第七章--位移法(1)
结构力学 位移法
第七章 位移法
7-1 位移法的基本概念
2
求解超静定结构的两种最基本的方法:
力法 位移法
力法适用性广泛,解题灵活性较大。(可选 用各种各样的基本结构)。
位移法在解题上比较规范,具有通用性,因 而计算机易于实现。
位移法可分为:手算——位移法 电算——矩阵位移法
力法与位移法最基本的区别: 3
基本未知量不同
(位移法基本方程)
在(1)(2)条件成立条件下,基本结构 的内力和位移与原结构相同。
解位移法基本方程
结点位移 未知量
内力
适用范围:
6
力法: 超静定结构
位移法: 超静定结构,也可用于静定结构。 一般用于结点少而杆件较多的刚架。
例:
7
P
力法计算,9个基本未知量
位移法计算, 1个基本未知量
位移法的准备工作
力法:以多余未知力基本未知量
位移法:以某些结点位移基本未知量
力法和位移法的解题思路:
力法:
先求多余未知力
结构 内力
结构 位移
力法的解题过程
4
力法的全部计算均在基本结构上
原结构
超静定结构
确定基本未知量: 多余未知力Xi
基本结构
施加条件:
原结构的变形协调条件
(力法基本方程)
在变形条件成立条件下,基本体 系的内力和位移与原结构相同。
8
三种单跨超静定梁作为基本构件
常用的形常数:杆轴弦转角
9
三类基本构件由杆端单位位移引起的杆端弯矩和剪力.
1
A
B
+
−
i
i = EI 线刚度
l
M AB = i MBA = −i
结构力学第七章-位移法(一)
由 M B = 0 同理可得,
FQAB 6i 6i 12i F A B 2 FQAB l l l
结构力学 第七章 位移法
2015年9月12日星期六
§7-2 等截面直杆的转角位移方程
等截面直杆的转角位移方程:
一端固端一端铰支的等截面直杆:
B端角位移不独立。
C
B A
AB:一端固定一端定向滑动 BC:一端固定一端定向滑动 BD:一端固定一端铰支
C
EI=c D B A
AB:两端固定 BC:一端固定一端定向滑动 BD:一端固定一端铰支
C
EI=c D B A
AB:两端固定 BC:两端固定 BD:一端固定一端铰支
C
EI=c D EI=c B A
AB:两端固定 BC:一端固定一端定向滑动 BD:两端固定
R1 = 0 R2 = 0 R3 = 0
R11 Z1
R21
R31
R12
R22 Z2
R32
R13
R23
R1P R33
R2P
P2
R3P
D EI=c A
E
F
D EI=c
E
F
D EI=c
E
F
P1
D EI=c A
E
F
B
C
A
B
C
A
B
C
B
C
(a)基本结构只发生 Z1
(b)基本结构只发生 Z 2
EI 1
B’ O
B
A’
EI
EI
EI
A EI
EI 1
不考虑杆件伸缩变形,AB 不能转动,无结点角位移
结构力学 第七章 位移法
第七章-位移法
q
q
A
BA
B
M
F AB
ql 2 8
M
F AB
M
F BA
ql 2 12
A i EI /l
A
BA
MBA 4iA MBA 2iA
i EI /l B
A
M AB 3iA
5、位移法的基本结构可看作为单跨超静定梁 的组合体系。为顺利求解,必须首先讨论单跨超静 定梁在荷载及杆端位移作用下的求解问题。
C
M
F BA
0
M
F BC
ql 2 8
3、此令时B结AB点、产B生C杆转类角似于B ()B端。为固端且产生转角 B
的单跨超静定梁。
A
A
BiC
i
B
i
B
B3iB
B
3iB
B
i
i EI l
C
13
4、杆端弯矩表达式(两种情况叠加)
M BA 3iB
M BC
3iB
ql 2 8
A
D BH
8
习题7-1 确定用位移法计算时结构的基本未知量个
数。(a) EI
EA
(b)
(1) 当EI、EA为无穷大时,
(3)
(2) (当c)EI、EA为有限值时, (6)
(1) 当0时,(10) (2) 当=0时,(9)
(d)
(1) 当不考虑轴向变形时,
(1) 当0时,
(4)
(3)
(2) 当考虑轴向变形时,(9)
(2) 当=0时,
9
小结: 1、位移法的基本未知量是结构内部结点( 不 包括支座结点)的转角或线位移。
结构力学I第7章 位移法
2015-12-21
Page 25
LOGO §7-2单跨超静定梁的形常数与载常数
2015-12-21
Page 26
LOGO
§7-3 位移法解无侧移刚架
如果刚架的各结点只有角位移而没有线位移,这种刚架 称为无侧移刚架。
位移法计算:
为什么不选结点C?
