图象有两个不同的交点,利用数形结合思想进行求解;或直接求函数f x 的单调性,求图象在0,π 上与x 轴有两个交点的条件.【详解】解法一:由题意可得f x =-2a sin xex+1,因为函数f x 在0,π 上恰有两个极值点,所以f x 在0,π 上有两个变号零点.令fx =-2a sin x e x+1=0,可得a =e x 2sin x ,令g x =e x 2sin x ,x ∈0,π ,则直线y =a 与函数y =g x ,x ∈0,π 的图象有两个不同的交点,g x =2e x sin x -cos x 2sin x 2=22e x sin x -π4 2sin x 2,当x ∈π4,π 时,g x >0,所以g x 在π4,π 上单调递增,当x ∈0,π4 时,g x <0,所以g x 在0,π4上单调递减,又g π4 =22e π4,当x 趋近于0时,g x 趋近于+∞,当x 趋近于π时,g x 趋近于+∞,所以可作出g x 的图象如图所示,数形结合可知a >22e π4,即实数a 的取值范围是22e π4,+∞,故选:D .解法二 由题意可得f x =-2a sin xex+1.因为函数f x 在0,π 上恰有两个极值点,所以f x 在0,π 上有两个变号零点.当a ≤0时,f x >0在0,π 上恒成立,不符合题意.当a >0时,令h x =fx =-2a sin x e x +1,则hx=22a sin x -π4 e x,当x ∈π4,π 时,h x >0,h x 单调递增,当x ∈0,π4时,h x <0,h x 单调递减,因为h 0 =h π =1,h π4 =1-2a e π4,所以h π4 =1-2a eπ4<0,则a >22e π4,即实数a 的取值范围是22e π4,+∞,故选:D .【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.二、多选题6(2024·全国·模拟预测)已知函数f x =ae x +bx在定义域内既存在极大值点又存在极小值点,则()A.ab >0B.b a ≤4e2C.4a -be 2>0 D.对于任意非零实数a ,总存在实数b 满足题意【答案】AD【分析】根据给定条件,分类讨论,逐项判断即可.【详解】由题意,得f x =ae x-b x 2=ax 2e x -b x 2.令f x =0,得x 2e x =b a .令g x =x 2e x ,则g x =x x +2 e x .当x ∈-∞,-2 ∪0,+∞ 时,g x >0,此时g x 单调递增;当x ∈-2,0 时,g x <0,此时g x 单调递减.∵g -2 =4e 2,g 0 =0,当x →-∞时,g x →0,∴当0<b a <4e2时,f x 在定义域内既存在极大值点又存在极小值点.故A 正确,B 不正确.当a <0时,由0<b a <4e2知,当b <0时,4a -be 2<0,故C 不正确.对于任意非零实数a ,总存在实数b ,使得0<b a <4e2成立,故D 正确.故选:AD .7(2024·湖北武汉·模拟预测)已知各项都是正数的数列a n 的前n 项和为S n ,且S n =a n 2+12a n,则下列结论正确的是()A.当m >n m ,n ∈N * 时,a m >a nB.S n +S n +2<2S n +1C.数列S 2n 是等差数列D.S n -1S n≥ln n 【答案】BCD【分析】计算数列首项及第二项可判定A ,利用等差数列的定义及S n ,a n 的关系可判定C ,从而求出S n 的通项公式结合基本不等式、函数的单调性可判定B 、D .【详解】对A ,由题意可知a 1=a 12+12a 1⇒a 21=1,所以a 1=1,则a 1+a 2=a 22+12a 2⇒a 22+2a 2-1=0,所以a 2=2-1<a 1,故A 错误;对C ,由S n =a n 2+12a n ⇒S n =S n -S n -12+12S n -S n -1⇒S 2n -S 2n -1=1n ≥2 ,故C 正确;对C ,所以S 2n =1+n -1 =n ⇒S n =n ,则S n +S n +2=n +n +2<2n +n +22=2S n +1,故B 正确;对D ,易知S n -1S n =n -1n,令f x =x -1x -2ln x x ≥1 ,则f x =1+1x2-2x =1x -1 2≥0,则f x 单调递增,所以f x ≥f 1 =0⇒n -1n ≥ln n ,即S n -1S n ≥ln n ,故D 正确.故选:BCD 三、填空题8(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段CE ,DF 与分别以OC ,OD 为直径的半圆弧组成)表示一条步道.其中的点C ,D 是线段AB 上的动点,点O 为线段AB ,CD 的中点,点E ,F 在以AB 为直径的半圆弧上,且∠OCE ,∠ODF 均为直角.若AB =1百米,则此步道的最大长度为百米.【答案】π2+42【分析】设半圆步道直径为x 百米,连接AE ,BE ,借助相似三角形性质用x 表示CE ,结合对称性求出步道长度关于x 的函数关系,利用导数求出最大值即得.【详解】设半圆步道直径为x 百米,连接AE ,BE ,显然∠AEB =90°,由点O 为线段AB ,CD 的中点,得两个半圆步道及直道CE ,DF 都关于过点O 垂直于AB 的直线对称,则AC =12-x ,BC =12+x ,又CE ⊥AB ,则Rt △ACE ∽Rt △ECB ,有CE 2=AC ⋅BC ,即有DF =CE =14-x 2,因此步道长f (x )=214-x 2+πx =1-4x 2+πx ,0<x <12,求导得f (x )=-4x 1-4x 2+π,由f(x )=0,得x =π2π2+4,当0<x <π2π2+4时,f (x )>0,函数f (x )递增,当π2π2+4<x <12时,f(x )<0,函数f (x )递减,因此当x =π2π2+4时,f (x )max =1-4π2π2+42+π22π2+4=π2+42,所以步道的最大长度为π2+42百米.故答案为:π2+429(2023·江西赣州·模拟预测)当x =0时,函数f x =ae -x +bx 取得极小值1,则a +b =.【答案】2【分析】求导函数f x =-ae -x +b ,根据f (0)=a =1f (0)=-a +b =0求得a ,b 的值,检验极值点后可得a +b 的值.【详解】函数f x =ae -x +bx ,则f x =-ae -x +b 当x =0时,函数f x =ae -x +bx 取得极小值1,所以f (0)=a =1f (0)=-a +b =0,解得a =1,b =1,所以f x =-e -x+1=e x -1ex ,则函数在x ∈-∞,0 时,f x <0,函数单调递减;在x ∈0,+∞ 时,f x >0,函数单调递增;符合x =0是函数的极值点;故a +b =2.故答案为:2.四、解答题10(2023·河南洛阳·一模)已知函数f x =12x 2+1x +12.(1)求f x 的图像在点2,f 2 处的切线方程;(2)求f x 在12,2上的值域.【答案】(1) 7x -4y -2=0;(2)2,3 .【分析】(1)把点2,f 2 代入函数解析式,得切点坐标,通过求导,得到切线的斜率,根据直线的点斜式方程,求切线方程.(2)解不等式f x >0,得函数增区间,解不等式f x <0,得函数减区间,结合x ∈12,2,确定函数单调性,求得最值,进而得出f x 在12,2上的值域.【详解】(1)因为f x =12x 2+1x +12,所以f x =x -1x2,所以f 2 =3,f 2 =74,故所求切线方程为y -3=74x -2 ,即7x -4y -2=0.(2)由(1)知f x =x 3-1x 2=x -1 x 2+x +1 x 2,x ∈12,2 .令f x >0,得1<x ≤2;令f x <0,得12≤x <1.所以f x 在12,1上单调递减,在1,2 上单调递增,所以f x min =f 1 =2.又f 12 =218,f 2 =3,因为f 2 >f 12,所以2≤f x ≤3,即f x 在12,2上的值域为2,3 .11(2024·上海静安·二模)已知k ∈R ,记f (x )=a x +k ⋅a -x (a >0且a ≠1).(1)当a =e (e 是自然对数的底)时,试讨论函数y =f (x )的单调性和最值;(2)试讨论函数y =f (x )的奇偶性;(3)拓展与探究:① 当k 在什么范围取值时,函数y =f (x )的图象在x 轴上存在对称中心?请说明理由;②请提出函数y =f (x )的一个新性质,并用数学符号语言表达出来.(不必证明)【答案】(1)详见解析;(2)详见解析;(3)①当k <0时,函数y =f (x )有对称中心12log (-k ),0,理由见解析;②答案见解析.【分析】(1)当a =e 时,求得f (x )=e x -k ⋅e -x ,分k ≤0和k >0,两种情况讨论,分别求得函数的单调性,进而求得函数的最值;(2)根据题意,分别结合f (-x )=f (x )和f (-x )=-f (x ),列出方程求得k 的值,即可得到结论;(3)根据题意,得到当k <0时,函数y =f (x )有对称中心12log (-k ),0 ,且k <0时,对于任意的x ∈R ,都有-x ∈R ,并且f (log a (-k )-x )=-f (x ).【详解】(1)解:当a =e 时,函数f (x )=e x +k ⋅e -x ,可得f (x )=e x -k ⋅e -x ,若k ≤0时,f (x )>0,故函数y =f (x )在R 上单调递增,函数y =f (x )在R 上无最值;若k >0时,令f (x )=0,可得x =12ln k ,当x ∈-∞,12ln k 时,f x <0,函数y =f (x )在-∞,12ln k 上为严格减函数;当x ∈12ln k ,+∞ 时,f x >0,函数y =f (x )在12ln k ,+∞ 上为严格增函数,所以,当x =12ln k 时,函数取得最小值,最小值为f 12ln k =2k ,无最大值.综上:当k ≤0时,函数f (x )在R 上无最值;当k >0时,最小值为2k ,无最大值.(2)解:因为“y =f (x )为偶函数”⇔“对于任意的x ∈R ,都有f (-x )=f (x )”即对于任意的x ∈R ,都有-x ∈R ,并且a x +k ⋅a -x =a -x +k ⋅a x ;即对于任意的x ∈R ,(k -1)(a x -a -x )=0,可得k =1,所以k =1是y =f (x )为偶函数的充要条件.因为“y =f (x )为奇函数”⇔“对于任意的x ∈R ,都有f (-x )=-f (x )”,即对于任意的x ∈R ,都有-x ∈R ,并且-a x -k ⋅a -x =a -x +k ⋅a x ,即对于任意的x ∈R ,(k +1)(a x +a -x )=0,可得k =-1,所以k =-1是y =f (x )为奇函数的充要条件,当k ≠±1时,y =f (x )是非奇非偶函数.(3)解:①当k <0时,函数y =f (x )有对称中心12log (-k ),0,当k <0时,对于任意的x ∈R ,都有-x ∈R ,并且f (log a (-k )-x )=-f (x ).证明:当k <0时,令f (x )=0,解得x =12log a (-k )为函数y =f (x )的零点,由f (x )=a x +k ⋅a -x ,。

