挤出成型原理及工艺
铝合金挤出成型工艺
铝合金挤出成型工艺铝合金挤出成型工艺是一种常用的金属加工方法,通过挤压加工铝合金材料,可以制造出各种形状复杂的铝合金制品。
在工业生产中,铝合金挤出成型技术被广泛应用于汽车、航空航天、建筑、电子等领域。
本文将深入探讨铝合金挤出成型工艺的原理、应用及发展趋势。
1.铝合金挤出成型的原理及过程详解铝合金挤出成型,是一种将加热后的铝合金坯料通过压力作用,使其进入模具中,并在模具的形状引导下,产生塑性变形,最终获得所需截面形状和尺寸的加工方法。
在挤压过程中,铝合金坯料在模具内受到一定压力的作用,从而产生塑性流动,使其顺利地填充模具,形成所需的产品形状和尺寸。
此过程涵盖了加热、压力施加、塑性变形、冷却等多个环节,对工艺参数和设备要求较高。
2.铝合金挤出成型的优势及重要性铝合金挤出成型相较于其他加工方法,具有显著的优势。
首先,该方法能够生产出具有高精度和高复杂度的产品,满足各种客户需求,具有较强的市场竞争力。
其次,铝合金挤出成型可以提高材料利用率,减少废料产生,有利于节约资源和保护环境,降低生产成本。
此外,该方法还能够在提高产品质量和降低生产成本方面取得明显成效,有助于企业提高经济效益。
3.铝合金挤出成型在国内外的发展现状及趋势随着我国经济的快速发展,铝合金挤出成型技术在航空航天、交通运输、建筑、电子等领域得到广泛应用。
近年来,我国铝合金挤出成型技术取得了显著的进步,不仅实现了高速、高效、高精度的生产,还大幅提高了材料利用率。
在国际市场上,铝合金挤出成型技术也备受关注,各国纷纷加大研发力度,以期在激烈的市场竞争中占得先机。
4.铝合金挤出成型技术的发展方向及挑战未来,铝合金挤出成型技术的发展方向将主要包括以下几个方面:提高生产效率,降低能耗;提高产品精度,实现精细化生产;研发新型模具材料,提高模具寿命;发展绿色制造,减少废弃物产生。
然而,在技术发展过程中,铝合金挤出成型面临着一系列挑战,如设备研发、工艺优化、环保要求等。
挤出成型工艺—挤出成型原理(塑料成型加工课件)
二、挤出成型过程
既有混合过 程,也有成 型过程
树脂原料 加热黏流 塑料熔体
助剂
混合过程
加压 挤出连续体
一定规格的 制品
切割 成型连续体
冷却定型
成型过程
以 管 材 挤 出 原料 成型为例
挤出连续体
熔体
定型连续体
制品
三、挤出成型特点
1. 可以连续化生产,生产效率高。 2. 设备自动化程度高,劳动强度低。 3. 生产操作简单,工艺控制容易。 4. 原料适应性强,适用大多数热塑性树脂和少数热固性 树脂。 5. 可生产的产品广泛,同一台挤出机,只要更换不同的 辅机,就可以生产不同的制品。
挤出成型
挤出成型特点
一、挤出成概述
挤出成型又叫挤出模塑,是利用加热使塑料熔融塑化成 为流动状态,然后在机械力(螺杆或柱塞的挤压)的作用下, 使熔融塑料通过一定形状的口模制成具有恒定截面连续的制 品,适用于绝大部分热塑性树脂和部分热固性树脂。
除了用于挤出造粒、染色、树脂掺和等共混改性,还可用于塑 料薄膜、网材、带包覆层的产品、截面一定、长度连续的管材、板 材、片材、棒材、打包带、单丝和异型材等塑料制品的生产。
料表面接近或达到黏流温度,表面发黏。
要求:输送能力要稍高于熔融段和均化段。
2. 压缩段 (熔融段)
位置:螺杆中部一段。 作用:输送物料,使物料受到热和剪切作用熔 融塑化,并进一步压实和排出气体。 特点:物料逐渐由玻璃态转变为粘流态,在熔 融段末端物料为粘流态。 要求:螺杆结构逐渐紧密,使物料进一步压实。
(3)横流(环流) 由垂直于螺棱方向的分速
度引起的使物料在螺槽内产生翻 转运动。对生产能力没有影响, 但能促进物料的混合和热交换。
(4)漏流 由机筒与螺棱间隙处形成的
挤出成型工艺及模具设计_课件
二、挤出成型机头概述