取结点角位移 ������������ 作为基本位置量。 C为支座结点!
6i 6i
/ /
l l
2015-12-21
A
=
1 3i
M
AB
1 6i
M
BA
l
M BA =0
B
=
1 6i
M
AB
+
1 3i
M
BA
l
M AB 3iA 3i / l
B 0
FQAB FQBA 0
M AB M BA
第七章 位移法
结构力学 I
浙江大学海洋学院 Tel : Email:
LOGO
§7-1 位移法基本概念
位移法是计算超静定结构的基本方法之一。
P
力法计算太困难了!
用力法计算,9个未知量 如果用位移法计算, 1个基本未知量
1个什么样的基本未知量?
Page 2
LOGO
§7-1位移法基本概念
一、位移法的提出(Displacement Method)
Page 20
LOGO §7-2单跨超静定梁的形常数与载常数
用位移法进行结构分析的基础是杆件分析。位移法的基 本结构为以下三种单跨超静定梁:
结构力学第七章位移法
10
§7-3 位移法基本结构与未知量数目
二 位移法基本结构 1 附加刚臂 控制结点转动 2 附加链杆 控制结点线位移
ΔC C θC
ΔD θD
D
基本结构
将原结构结点位移锁住,所得单跨梁的组合体
11
三 位移法基本结构与未知量数目
ΔC
ΔD
Z1
θD
C θC
D
Z2 Z3
基本结构
结点角位移的数目=刚结点的数目=附加刚臂的数目 独立结点线位移的数目=附加链杆的数目
B
15i 16
6
0(2)
位移法方程实质上平衡方程 33
2i
3i/2Z2=1
A
D
2i
k 21
FQ BA
FQ CD
3i 2
B
C k22
FQBA
FQCD
3i
i2
3i/2
k 22
i
3i 4
3i 16
15i 16
B i
0
FQ BA
3i 4
C FQCD i
3i 2
M1
3i 4
A
FQ CD
3i 16
3i/2
D 3i/4 26
4
B
C F2P
3kN/m 3kN/m
16
皮肌炎图片——皮肌炎的症状表现
▪ 皮肌炎是一种引起皮肤、肌肉、 心、肺、肾等多脏器严重损害的, 全身性疾病,而且不少患者同时 伴有恶性肿瘤。它的1症状表现如 下:
▪ 1、早期皮肌炎患者,还往往伴 有全身不适症状,如-全身肌肉酸 痛,软弱无力,上楼梯时感觉两 腿费力;举手梳理头发时,举高 手臂很吃力;抬头转头缓慢而费 力。
位移法知识讲解PPT127页
❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖
支位位无位位等位
座 移 动
移 法 计
移 法 之
侧 移 、 有
移 法 之
移 法 基
截 面 直
移 法
和 温 度 改
算 对 称 结
直 接 平 衡
侧 移 刚 架 算
典 型 方 程
本 未 知
杆 的 杆 端
基 本 概
变构法例法量力念
1
§7-1 位移法的基本概念
1、超静定结构计算的总原则: 欲求超静定结构先取一个基本体系,然后让基本体系在受力
X2
l
A
-
l 6EI
X1
l 3EI
X2
l
B
-
6i l
- 6i l
12i l 2
1