利用导数研究函数的极值

利用导数研究函数的极值

题型五.函数的极值与最值的综合应用
例9. 已知f(x)=2x3+3ax2+3bx+8c在x=1和x=2时取得极值.
(1). 求a、b的值; (2). 若对于x∈[0, 3],都有f(x)<c2,求c的取值范围. 例10.已知f(x)是[-e,0) (0,e]上的奇函数,当x∈(0, e]时, f(x)=ax+lnx; (1)求f(x)的解析式; ln x 1 ,求证:当x (0, e]时f (x) g(x) 恒成立 . (2)若a=-1, g(x) x 2
一.函数极值的概念
2. 极值与导数的关系:
(2). “f '(x0)=0”与“ x0是f(x)的极值点”的关系? (3). f(x)的极大值与极小值的关系?
y
f(x) x3
y
g(x) | x |
o
x
o
x
二.求函数极值的方法与步骤 题型一.求函数的极值
例1. 判断下列函数在其定义域内是否有极值? (1). y=8x3-12x2+6x+1; (2). y=x|x|; (3). y=1-(x-2) .
求f(x)在[a, b]上的最值的步骤:
题型三.求连续函数在闭区间上的最值 (1)求f(x)在开区间(a,b)上的极值;
例6. 求下列函数的最值: (2)求f(a)和f(b);
1 3 (3)比较f(a)、f(b)与极值,的最值. (1). f(x)= x -4x+4 , x∈[-3, 4] ; 3 x (2). y x ,x∈[0, 2]; e 1 2 (3). y=ln(1+x) - x , x∈[0, e]; 4
(4). 已知x、y∈R+, x2-2x+4y2=0, 求xy的最大值.