1. 挤出机头的作用 使熔融塑料由螺旋运动变为直线运动; 产生必要的成型压力,保证制品密实; 使塑料通过机头得到进一步塑化; 通过机头口模以获得截面形状相同、连续的塑料制品。
10
2. 机头的分类
按机头的几何形状分类 圆环机头:管材机头、棒材机头、造粒机头等 平板状机头:平模机头、板材机头、异型材机头等
内装置电热器时导入导线。
38
2. 管材的定径和冷却
为了使管材获得较低的表面粗糙值、准确的尺寸和几何 形状,管材离开口模时,必须立即进行定径和冷却,由定 径套来完成。
有两种方法: ❖ 外径定型 ❖ 内径定型
我国塑料管材标 准大多规定外径为基 本尺寸,故国内较常 用外径定型法。
39
(1)外径定型 适用于管材外径尺寸精度要求高、外表面粗糙度要求低的
按机头进出料方向分类 水平直通式机头 直角式机头
按机头的用途分类 吹膜机头、管材机头、板材机头、棒材机头、异型材 机 头等。
11
3.挤出机头的组成(以直通式管材机头为例)
口模 芯棒 分流器和分流器支架 机头体 过滤网和过滤板 连接部分 定径套
12
① 口模和芯棒 ② 挤出模的主要成型零件,口模用来成型塑件的外表
41
(2)内径定型
通过定径套内的循环水冷却定型 特点:保证管材内孔圆度,操作方便;宜用于直角式挤管机头
和旁侧式挤管机头。
适用:内径尺寸要求准确、圆度要求高的情况。
1-管材 2-定径芯模 3-芯棒 4-回水流道
5-进水管 6-排水管 7-进水嘴
42
定径芯长度:与管材壁厚及牵引速度有关,一般取80~ 300mm,牵引速度和壁厚大时,取大值。反之,取小值。 定径芯直径:一般比管材内径直径大2%~4%,始端比终端 直径大,锥度为0.6:100~1.0:100。
混凝土挤出成型方法
混凝土挤出成型方法一、引言混凝土挤出成型方法是一种较为先进的建筑材料生产技术,具有高效、环保、节能、节材等优点。
本文将详细介绍混凝土挤出成型方法的原理、工艺流程、生产设备和注意事项。
二、混凝土挤出成型原理混凝土挤出成型技术是利用泵送装置将混凝土通过模具挤出,形成所需的混凝土构件,其原理主要包括以下几个方面:1.混凝土挤出成型采用高压泵,将混凝土输送到模具中,利用模具的形状和尺寸限制混凝土的流动方向和形态,使其在模具内部不断挤压、密实,最终成型。
2.混凝土挤出成型过程中,混凝土的流动性和压缩性是关键,必须保证混凝土的流动性和压缩性良好,才能保证挤出成型的质量和效率。
3.混凝土挤出成型技术还需要配备专门的控制系统,控制混凝土的流量、压力、速度等参数,以保证挤出成型的准确度和稳定性。
三、混凝土挤出成型工艺流程混凝土挤出成型的工艺流程主要包括原料准备、混凝土配制、模具设计、挤出成型和后处理等环节。
1.原料准备:混凝土挤出成型所用原料主要包括水泥、砂、石子、添加剂等,需要进行准确的称量和混合,以确保混凝土的配合比例和质量。
2.混凝土配制:将混凝土原料按照一定比例混合,加水搅拌成糊状物,保证混凝土的均匀性和流动性。
3.模具设计:根据工程需要和混凝土特性,设计合适的模具形状和尺寸,以实现所需的混凝土构件。
4.挤出成型:利用高压泵将混凝土输送到模具中,通过模具的形状和尺寸限制混凝土的流动方向和形态,使其在模具内部不断挤压、密实,最终成型。
5.后处理:将挤出成型的混凝土构件进行表面处理、养护等,确保其质量和使用寿命。
四、混凝土挤出成型生产设备混凝土挤出成型生产设备主要包括高压泵、模具、控制系统等。
1.高压泵:高压泵是混凝土挤出成型的核心设备,其作用是将混凝土输送到模具中,保证混凝土的流量、压力、速度等参数,以实现挤出成型。
2.模具:模具是混凝土挤出成型的重要组成部分,其作用是限制混凝土的流动方向和形态,使其在模具内部不断挤压、密实,最终成型。
挤出成型工艺与模具结构讲解
1.加热阶段