QABXXMM12QBAABBA2224ElElii-II6AMAli22422Aii-ABBB6li--66BBiiA--llX123l32=2i1ll(119()/2l)
几种不同远端支座的刚度方程
(1)远端为固定支座
为减少基本未知量,这里仍然隐含梁或刚架不考虑轴向变形这 一假设。
2
位移法基本思路
简例:求各杆轴力。
✓ 图(a)所示,选取竖向位移Δ为基本未知量
✓ 图(b)所示,已知轴向位移ui,则,
(a)
a
a
a
a
2a
12 345
(b)
A i
Ai
li
B
ui
(c)
B
B
o
x
FN1
FN 5
y
B
FP
B
FN i
(d)
B
ui sini
位移法——位移法的概念
加约束 →求内力 →建立平衡方程 →求位移 →求内力
拆
合
拆
第 七 章 位移法
§7-2 等截面直杆的转角位移方程
1. 杆端弯矩的表示方法和正负号规定:
表示方法:双下标 如 : M AC , M AB 等 前一个下标表示近端,另一个下标表示远端。
转角: 结点转角——顺时针为正
杆端转角——顺时针为正
杆端相对线位移---使杆轴顺时针转为正
M AC M AB
qA
A
Aq A M AB = 3iq A
M BA = 0
B
FP C
M AC
=
4iq A
FPl 8
MCA
=
2iq A
FPl 8
由 MA = 0 得:
7iq A
FPl 8
=0
4.求内力
q = FPl A 56i
A
FP C
EI
L
EI
B
3 FP l
56
LF/2P
L9/2FPl 56
M AB
m
弯矩: 杆端——顺时针为正
AC
结点——逆时针为正
当结点上有荷载时,仍以顺时针为正
B
2. 杆端力与杆端位移的关系 ——建立杆端力与杆端位移和荷载之间关系 即:由杆端位移求杆端力
3. 转角位移方程 ——建立杆端力与杆端位移和荷载之间关系
单跨超静定梁在荷载、温改和支座移动共同作用下
x
M
AB
=
4i A
=
3iq A
=
3 56
FP L
M BA = 0
M (kN.m)
= F L MAC
=
4iq A
FPl 8
结构力学-位移法
DA柱:
MA 0
FQDA
1 4
(M DA
M
AD )
D C
FQDA
MDA
1 4
(3i D
1.5i EH
)
MAD
0.75iD 0.375iEH
A
E
FQEB
MBE
B 28
2kN/m
EB柱 MB 0
FQEB
1 4
M BE
242 4
1 4
(1.5i EH
4)
4
0.375iEH 3
14kN
D C
M BA
3i1 h1
M DC
3i2 h2
M FE
3i3 h3
32
3)建立位移法方程并求解
求各柱剪力。
FQAB
M BA h1
3i1 h12
k1
FQCD
M DC h2
3i2 h22
k2
FQEF
M FE h3
3i3 h32
k3
FP A
h1
E
C
FQAB
FQCD
FQEF
h2 h3
MBA
ql 2 8
M
F AB
ql 2 8
q
BA
B
l
M
F BA
ql 2 8
BB
q
M
F AB
ql 2 8
AA
杆端弯矩顺时针方向为正!