利用导数研究函数的极值

利用导数研究函数的极值

令 f′(x)=0,得 x1=-2 或 x2=2.
当 x 变化时,f′(x),f(x)的变化状态如下表:
x (-∞,-2) -2 (-2,2) 2 (2,+∞)
f′(x)

0-
0

f(x)

16 ↘ -16

∴由上表可知,当 x=-2 时,f(x)有极大值 16,
当 x=2 时,f(x)有极小值-16.

大的一个为最大值,最小的一个为最小值.
函数值,其中最
一.一个点为函数的极值点不但满足此点处导数值为零, 还要满足在此点附近左右两侧函数的单调性相反,单调 性一致时,不能作为极值点,如f(x)=x3,x=0满足 f′(0)=0,但x=0不是极值点.
二.函数的极值是一个局部概念,它反映的是某个点的函 数值与它附近的函数值的大小情况.
f′(x)=-x32+3x=3xx-2 1,
令 f′(x)=0 得 x=1.
当 x 变化时,f′(x),f(x)的变化状态如下表:
x
(0,1) 1 (1,+∞)
f′(x) - 0

f(x)
↘3

因此当 x=1 时,f(x)有极小值,并且极小值为 f(1)=3.
(2)函数 f(x)的定义域为 R;
f′(x)=3x2-12=3(x+2)(x-2).
f′(x)=6x2-12=6(x2-2),
令 f′(x)=0,∴x2-2=0,∴x1=- 2,x2= 2. 当 x 变化时,f′(x)与 f(x)的变化状态如下表:
x -1 (-1, 2) 2 ( 2,3) 3
f′(x)

0

f(x) 10
↘ -8 2 ↗

导数及其应用利用导数研究函数的极值最值课件

导数及其应用利用导数研究函数的极值最值课件

导数及其应用 利用导数研究函数的极值最值 课件 理 ppt xx年xx月xx日contents •导数及其应用•利用导数研究函数的极值最值•课件制作技巧•案例分析•导数的进一步学习与拓展目录01导数及其应用1导数的定义23导数是函数在某一点的变化率,它描述了函数在某一点的斜率。

导数的定义导数的几何意义是函数在某一点的切线斜率。

导数的几何意义导数的物理意义是速度的变化率,即物体运动的速度在某一时刻的变化率。

导数的物理意义导数的计算根据导数的定义,通过求极限来计算导数。

定义法公式法表格法图像法利用导数的运算法则和公式来计算导数。

利用导数表来计算导数。

利用函数图像来估计导数。

最优问题导数可以帮助我们找到最优解,例如在经济学、工程学等领域中,利用导数可以找到最优的成本、价格、利润等。

导数在实际问题中的应用运动问题导数可以描述物体的运动状态,例如速度、加速度等,利用导数可以解决运动问题,例如计算轨迹、碰撞时间等。

物理问题导数可以描述物理现象的变化规律,例如温度、压力、电流等,利用导数可以解决物理问题,例如计算热传导、弹性力学等。

02利用导数研究函数的极值最值极值的定义:设函数$f(x)$在点$x_{0}$的附近有定义。

若在$x_{0}$的左侧$f(x)$单调递增。

在$x_{0}$的右侧$f(x)$单调递减定义法:判断导数由正变负的点,这些点为可能极值点,再检验这些点两侧的导数值,确定是否为极值点。

表格法:通过列表计算函数在各点的导数值,并判断其正负,从而得到极值点。

极值的判定方法极值的概念及判定方法最值的定义及求法最值的定义:函数在某区间内取得最大(小)值的点称为最值点。

对于连续函数,还可以利用介值定理求解最值。

最值的求法利用定义法或表格法求极值点,然后比较极值与端点函数值的大小关系,从而得到最值。

1导数在极值最值问题中的综合应用23导数在极值最值问题中的应用非常广泛,例如在经济、物理、工程等领域都有应用。

利用导数研究函数极值

利用导数研究函数极值

已知 函数y=f(x),设X0是定义域(a,b)内任一点,
•如果对X0附近的所有点X,都有f(x)<f(x0), 则称函数f(x)在点X0处取极大值, 记作y极大值= f(x0);并把 X0称为函数f(x)的一个极大植点。
•如果对X0附近的所有点X,都有f(x)>f(x0),
则称函数f(x)在点X0处取极小值,记作y极小值= f(x0);并把X0称 为函数f(x)的一个极小植点。
3
Hale Waihona Puke 3练习:求函数 y ( x 2 1)3 1 的极值.
解:y 3( x2 1)2 2x 6x ( x 1)2 ( x 1)2 令y 0得:x 0或x 1或x 1
x (, 1) 1 (1,0) 0
y 0 0
(0,1) 1 (1, )
y yf(x)
O a x1 x2
x3
f (x1)0 f (x2)0 f (x3)0
b cx f (b)=0
在极值点处,曲线如果有切线,则切线是水平的。
结论:设x=x0是y=f(x)的极值点,且f(x)在 x=x0是可导的,则必有f (x0)=0
例.判断下面4个命题,其中是真命题序号为 ② 。
图1.3 11
关于极值概念的几点说明
(1)极值是一个局部概念,反映了函数值在某一点 附近的大小情况;
(2)极值点是自变量的值,极值指的是函数值;
(3)函数的极大(小)值可能不止一个,而且函数的 极大值未必大于极小值;
(4)函数的极值点一定在区间的内部,区间的端 点不能成为极值点。
观察与思考:极值与导数有何关系?
◆函数的极大值与极小值统称为极值.极大值点与极小 值点统称为极值点