经过炼胶处理的胶料原料由挤出机料斗加入料 筒后,在料筒温度和螺杆旋转、压实及混合作用下, 由固态的粒状或粉状转变为具有一定流动性的均匀 熔体。
2019年6月9日星期日
5
® 信誉至上 义气争荣 自强不息 善待天下
挤出成型的工艺过程
2.挤出成型阶段
均匀加热的胶料熔体随螺杆的旋转向料筒前端移动, 在螺杆的旋转挤压作用下,通过一定形状的口模而 获得与口模形状一致的型材。
影响挤出速度的因素有很多,如料筒的结构、 螺杆转速、加热冷却系统的结构和塑料的性能等。 在挤出机结构和胶料品种及胶条类型确定的情况下, 挤出速度与螺杆转速有关,因此调整螺杆转速是控 制挤出速度的主要措施。
2019年6月9日星期日
11
® 信誉至上 义气争荣 自强不息 善待天下
挤出成型工艺参数
4.牵引速度
通过牵引的胶条可根据使用要求在切割装置上 裁剪或在卷取8
® 信誉至上 义气争荣 自强不息 善待天下
挤出成型工艺参数
1.温度
温度是挤出成型中的重要参数之一。严格地说, 挤出成型温度应该是指料筒中的胶料熔体温度,但 是该温度在很大程度上取决于料筒和螺杆的温度, 所以,在实际生产中为了检测方便,经常用料筒温 度近似表示成型温度。
挤出成型胶条的截面形状均取决于挤出模具, 所以,挤出模具设计的合理性,是保证良好的挤出 成型工艺和挤出成型质量的决定因素。
2019年6月9日星期日
13
® 信誉至上 义气争荣 自强不息 善待天下
挤出成型模具的结构组成
1.机头
机头是挤出塑料制件成型的主要部件,它的作 用是将来自挤出机的熔融塑料由螺旋运动转变为直 线运动,并进一步塑化,产生必要的成型压力,保 证塑件密实,从而获得截面与口模形状相似的型材。 下面以典型的管材挤出成型机头为例,介绍机头的 结构组成。
挤出工艺简介课件
挤出工艺在智能制造领域的应用前景
随着智能制造的不断发展,挤出工艺 在智能制造领域的应用前景越来越广 阔。通过引入智能化技术,可以实现 自动化控制、在线监测、远程维护等 功能,提高生产效率和产品质量。
VS
未来,挤出工艺在智能制造领域的应 用将更加广泛,需要加强技术研发和 产业合作,推动智能制造产业的快速 发展。
压力参数
压力控制
压力是挤出工艺中的另一个关键参数。它影响材料的流 动和塑化效果,以及产品的密度和尺寸精度。压力过低 可能导致塑化不良或产品缺陷;压力过高则可能导致材 料分解或设备损坏。
压力波动
压力波动对产品质量和设备稳定性有很大影响。保持压 力稳定是提高产品质量和延长设备使用寿命的重要措施 。
速度参数
挤出工艺简介
目录
• 挤出工艺概述 • 挤出机的基本结构 • 挤出工艺流程 • 挤出工艺参数 • 挤出工艺的发展趋势与未来展望
01
挤出工艺概述
挤出工艺的定义
挤出工艺是一种塑料加工技术,通过 加热和加压,将塑料原料从挤出机口 模中挤出成连续的型材或管材。
该工艺涉及将塑料原料加入挤出机, 经过加热、熔融、混合、塑化等过程 ,最后通过口模形成所需形状的制品 。
输送速度控制
根据生产需求和设备性能,调整输送 速度,确保原材料能够稳定、均匀地 进入下一道工序。
原材料的加热与塑化
加热方式选择
根据原材料的特性和工艺要求,选择合 适的加热方式,如电热、燃气热、微波 加热等。
VS
塑化效果评估
通过检测塑化后的原材料流动性和外观, 评估塑化效果是否达到工艺要求。
原材料的计量与混合
高分子材料挤出工艺的发展趋势包括提高生产效率、降低能耗、提高制品性能等方面,以满足不断变 化的市场需求。
挤出成型的原理和工艺流程
挤出成型的原理和工艺流程
挤出成型是一种常见的塑料加工工艺,通过将加热熔化的塑料挤压至模具中,使其快速冷却凝固并形成所需产品。
本文将介绍挤出成型的原理和工艺流程。
原理
挤出成型的原理基于塑料的热塑性特性,塑料在一定温度下能够熔化并具有流动性。
在挤出机中,塑料颗粒被加热熔化成为熔体,然后通过螺杆将熔体加压,推动熔体流经模具口向外挤出。