21
§7-3 无侧移刚架的计算
刚架内部结点无线位移,只有角位移。 基本未知量:内部结点的角位移。
8kN/m
Bi
i
A
4m
Di
i
C
4m
第7部分位移法
sini sin2 i
P
EAi li
sin2 i
P
P
EAi li
sin2 i
位移法基本作法小结:
(1)基本未知量是结点位移; (2)基本方程的实质含义是静力平衡条件; (3)建立基本方程分两步——单元分析(拆分)求得单元刚度方程,整体
分析(组合)建立位移法基本方程,解方程求出基本未知量;
k211 + k222 +F2P =0………..(2)
6i 1.5 i
4
k21 3 i
0
4
3i
k22
16
k11=10i
k21= -1.5i
k12= -1.5i
15 k22 16 i
F1P 4kN`·m
B
4kN·m
A
MP
位移法方程:
C
F2P
F1P 0
4
-6
F2P
0
D
F1P=4kN·m F2P=-6kN
C
1)在可动结点上附加约束,限制其
位移,在荷载作用下,附加约束上
产生附加约束力;
2)在附加约束上施加外力,使结构 发生与原结构一致的结点位移。
B
分析:
1)叠加两步作用效应,约束结构与原结构的荷载特征及位移特征完 全一致,则其内力状态也完全相等;
2)结点位移计算方法:对比两结构可发现,附加约束上的附加内力 应等于0,按此可列出基本方程。
k11 k12 ...... k1n
k
21
k 22
......
k
2
n
...... ...... ...... ......
结构力学-第7章-位移法习题答案
EA=∞ E
EA=∞ F
EI
2EI EI
A
B
C
6m
6m
解:(1)确定基本未知量 一个线位移未知量,各种 M 图如下
7- 34
(2)位移法典型方程
r11Z1 R1p 0
(3)确定系数并解方程
r11
4 243
EI , R1p
Fp
4 243
EIZ1
Fp
0
Z1
243 4EI
(4)画 M 图
(d)
E
F
EA
EA
A
B
FP aa
C EI1=∞
2a
D
FP a
解:(1)确定基本未知量 一个线位移未知量,各种 M 图如下
2a
7- 35
(2)位移法典型方程
r11Z1 R1p 0
(3)确定系数并解方程
r11
2 5
EA / a, R1p
6 5
Fp
2 5
EA a
Z1
6 5
Fp
0
Z1
3a EA
(4)求最终弯矩图
7- 41
(d)
l
E q
GB
D
ql F
EI=常数
A
C
l 2
l
l
l
解:(1)确定基本未知量 两个位移未知量,各种 M 图如下
7- 42
(2)位移法典型方程
r11Z1 r12Z2 R1 p 0 r21Z1 r22Z2 R2 p 0
(3)确定系数并解方程
r11
四川大学结构力学第7章
F
F
F
θ3
F
θ1
θ2
Δ2
F M
Δ1
F M
F
A E
C
F M AE A
F
BF
A
E
BF
D
F
F
B
M AE A
D
D
θ1
F
B
D
F
A
B
C
FRB
B
C
F DE
F
G
DE
F RB
M CB C
DE
G
F
G
FRB
M CB C
θ1 DE
F
G
由平衡条件建立位移法方程
16i1
6i l
1
ql 2 8
0
(1)
M CD
FX 0, FQCA 0
M CA
B FQCA
M CA
M AC l
6i l
1
12i l2
1
C
D
6i l
1
12i l2
1
0
例2、用位移法分析图示结构
10kN.m
20kN/m
B 2EI
40kN
E D 2EI
4m EI
EI
C
A
4m
2m
2m
❖ 解:1、确定基本未知量
20kN/m
40kN
10kN.m θ2
E
θ1 B
2i
D
2i
结构力学 第七章 位移法
表示等截面直杆杆端力与杆端位移及杆上荷载间关系的表达式