【高考数学二轮压轴题微专题】第28讲 用导数研究函数的极值、最值、实际应用中的优化问题-原卷+解析

【高考数学二轮压轴题微专题】第28讲 用导数研究函数的极值、最值、实际应用中的优化问题-原卷+解析

第28讲 用导数研究函数的极值、最值、实际应用中的优化问题1.用导数研究函数的极值求可导函数()y f x =极值的步骤: (1)确定函数的定义域. (2)求导数()f x '. (3)求方程()0f x '=的根.(4)检验()f x '在方程根左右值的符号,求得极值(若左正右负,则()f x 在这个根处取极大值;若左负右正,则()f x 在这个根处取极小值).2.用导数研究函数的最值设()y f x =在[],a b 上连续,在(),a b 内可导,求函数()f x 在[],a b 上的最值的步骤: (1)求函数在(),a b 内的极值.(2)求函数在区间端点的函数值()(),f a f b .(3)将函数()f x 的各极值与()(),f a f b 比较,其中最大的一个为最大值,最小的一个为最小值.3.用导数研究实际应用中的优化问题(1)利用导数解决实际应用中优化问题的一般步骤:1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系()y f x =,并确定其定义域.2)求函数的导数()f x ',解方程()0f x '=.3)比较函数在区间端点和使()0f x '=的点数值的大小,最大(小)者为最大(小)值. (2)解决实际应用中优化问题必须注意以下两点:1)求实际问题中的最大(小)值,一定要注意实际问题的意义,不符合实际问题的值应舍去. 2)用导数求解实际问题中的最大(小)值时,如果函数在区间内只有一个极值点,就不用与端点值比较,也可以知道该极值点也是最值点.典型例题【例1】已知函数()1ln f x x a x =--. (1)若()0f x ,求a 的值;(2)设m 为整数,且对于任意正整数2111,111222n n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.【例2】设函数()()21e (x f x x kx =--其中k ∈R ). (1)当1k =时,求函数()f x 的单调区间;(2)当1,12k ⎛⎤∈⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .【例3】某企业拟建造如图37-所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为803π立方米,且2l r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c>千元,设该容器的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的.r强化训练1. 已知函数()()33f x x x a a =+-∈R ,若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.第28讲 用导数研究函数的极值、最值、实际应用中的优化问题1.用导数研究函数的极值求可导函数()y f x =极值的步骤: (1)确定函数的定义域. (2)求导数()f x '. (3)求方程()0f x '=的根.(4)检验()f x '在方程根左右值的符号,求得极值(若左正右负,则()f x 在这个根处取极大值;若左负右正,则()f x 在这个根处取极小值).2.用导数研究函数的最值设()y f x =在[],a b 上连续,在(),a b 内可导,求函数()f x 在[],a b 上的最值的步骤: (1)求函数在(),a b 内的极值.(2)求函数在区间端点的函数值()(),f a f b .(3)将函数()f x 的各极值与()(),f a f b 比较,其中最大的一个为最大值,最小的一个为最小值.3.用导数研究实际应用中的优化问题(1)利用导数解决实际应用中优化问题的一般步骤:1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系()y f x =,并确定其定义域.2)求函数的导数()f x ',解方程()0f x '=.3)比较函数在区间端点和使()0f x '=的点数值的大小,最大(小)者为最大(小)值. (2)解决实际应用中优化问题必须注意以下两点:1)求实际问题中的最大(小)值,一定要注意实际问题的意义,不符合实际问题的值应舍去. 2)用导数求解实际问题中的最大(小)值时,如果函数在区间内只有一个极值点,就不用与端点值比较,也可以知道该极值点也是最值点.典型例题【例1】已知函数()1ln f x x a x =--. (1)若()0f x ,求a 的值;(2)设m 为整数,且对于任意正整数2111,111222n n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值. 【分析】,在函数的所有问题中,函数的单调性是最基础的问题,若含有参数,一般需对参数进行讨论,从而确定函数的单调性,再根据所求进行相应的判断,求解与证明.第(1)问,通过求函数的导数,对函数的单调性进行研究,求解函数的最小值是确定a 的值.数列不等式的证明或求解主要有两种思路:(1)通过函数的单调性得到数列的单调性,从而解决问题;(2)对数列的不等关系进行放缩,直接证明或求解.第()2问将问题转化为“和”式不等式,根据数列求和公式求解,其中应炅活运用放缩的技巧. 【解析】(1)()f x 的定义域为()0,∞+.若0,a 11ln20,22f a ⎛⎫=-+< ⎪⎝⎭∴不满足题意;若0a >由()1a x a f x x x-=-='知,当()0,x a ∈时,()0f x '<;当(,x a ∈)∞+时,()0f x '>,()f x ∴在()0,a 单调递减,在(),a ∞+单调递增.故x a =是()f x 在()0,∞+的唯一最小值点. 由于()10,f =∴当且仅当1a =时,()0f x ,故1a =.(2) 【解法一】由(1)知,当()1,x ∞∈+时1ln 0x x -->.令112n x =+得11ln 122nn ⎛⎫+< ⎪⎝⎭,从而有 221111111ln 1ln 1ln 11 1.2222222n n n ⎛⎫⎛⎫⎛⎫++++++<+++=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故2111111e,222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭而23111135111 2.22264⎛⎫⎛⎫⎛⎫+++=> ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 当3n 时,()21111112,e .222n ⎛⎫⎛⎫⎛⎫+++∈ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭因此,对任意正整数n ,要使23111111112222n m ⎛⎫⎛⎫⎛⎫⎛⎫++++< ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭恒成立,必须3,m m ∴的最小值为3.