B A
Δ
6i F M AB l 6i F M BA 2i A 4i B M BA l 6i 6i 12i F F QAB A B 2 FAB l l l M AB 4i A 2i B
B
4i
1
2i
6i l
12i
l
6i
3i
l
6i
0
l2
θ =1
B B
3i
3i l
l
2
1 θ =1
B
3i
i
l
0
A
-i
0
三 等截面直杆的载常数 由荷载作用所引起的杆端力(固端力)
单跨超静定梁简图
q A
↓↓↓↓↓↓ ↓↓↓↓↓↓ ↓↓
mAB
B
mBA
ql 2 12
Pl 8
ql 2 12
Pl 8
位移法方程实质上平衡方程
Z1
D i A 2i E
Z2
C 2i
i EI l
4m
EI
i B
A
B
4m
2m
2m
位移法基本体系
解:1 确定位移法基本体系 2 列位移法方程 k11Z1+ k12Z2+ F1P=0 k21Z1+ k22Z2+ F2P=0
3 计算系数和自由项 Z1=1
4i 4i D i8i A 2i 8i 2i E 2i i B C
M AB 2i B
M BC ql 2 4i B 12
ql 2 ql 2 ql 2 4i 96i 12 24
第7章 位移法
A
M
F AB
MF BA
0
⑤
B
l
A
A i=EI/l M AB 4iA
MBA 2iA
⑥
BD
l i=EI/l A
M
AB
M BA
6i l
D
⑦
B
D
l
i=EI/l A
M AB M BA 0
14
四、说明:
⑴杆件的线刚度 i 应为杆件的抗弯刚度EI 除以杆件长度l,即: i=EI/l 。
⑵转角位移方程中杆端位移若为负应以负值代入以获得杆端弯矩.
⑶固端弯矩表在应用时,应随实际杆件所受荷载,其固端弯矩
作相应变化。
q
q
M
F AB
ql 2 8
A
BA
l
l
B
B
B
M
F BA
ql 2 8
q
q
A
M
F AB
ql 2 8
A
M
F AB
ql 2 8
固端弯矩表 P230表7-1
15
⑷补充固端弯矩表
l
l
3ql2/32
C
中点
方法二 基本体系解法(附加约束法)
6
Ex:位移法作图示连续梁的M图。
A
方法二 附加约束法
⑴构造基本结构确定基本未知量B=D1
⑵建立位移法方程
A
F1 k11D1 F1P 0
⑶作 M1, M图P
⑷求系数和自由项
A
k11 6i,F1P
⑸解方程
D1
第七章位移法
二. 荷载作用下求固端弯矩 单跨超静定梁仅由荷载作用产生的杆端弯矩和杆端力,叫固 F F F F 端弯矩和固端剪力 M AB , M BA和FQAB , FQBA 只与荷载形式有关的常数,叫载常数。为了便于运用,将其 数值列于表7-1中。 在已知荷载和支座位移作用下,杆端内力的一般公式: 1) 两端固定梁的杆端弯矩和杆端剪力:
+ 12
∆ l2
2)列平衡方程:
∑M ∑F
θA =
3FP l 25FP l ,∆ = 16i 96i
2
A
= 0, M AB + M AC + M AD + M AE = 0
x
= 0, FQAC = 2 FP
∆ F l 11iθ A − 6i − P = 0 l 2 − 6i θ A + 12i ∆ = 2 F P l l2
θ3
△7
θ4
θ5 △8
θ6
θ1 △5 θ3
θ2 EA θ4
△7 △6
△1 △2
等截面杆件杆端内力( §7-2 等截面杆件杆端内力(M和FQ)
方向规定: ●1 方向规定: 杆端M和杆端FQ, 都以对杆端顺时针转向为正;对结点或支座 而言,弯矩以逆时针为正。 结点转角θA、θB以顺时针转向为正,杆件两端相对线位移也 以顺时针转向为正。
3FPl/28 FQBA
M AB + M BA FQAB = FQBA = − l 3 FP l FP + 328 l 9 56 =− = − FP l 56