【例2】设函数()()21e (x f x x kx =--其中k ∈R ). (1)当1k =时,求函数()f x 的单调区间;(2)当1,12k ⎛⎤∈⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M . 【分析】第(1)问,把1k =代入()()()21e x f x x kx k =--∈R ,对()f x 求导,令()0f x '=得零,点坐标,由()f x '在定义域子区间的正负,确定()f x 的单调区间.第(2)问,按照求函数()f x 在[],a b 上的最大值和最小值的步骤进行,由于()f x 含有参数k ,且定义域区间为(]0,,k k 为参变数,必须对k 的取值分类讨论,层层深入,攻克难关. 【解析】(1)当1k =时,()()()()()21e ,e 1e 2e 2e 2xxxxxf x x x f x x x x x x =--=+-=-='--,令()0f x '=,120,ln2x x ==得. 当x 变化时,()(),f x f x '的变化如下表:由上表可知,函数()f x 的递减区间为()0,ln2,递增区间为(),0∞-和()ln2,+∞, (2)()()()e 1e 2e 2e 2xxxxf x x kx x kx x k '=+--=-=-.令()0f x '=,得()120,ln 2x x k ==.令()()ln 2g k k k =-,则()1110k g k k k'-=-=. ()g k ∴在1,12⎛⎤⎥⎝⎦上递增,()ln21ln2lne 0.g k ∴-=-<从而()()[]ln 2,ln 20,.k k k k <∴∈∴当()()0,ln 2x k ∈时,()0f x '<;当()()ln 2,x k ∞∈+时,()0f x '>, ()(){}(){}3max 0,max 1,1e k M f f k k k ==---令()()31e 1k h k k k =--+,则()()e 3kh k k k =-'.令()e 3k k k ϕ=-,则()()e 3e 30,k k k ϕϕ'=--<∴在1,12⎡⎤⎢⎥⎣⎦上递减,而()()121e 30,23ϕϕ⎛⎫⎫⋅=-<∴⎪⎪⎝⎭⎭存在01,12x ⎛⎤∈ ⎥⎝⎦使()00x ϕ=,且当01,2k x ⎛⎫∈⎪⎝⎭时,()0k ϕ>,当()0,1k x ∈时,()0k ϕ<. ()h k ∴在01,2x ⎛⎫⎪⎝⎭上单调递增,在()0,1x 上单调递减.()170,1028h h ⎛⎫=>= ⎪⎝⎭()0h k ∴在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得”=“. 综上,函数()f x 在[]0,k 上的最大值()31e k M k k =--.【例3】某企业拟建造如图37-所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为803π立方米,且2l r .假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元,设该容器的建造费用为y 千元. (1)写出y 关于r 的函数表达式,并求该函数的定义域; (2)求该容器的建造费用最小时的.r【分析】利用导数解决生活中的优化问题的一般步瀮求解,具体是:第一步:分析实际问题中各量之间的关系,求出建造费用y 关于圆在半径r 的函数关系式,并求出变量r 的取值范围.第二步:对所求出的函数()y f r =求导,觲方程()0f r '=,结合函数单调性求函数的最小值. 第三步:对参数进行讨论,确定在参数取不同范围值时的最小值,并比较与函数在定义域区间端点函数值的大小,确定()y f r =的最小值.第四步:回归实际问题作答.在本题的求解过程中,对于(1),定义域必须优先考虑,不可忽视”2l r ”的作用;对于(2),求函数最值,求导后必须对c 的取值进行分类讨论,当然本小题还可以结合均值不等式与导数一起考虑.【解析】(1)设容器的容积为V ,由题意知2343V r l r ππ=+,又803V π=, 故322248044203.333V r l r r r r r ππ-⎛⎫==-=- ⎪⎝⎭由于2l r ,因此02r <. 所建造费用2224202342343y rl r c r r r c r ππππ⎛⎫=⨯+=⨯-⨯+ ⎪⎝⎭, 因此()216042,0 2.y c r r rππ=-+< (2)【解法一】由(1)得,()()322821602082,022c y c r r r r r c πππ'-⎛⎫=--=-< ⎪-⎝⎭. 由于3c >,20c ∴->当3202r c =-时, r =m =,则0m >, ()()()22282.c y r m r rm m r π-∴=-+'+(1)当02m <<即92c >时,当r m =时,0y '=;当()0,r m ∈时,则0y '<;当(),2r m ∈时,0y '>,r m ∴=是函数y 的极小值点,也是最小值点.(2)当2m 即932c <时,当()0,2r ∈时,0y '<,函数单调递减. 2r ∴=是函数y 的最小值点.综上所述,当932c <时,建造费用最小时2r =;当92c >时,建造费用最小时r = 【解法二】()(2380804234y c r c r r ππππ=-++-当且仅当()28042c r rππ-=,即r =.当02<<,即92c >时,r =22,即932c <时,2160816y cr r rπππ'=--. ()0,2r ∈时,0y '<,函数单调递减,2r ∴=是函数的最小值点.综上所述,当932c <时,建造费用最小时2r =;当92c >时,建造费用最小时r = 强化训练1. 已知函数()()33f x x x a a =+-∈R ,若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.【解析】()3333,,33,x x a x a f x x x a x a +-=-+<()2233,33,,x x a f x x x a ⎧+∴=-<⎩'⎨,由于11x -, (1)当1a -时,有x a ,故()333f x x x a =+-,此时()f x 在()1,1-上是增函数, 因此,()()()()143,143M a f a m a f a ==-=-=--,故()()()()43438M a m a a a -=----=(2)当11a -<<时,若(),1x a ∈,则()333f x x x a =+-在(),1a 上是增函数; 若()1,x a ∈-,则()333f x x x a =-+在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a ∴=-==,由于()()1162f f a --=-+, 因此,当113a -<时,()()334M a m a a a -=--+; 当113a <<时,()()332M a m a a a -=-++. (3)当1a 时,有x a ,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数, 因此,()()()()123,123M a f a m a f a =-=+==-+,故()()()()23234M a m a a a -=+--+=. 综上可知,()()338,1,134,1,3132,134, 1.a a a a M a m a a a a a -⎧⎪⎪--+-<⎪-=⎨⎪-++<<⎪⎪⎩。