FQBC = M BC FP 3FP FP 17 + = + = FP l 2 28 2 28
3FPl/28 FQBC
位移
第七章 位移法第一节 位移法的基本概念力法和位移法是超静定结构受力分析的两种基本方法。
力法是分析超静定结构的最基本且历史悠久的一种方法,早在19世纪末就已在各种超静定结构的分析中得到应用,随着钢筋混凝土结构的问世,大量高次超静定刚架的出现,用力法计算时,由于其基本未知量的增多,计算起来十分麻烦。
于是,20世纪初又在力法计算的基础上建立了位移法。
一、位移法的基本概念在力法计算中,我们是取结构的多余约束反力作为基本未知量,并按照位移相等的条件首先将他们求解出来,然后再利用静力平衡条件进一步求出结构中的其它的内力、反力和位移。
然而,结构在一定的外因作用下,结构的内力与位移之间,具有恒定的关系,即:确定的内力只与确定的位移相对应。
因此,在分析超静定结构时,也可以把结构中的某些位移作为基本未知量,首先将这些位移求解出来,然后,再据此计算结构的内力。
这种以某些结点位移作为基本未知量而进行超静定结构求解的方法,便称为是位移法。
这就是力法和位移法则的基本区别之一。
下面先用一个简例来说明位移法的基本概念与解题要点。
如图7-la 所示超静定刚架,在荷载F 作用下,刚架将发生图中虚线所示的变形,刚结点1处的两端均发生相同的转角位移Z 1。
虽然在结点1处还有微小的线位移,但是,对于受弯杆件来说,通常都略去杆件轴向变形和剪切变形的影响,且认为弯曲变形是微小的,因而可假定结构中各杆两端之间的距离在变形前后仍保持不变,因而结点1处没有线位移(结构分析中常常引用这一假定)。
在图示刚架中,由于固定支座2和固定铰支座3处都不能产生移动,而1结点与2、3两结点之间的距离又保持不变,因此,1结点处没有线位移而只有角位移Z 1。
图7-1图中所示刚架,是由两根杆件组成的,现在我们先对每根杆件进行研究。
如果我们将刚结点1看作为固定支座,则12杆可视为是一根两端固定的单跨超静定梁,其上除了受到荷载F 的作用外,在固定支座1处还发生了转角位移Z 1(图7-lb);同理,13杆则可视为是一端固定一端铰支的单跨超静定梁,而在固定端1处发生了转角Z 1(图7-lc)。
7.位移法(1)
MAB
F FQAB
由平衡条件求杆端剪力FQAB 和FQBA :
EI
A
l
M
B
0, FQABl M AB M BA 0
M AB M BA FQAB l 6i 6i 12i A B 2 l l l
B
MBA
F FQBA
l (1) M BA 2i A 4i B 6i l 6i 6i 12i FQAB FQBA A B 2 (2) l l l M AB 4i A 2i B 6i
M AB 4i M BA 2i 6i F QAB l
刚度矩阵中的系数称为刚度系数,刚 度系数是只与杆件尺寸和材料性质有 关的常数,又称为形常数。 弯曲杆件刚度矩阵
2i 4i 6i l
将上式写成 矩阵形式:
M BE 4 M EB 3 B 3 B 4 3 2 B 1.5 B 4
M CD 3 C
M CF 4 1 C 2 C 2 1 2 C C 2
⑵ 远端为固定铰支座 MAB
A
因B = 0,代入(1)式可得 M AB 4i A 6i l (7 8) M BA 2i A 6i l 因MBA = 0,代入(1)式可得
EI l
M AB 3i A 3i
l
(7 9)
⑶ 远端为滑动支座 MAB
2、位移法计算刚架的基本思路 F M
P
A
C
AB
M AB
A
FP
C
A
ALeabharlann AAqB
结构力学第七章位移法
结构力学第七章位移法1.引言结构力学是研究结构受力、变形和稳定性的力学分支。
在结构力学中,位移法是一种重要的分析方法,用于求解结构的变形和应力分布。
2.位移法的基本原理位移法是基于以下两个基本原理:(1)弹性体的受力状态可通过满足平衡条件来确定;(2)位移场的连续性条件,即位移场在结构内部要处处连续,边界上要满足给定的边界条件。
3.位移法的基本步骤位移法的基本步骤如下:(1)建立结构的受力模型,包括结构的材料性质、几何形状和边界条件等;(2)选取适当的位移函数形式,以确定位移场;(3)利用平衡方程和满足位移场连续性条件的边界条件,求解未知的位移和受力分布;(4)利用位移和受力分布计算结构的变形和应力分布。
4.位移法的应用位移法广泛应用于各种结构的力学分析,特别是对于复杂的非线性和不规则结构,位移法是一种常用的分析方法。
以下是一些常见的应用:(1)梁的挠曲分析:位移法可以用来求解梁的挠曲问题,通过选取合适的位移函数形式,可以得到梁的弯曲形状和弯矩分布。
(2)柱的稳定性分析:位移法可以用来求解柱的稳定性问题,通过选取合适的位移函数形式,可以得到柱的稳定性临界载荷和稳定形状。
(3)桁架结构的分析:位移法可以用来求解桁架结构的强度和刚度,通过选取合适的位移函数形式,可以得到桁架结构的内力和变形。
(4)地基基础的分析:位移法可以用来求解地基基础的变形和应力分布,通过选取合适的位移函数形式,可以得到地基基础的沉降和周边土体的应力分布。
5.位移法的优缺点位移法作为一种结构力学的分析方法,具有以下优点:(1)位移法适用于各种结构的力学分析,可以求解复杂的非线性和不规则结构问题;(2)位移法具有较强的适用性和灵活性,可以根据实际情况选取不同的位移函数形式;(3)位移法的计算步骤相对简单,易于实现。
然而,位移法也存在一些缺点:(1)位移法需要选取适当的位移函数形式,这对分析结果的准确性有较大影响;(2)位移法的计算过程较为繁琐,需要手动推导和求解方程组,耗费时间和精力。
第七章 位移法
位移,编号为Z1;另
外结点A、B、C有一
个独立水平线位移,编
号为Z2,基本未知量
a图
和基本结构见图(b)。
b图
基本结构在外荷载q单
独作用下引起的弯矩
图,记为MP图,见图
(C)。它引起附加 刚臂和附加链杆的反
c图
力矩和反力,分别用
R1P、R2P(图C)
基本结构在Z1=1及
d图
Z2=1单独作用下产
生的弯矩图,称为
因此位移法分析中应解决的问题有以下几方面:
1、确定杆端内力与杆端位移及荷载之间的函数关系
2、确定结构中哪些结点位移作为基本未知量。
3、如何建立求解基本未知量的位移法方程式。
7.2等截面直杆的形常数和载常数
对单跨超静定杆件分析是位移法分析的基础。通 常有三种基本杆件类型:两端固定杆件;一端固定、 另一端铰支座杆件;一端固定、另一端定向支座杆件。
对于具有n个独立结点位移的结构则可建立n个方程如下
r11Z1 r12 Z 2 r1n Z n R1P 0 r21Z1 r22Z 2 r2n Z n R2P 0 rn1Z1 rn2 Z 2 rnn Z n RnP 0
第七章
超静定结构的解法
——位移法 (Displacement Method)
7.1位移法基本概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)求解未知力,将超静定结构化为 静定结构。
核心是化未知为已知
位移法第一种基本思路
图示各杆长度为 l ,EI 等于常数,分布集度q,
集中力FP ,力偶M .如何求解?
M
q
Δ
FFP P
FP FP
力法未知数 个数为3,但 独立位移 未知数只
第二种基本思路
图示各杆长度为 l ,EI 等于常数,分布集度q,
集中力FP ,力偶M .如何求解?
以A 点转角做
M
q
Δ
FP FP
基本未知量,设
为 .在A 施加
限制转动的约 束,以如图所示
FFP P
体系为基本体 系(基本结构的
定义和力法相
仿).