利用导数研究函数的极值与最值Ppt优选文档

利用导数研究函数的极值与最值Ppt优选文档

解:
3 因为 f(x)1x34x4, 所以 f(x)x24.
3
令 f(x)0, 解得 x 2, 或 x2.
当 f(x)0, 即 x2 , 或 x2 ;
当 f(x)0, 即 2x2 .
当 x 变化时, f (x) 的变化情况如下表:
Y=f(x)在这些点的导数值是多少?在这些点附 近,y=f(x)y的导数的符号有什么规律?
f (x4 ) f (x1)
o a X1
X2
X3 X4 b
x
从而我们得出结论: 若x0满足 f/(x)=0,
且在x0的两侧的导数异号,则x0是f(x)的极值 点,f(x0)是极值,并且如果 f/(x) 在x0两侧满足 “左正右负”,则x0是f(x)的极大值点,f(x0) 是极大值;如果 f/(x) 在x0两侧满足“左负右
进一步探究:极值点两侧函数图像单调性有何特点?
极大值
极小值
即: 极值点两侧单调性互异
练习1
下图是导函数 y f(x)的图象, 试找出函数 y f (x)
的极值点, 并指出哪些是极大值点, 哪些是极小值点.
y
y f (x)
x2 x3
a x1 O
x4 x5
x
x6
b
例1 求函数 f(x)1x3 4x4的极值.
3、练习
1.求 出 函 数 f( x ) x 3 3 x 2 2 4 x 2 0 的 单 调 区 间
解 f(x)3x26x2 4 3 (x 4 )x ( 2 )
令f(x)0, 得 临 界 点 x1 4 , x22
区间 (-∞,-4) -4 (-4,2) 2 (2,+∞)
f ’(x) +
反之, 若 f (x) f (x0) , 则称 f (x0) 是 f (x) 的一个极

考点22 高中数学利用导数研究函数的极值和最值(解析版)

考点22  高中数学利用导数研究函数的极值和最值(解析版)

考点22 利用导数研究函数的极值和最值【命题解读】从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等.除压轴题,同时在小题中也加以考查,难度控制在中等以上.应特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力【基础知识回顾】1、函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b 附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.2、函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.3、常用结论1.若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.2.若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.3.若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.1、函数f(x)=x2-ln x的最小值为()A.1+ln 2 B.1-ln 2C.1+ln 22D.1-ln 22【答案】C【解析】 因为f (x )=x 2-ln x (x >0),所以f ′(x )=2x -1x ,令2x -1x =0得x =22,令f ′(x )>0,则x >22;令f ′(x )<0,则0<x <22.所以f (x )在⎝ ⎛⎭⎪⎫0,22上单调递减,在⎝ ⎛⎭⎪⎫22,+∞上单调递增,所以f (x )的极小值(也是最小值)为⎝ ⎛⎭⎪⎫222-ln 22=1+ln 22,故选C.2、函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点 【答案】C【解析】 设f ′(x )的图象与x 轴的4个交点的横坐标从左至右依次为x 1,x 2,x 3,x 4. 当x <x 1时,f ′(x )>0,f (x )为增函数,当x 1<x <x 2时,f ′(x )<0,f (x )为减函数, 则x =x 1为极大值点,同理,x =x 3为极大值点,x =x 2,x =x 4为极小值点,故选C. 3、设函数f (x )=2x +ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点 【答案】D【解析】 因为f (x )=2x +ln x ,所以f ′(x )=-2x 2+1x =x -2x 2,x >0.当x >2时,f ′(x )>0,f (x )为增函数;当0<x <2时,f ′(x )<0,f (x )为减函数,所以x =2为f (x )的极小值点,故选D.4、已知a 为函数f (x )=x 3-12x 的极小值点,则a 等于( )A .-4B .-2C .4D .2 【答案】D【解析】 由题意得f ′(x )=3x 2-12,由f ′(x )=0得x =±2,当x ∈(-∞,-2)时,f ′(x )>0,函数f (x )单调递增,当x ∈(-2,2)时,f ′(x )<0,函数f (x)单调递减,当x ∈(2,+∞)时,f ′(x )>0,函数f (x)单调递增,所以a =2.5、函数()()3230f x x a x a a =-+>的极大值是正数,极小值是负数,则a 的取值范围是________.【答案】:(22,+∞)【解析】:f ′(x )=3x 2-3a 2=3(x +a )(x -a ),由f ′(x )=0得x =±a ,当-a <x <a 时,f ′(x )<0,函数递减;当x >a 或x <-a 时,f ′(x )>0,函数递增. ∴f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0,解得a >22.∴a 的取值范围是(22,+∞)考向一 利用导数研究函数的极值例1、已知函数()32331(R,0)f x ax x a a a=-+-∈≠,求函数()f x 的极大值与极小值.【解析】:由题设知a ≠0,f ′(x )=3ax 2-6x =3ax 2x a ⎛⎫- ⎪⎝⎭. 令f ′(x )=0得x =0或2a .当a >0时,随着x 的变化,f ′(x )与f (x )的变化情况如下:∴∴∴∴f (x )极大值=f (0)=1-3a ,f (x )极小值=2f a ⎛⎫⎪⎝⎭=-4a 2-3a +1.当a <0时,随着x 的变化,f ′(x )与f (x )的变化情况如下:∴∴∴∴f (x )极大值=f (0)=1-3a ,f (x )极小值=2f a ⎛⎫⎪⎝⎭=-4a 2-3a +1.综上,f (x )极大值=f (0)=1-3a ,f (x )极小值=2f a ⎛⎫⎪⎝⎭=-4a 2-3a +1.变式1、已知函数f(x)=1x +ln x ,求函数f(x)的极值.【解析】 ∵f(x)=1x +ln x ,∴f ′(x)=-1x 2+1x =x -1x 2,令f(x)=0,得x =1,列表:∴x =1是f(x)的极小值点,f(x)的极小值为1,无极大值.方法总结:(1)求函数()f x 极值的步骤: ①确定函数的定义域; ②求导数()f x ';③解方程()0f x '=,求出函数定义域内的所有根;④列表检验在()0f x '=的根0x 左右两侧值的符号,如果左正右负,那么()f x 在0x 处取极大值,如果左负右正,那么()f x 在0x 处取极小值.(2)若函数()y f x =在区间内有极值,那么()y f x =在(),a b 内绝不是单调函数,即在某区间上单调函数没有极值.考向二 利用导数研究函数的最值例2、(2020届山东省潍坊市高三上期中)已知函数. (1)当时,求曲线在点处的切线方程; ()32112f x x x ax =-++2a =()y f x =()()0,0f(2)若函数处有极小值,求函数在区间上的最大值.【答案】(1);(2). 【解析】(1)当时,,, 所以,又,所以曲线在点处切线方程为,即. (2)因为,因为函数处有极小值,所以, 所以 由,得或, 当或时,, 当时,, 所以在,上是增函数,在上是减函数, 因为,, 所以的最大值为. 变式1、已知a R ∈,函数()ln 1af x x x=+-. (1)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (2)求()f x 在区间(]0,e 上的最小值. 【解析】:(1)当a =1时,f (x )=1x +ln x -1,x ∴(0,+∞), 所以f ′(x )=-1x 2+1x =x -1x 2,x ∴(0,+∞).()1f x x =在()f x 32,2⎡⎤-⎢⎥⎣⎦210x y -+=49272a =321()212f x x x x =-++2()32f x x x '=-+(0)2f '=(0)1f =()y f x =()()0,0f 12y x -=210x y -+=2()3f x x x a '=-+()1f x x =在(1)202f a a '=+=⇒=-2()32f x x x '=--()0f x '=23x =-1x =23x <-1x >()0f x '>213x -<<()0f x '<()f x 22,3⎛⎫-- ⎪⎝⎭31,2⎛⎫ ⎪⎝⎭2,13⎛⎫- ⎪⎝⎭249327f ⎛⎫-= ⎪⎝⎭3124f ⎛⎫= ⎪⎝⎭()f x 249327f ⎛⎫-=⎪⎝⎭因此f ′(2)=14,即曲线y =f (x )在点(2,f (2))处的切线斜率为14.又f (2)=ln 2-12,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -(ln 2-12)=14(x -2), 即x -4y +4ln 2-4=0.(2)因为f (x )=a x +ln x -1,所以f ′(x )=-a x 2+1x =x -ax 2.令f ′(x )=0,得x =a . ∴若a ≤0,则f ′(x )>0,f (x )在区间(0,e]上单调递增,此时函数f (x )无最小值.∴若0<a <e ,当x ∴(0,a )时,f ′(x )<0,函数f (x )在区间(0,a )上单调递减,当x ∴(a ,e]时,f ′(x )>0,函数f (x )在区间(a ,e]上单调递增,所以当x =a 时,函数f (x )取得最小值ln a .∴若a ≥e ,则当x ∴(0,e]时,f ′(x )≤0,函数f (x )在区间(0,e]上单调递减, 所以当x =e 时,函数f (x )取得最小值ae .综上可知,当a ≤0时,函数f (x )在区间(0,e]上无最小值; 当0<a <e 时,函数f (x )在区间(0,e]上的最小值为ln a ; 当a ≥e 时,函数f (x )在区间(0,e]上的最小值为ae . 变式2、已知函数f (x )=ax +ln x ,其中a 为常数.(1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 【解析】(1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0. ∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎡⎭⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得 a +1x >0,结合x ∈(0,e],解得0<x <-1a ;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝⎛⎭⎫0,-1a 上为增函数,在⎝⎛⎦⎤-1a ,e 上为减函数,∴f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a .令-1+ln ⎝⎛⎭⎫-1a =-3,得ln ⎝⎛⎭⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.考向三 极值(最值)的综合性问题例3、已知函数()323(,)f x ax bx x a b R =+-∈在1x =-处取得极大值为2.(1) 求函数()f x 的解析式;(2) 若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值. 【解析】:(1) f′(x)=3ax 2+2bx -3.由题意得()12(1)0f f ⎧-=⎪⎨'-=⎪⎩,即⎩⎪⎨⎪⎧-a +b +3=23a -2b -3=0), 解得⎩⎪⎨⎪⎧a =1b =0),经检验成立,所以f(x)=x 3-3x. (2) 令f′(x)=0,即3x 2-3=0.得x =±1. 列表如下:因为f(-1)=2,f(1)=-2,f(2)=2,f(-2)=-2,所以当x∴[-2,2]时,f(x)max =2,f(x)min =-2. 对于区间[-2,2]上任意两个自变量的值x 1,x 2,都有|f(x 1)-f(x 2)|≤|f(x)max -f(x)min |=4,所以c≥4.所以c 的最小值为4. 