根据两图结点平衡
第二种基本思路
可得附加约束反力
利用“载常数”可作 利用“形常数”可作
FP x
y
在线性小变形条件下,由叠加原理可得
M
AB
4i A
2i B
6i l
AB
MF AB
M
BA
4i B
2i A
6i l
AB
MF BA
转角位移方程(刚度方程)
Slope-Deflection (Stiffness) Equation
其中: i EI 称杆件的线刚度。
l
MF AB
,
M
F BA
为由荷载和温度变化引起的 杆端弯矩,称为固端弯矩。
同理,另两类杆的转角位移方程为
A端固定B端铰支
M AB
3i A
3i l
AB
MF AB
A端固定B端定向
M AB
i A
MF AB
M BA
i A
MF BA
A
B
位基
移本
法单
A
B
中跨
的梁
超静定单跨梁的力法结果(1)
形=形常数
பைடு நூலகம்载=载常数
形
形
载
表示要熟记!!!
超静定单跨梁的力法结果(2) 载 载 载
超静定单跨梁的力法结果(3) 载
第七章 位移法的基本原理
(Fundamentals of Displacement Method)
已有的知识:
(1)结构组成分析;
(2)静定结构的内力分析和位移计算;
(3)超静定结构的内力分析和位移计算 力法;已解得如下单跨梁
结果。
回顾力法的思路:
(1)解除多余约束代以基本未知力,确 定基本结构、基本体系;
基本思路
典型方程法:仿力法,按确定基本未知量、基本结构,
研究基本体系在位移和外因下的“反应”,通过消除基 本体系和原结构差别来建立位移法基本方程(平衡)的 上述方法。
rZ R 0
平衡方程法:利用等直杆在外因和杆端位移
下由迭加所建立杆端位移与杆端力关系(转角
位移)方程 F rZ F F
由结点、隔离体的杆端力平衡建立求解位移 未知量的方法。
有一(A 点
转角,设为
).
位移法第一种基本思路
利用转角位移 方程可得:
M AD M
M AC
3i
ql 2 8
M AB
4i
FP l 8
M AE
i
FP l 2
在此基础上,由图示结点平衡得 M 0
第一种基本思路
位移法思路(平衡方程法)
以某些结点的位移为基本未知量 将结构拆成若干具有已知力-位移(转角-位移) 关系的单跨梁集合 分析各单跨梁在外因和结点位移共同作用下 的受力 将单跨梁拼装成整体 用平衡条件消除整体和原结构的差别,建立 和位移个数相等的方程 求出基本未知量后,由单跨梁力-位移关系可 得原结构受力
载 载
1
超静定单跨梁的力法结果(4) 载 形 形 载
超静定单跨梁的力法结果(5) 载 载 载
超静定单跨梁的力法结果(6) 载
载 载 载
超静定单跨梁的力法结果(7) 载
形 载
载
超静定单跨梁的力法结果(8) 载 载 载 载
超静定单跨梁的力法结果(9) 载
2
载 载 载
超静定单跨梁的力法结果(10) 载 载
图示荷载弯矩图
图示单位弯矩图
第二种基本思路
位移法思路(典型方程法)
以位移为基本未知量,先“固定”(不产 生任何位移)
考虑外因作用,由“载常数”得各杆受 力,作弯矩图。
令结点产生单位位移(无其他外因), 由“形常数” 得各杆受力,作弯矩图。
两者联合原结构无约束,应无附加约束 反力(平衡).
列方程可求位移。
基本思路
两种解法对比:
典型方程法和力法一样,直接对结构按统一格式处 理。最终结果由迭加得到。
平衡方程法对每杆列转角位移方程,视具体问题建 平衡方程。位移法方程概念清楚,杆端力在求得位移 后代转角位移方程直接可得。
位移法方程:
两法最终方程都是平衡方程。整理后形式均为:
rZ R 0
单跨超静定梁在荷载、温改和支座移动 共同作用下
载