变式1、已知函数f (x )=ax 2+bx +ce x(a >0)的导函数f ′(x )的两个零点为-3和0. (1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 解:(1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x(e x )2=-ax 2+(2a -b )x +b -ce x. 令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同. 又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0, 当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧f (-3)=9a -3b +ce -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x . 由(1)可知当x =0时f (x )取得极大值f (0)=5,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者. 而f (-5)=5e -5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.变式2、(2020届山东省枣庄市高三上学期统考)已知函数(是自然对数的底数).(Ⅰ)讨论极值点的个数;(Ⅰ)若是的一个极值点,且,证明:.【答案】(Ⅰ)见解析;(Ⅰ)见解析 【解析】(Ⅰ)的定义域为,,①若,则,所以当时,;当时,, 所以在上递减,在递增. 所以为唯一的极小值点,无极大值, 故此时有一个极值点.()()211e 22xf x x ax ax =+++e ()f x ()002x x ≠-()f x ()22e f -->()01f x ≤()f x R ()()()2e xf x x a '=++0a ≥e 0x a +>(),2x ∈-∞-()0f x '<()2,x ∈-+∞()0f x '>()f x (),2-∞-()2,-+∞2x =-()f x ()f x②若,令,则,, 当时,,则当时,;当时,; 当时,.所以-2,分别为的极大值点和极小值点, 故此时有2个极值点. 当时,,且不恒为0,此时在上单调递增, 无极值点当时,,则当时,;当时,;当时,.所以,-2分别为的极大值点和极小值点, 故此时有2个极值点.综上,当时,无极值点; 当时,有1个极值点;当或时,有2个极值点. (Ⅰ)证明:若是的一个极值点, 由(Ⅰ)可知,又,所以,0a <()()()2e 0xf x x a '=++=12x =-()2ln x a =-2e a -<-()2ln a -<-(),2x ∈-∞-()0f x '>()()2,ln x a ∈--()0f x '<()()ln ,x a ∈-+∞()0f x '>()ln a -()f x ()f x 2e a -=-()2ln a -=-()()(2)e 0x f x x a '=++≥()f x R 2e 0a --<<()2ln a ->-()(),ln x a ∈-∞-()0f x '>()()ln ,2x a ∈--()0f x '<()2,x ∈-+∞()0f x '>()ln a -()f x ()f x 2e a -=-()f x 0a ≥()f x 2e a -<-2e 0a --<<()f x ()002x x ≠-()f x ()()22,ee,0a --∈-∞--()222e 2e f a ---=-->()2,ea -∈-∞-且,则, 所以. 令,则, 所以, 故又因为,所以,令,得. 当时,,单调递增, 当时,,单调递减, 所以是唯一的极大值点,也是最大值点, 即,故,即.方法总结: 1. 当面对不等式恒成立(有解)问题时,往往是转化成函数利用导数求最值; 2. 当面对多次求导时,一定要清楚每次求导的目的是什么.1、(2017年高考全国Ⅱ卷理数)若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e --C .35e -D .1【答案】A【解析】由题可得12121()(2)e (1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)e x f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减,所以()f x 的极小值为11()(111)e 11f -=--=-.02x ≠-()0ln x a =-()()()()()201ln ln 2ln 22f x f a a a a ⎡⎤=-=-+--⎣⎦()()ln 2,t a =-∈-+∞t a e =-()()()()21ln e 222t g t f a t t =-=-+-()()14e 2tg t t t '=-+()2,t ∈-+∞40t +>()0g t '=0t =()2,0t ∈-()0g t '>()g t ()0,t ∈+∞()0g t '<()g t 0t =()g t ()()01g t g ≤=()()ln 1-≤f a ()01f x≤故选A .2、【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.3、【2018年高考全国Ⅰ卷理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】−3√32【解析】f′(x)=2cosx +2cos2x =4cos 2x +2cosx −2=4(cosx +1)(cosx −12), 所以当cosx <12时函数单调递减,当cosx >12时函数单调递增, 从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z , 函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数f (x )取得最小值, 此时sinx =−√32,sin2x =−√32,所以f (x )min =2×(−√32)−√32=−3√32,故答案是−3√32. 4、(2020届山东实验中学高三上期中)已知函数且a≠0).(1)求曲线y=f (x )在点(1,f (1))处的切线方程; (2)若函数f (x )的极小值为,试求a 的值. 【答案】(1);(2)【解析】(1)函数f (x )=(2ax 2+4x )ln x -ax 2-4x (a ∈R ,且a ≠0).由题意可知. ∴曲线y =f (x )在点(1,f (1))处的切线方程为. (Ⅰ)①当a <-1时,x 变化时变化情况如下表:此时,解得,故不成立. ②当a =-1时,≤0在(0,+∞)上恒成立,所以f (x )在(0,+∞)单调递减. 此时f (x )无极小值,故不成立.③当-1<a <0时,x 变化时变化情况如下表:22()(24)ln 4(f x ax x x ax x a R =+--∈1a--4y a =2a =-+'()4(1)ln ,(0,)f x ax x x =+∈+∞'(1)0, (1)--4f f a ==--4y a ='(), ()f x f x 1321ln()f a a a aa ⎛⎫-=+-= ⎪⎝⎭11a e =->-'()f x '(), ()f x f x此时极小值f (1)=-a -4,由题意可得, 解得因为-1<a <0,所以.④当a >0时,x 变化时变化情况如下表:此时极小值f (1)=-a -4,由题意可得, 解得 综上所述5、(2020全国Ⅰ理21)已知函数()2e xf x ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围. 【解析】(1)当1a =时,()2x x x e f x =+-,()'21x f x e x =+-,由于()''20x f x e =+>,故()'f x 单调递增,注意到()'00f =,故:当(),0x ∈-∞时,()()'0,f x f x <单调递减; 当()0,x ∈+∞时,()()'0,f x f x >单调递增. (2)由()3112f x x ≥+得,23112x e ax x x +-+,其中0x ≥, ①.当x=0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,32112x e x x a x ----, 14a a--=2a =-+2a =-2a ='(), ()f x f x 14a a--=2a =-+2a =-2a =-+记()32112x e x x g x x ---=-,()()231212'x x e x x g x x ⎛⎫---- ⎪⎝⎭=-, 令()()21102xe x x h x x ---≥=,则()'1x h x e x =--,()''10x h x e =-≥,故()'h x 单调递增,()()''00h x h ≥=,故函数()h x 单调递增,()()00h x h ≥=, 由()0h x ≥可得:21102xe x x ---恒成立,故当()0,2x ∈时,()'0g x >,()g x 单调递增; 当()2,x ∈+∞时,()'0g x <,()g x 单调递减; 因此,()()2max724e g x g -⎡⎤==⎣⎦.综上可得,实数a 的取值范围是27,4e ⎡⎫-+∞⎪⎢⎣⎭. 6、(2020全国Ⅱ文21)已知函数()2ln 1f x x =+. (1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.【解析】(1)函数()f x 的定义域为:(0,)+∞,()2()202ln 120()f x x c f x x c x x c ≤+⇒--≤⇒+--≤*,设()2ln 12(0)h x x x c x =+-->,则有22(1)()2x h x x x-'=-=, 当1x >时,()0,()h x h x '<单调递减;当01x <<时,()0,()h x h x '>单调递增,∴当1x =时,函数()h x 有最大值,即max ()(1)2ln11211h x h c c ==+-⨯-=--,要想不等式()*在(0,)+∞上恒成立,只需max ()0101h x c c ≤⇒--≤⇒≥-.(2)2ln 1(2ln 1)2(ln ln )()(0x a x a g x x x a x a+---==>--且)x a ≠,因此22(ln ln )()()x a x x x a g x x x a --+'=-, 设()2(ln ln )m x x a x x x a =--+,则有()2(ln ln )m x a x '=-,当x a >时,ln ln x a >,∴()0m x '<,()m x 单调递减,因此有()()0m x m a <=,即()0g x '<,∴()g x 单调递减;当0x a <<时,ln ln x a <,∴()0m x '>,()m x 单调递增,因此有()()0m x m a <=,即()0g x '<,∴()g x 单调递减,∴函数()g x 在区间(0,)a 和(,)a +∞上单调递减,没有递增区间.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档