随着熔体在模具中迅速冷却,最终形成固化的塑料制品。
工艺流程
1.塑料颗粒加料:首先将塑料颗粒放入挤出机的料斗中,经过加热系统加热,使其
熔化成为熔体。
2.挤出过程:熔化的塑料经过螺杆的推动,被压入模头中,经过交变的高压和高温
使得熔体形成流态,流经挤出模的成型孔。
3.冷却固化:熔体在挤出口挤压而出后,迅速接触冷却水或风冷,使其迅速冷却凝
固。
4.切割成型:冷却后的塑料制品经过切割装置,按照所需长度进行切割,最终形成
成型的塑料制品。
工艺优势
挤出成型具有以下优点:
•高效率:生产速度快,生产成本相对较低。
•适用性广泛:可以加工各种形状和规格的塑料制品。
•制品质量稳定:产品表面光滑,尺寸精确。
•生产自动化程度高:无需过多人工干预,生产稳定可靠。
应用领域
挤出成型广泛应用于塑料制品生产行业,如管道、板材、型材、薄膜、包装材料等领域。
其高效率、高质量的特点使其成为塑料制品生产中不可或缺的一环。
总的来说,挤出成型作为一种常见的塑料加工工艺,通过简单高效的操作流程,可以生产出质量稳定的塑料制品,在工业生产中发挥着重要作用。
挤出成型的原理和特点
挤出成型的原理和特点挤出成型是一种广泛应用于工程领域的塑料加工方法。
这种加工方式通过将塑料颗粒或颗粒加热并推送到经过设计的模具中,形成所需的产品形状。
挤出成型具有独特的原理和特点,使其成为许多行业中首选的生产方式之一。
原理挤出成型的原理基本上是通过热塑性材料的熔融挤出,将其压入模具腔室,然后通过模具的固化过程,使塑料在特定形状的腔室内冷却,并形成所需的产品形状。
一般来说,挤出成型的原理可以归纳为以下几个步骤:1.加热和熔化:将塑料颗粒或颗粒引入挤出机器,通过加热和混合,使其熔化成为可塑形的熔融物料。
2.挤出:将熔融物料推送到模具中的腔室中,通过螺旋挤出机构,保持一定的挤出压力使其形成连续的产品形状。
3.冷却和固化:一旦熔融物料填充到模具中,会通过模具的冷却系统快速冷却和固化,以便产品能够保持所需的形状和尺寸。
特点挤出成型作为一种塑料生产技术,具有许多独特的特点,使其被广泛应用于各种行业中:1.高效生产:挤出成型不仅可实现大规模生产,而且生产速度快,能够迅速满足市场需求。
2.产品设计自由度高:挤出成型可根据客户需求设计不同形状的模具,实现产品个性化定制。
3.成本较低:与其他成型工艺相比,挤出成型的生产成本相对较低,适用于大批量生产。
4.材料适用性广泛:挤出成型适用于多种热塑性材料,如聚乙烯、聚丙烯等,具有很好的材料适应性。
5.成品质量稳定:挤出成型可实现生产过程的自动化控制,保证成品的稳定质量。
总的来说,挤出成型是一种高效、灵活、经济、适用性广泛的塑料加工方法。
无论在日常生活用品、汽车零部件、建筑材料还是工业用途等领域,挤出成型都扮演着重要的角色,为各行业的发展提供了可靠的支持。
塑料挤出成型技术论文
塑料挤出成型技术论文塑料挤出成型技术是一种常见的塑料加工方法,广泛应用于工业生产中。
本文将对塑料挤出成型技术进行详细介绍,包括其原理、工艺特点以及应用领域。
一、原理塑料挤出成型是指将塑料颗粒通过加热软化后,通过挤出机的螺杆将软化塑料挤出成型具有一定截面形状的产品的一种加工方法。
挤出机将熔融塑料物料压入模具中成形,然后冷却固化,最终得到所需的塑料制品。
二、工艺特点1.高效率:塑料挤出成型技术生产效率高,一台挤出机可以连续24小时工作,生产效率高,适合大批量生产。
2.成型精度高:通过挤出机的螺杆和模具的设计,可以实现复杂形状的产品挤出成型,保证产品的尺寸精准。
3.节能环保:相比其他塑料加工方法,挤出成型过程中能耗较低,且废料少,符合环保要求。
4.适用范围广:塑料挤出成型技术适用于各种类型的塑料,包括聚乙烯、聚丙烯、聚氯乙烯等,应用领域广泛。
三、应用领域1.建筑行业:塑料挤出成型技术在建筑行业中得到广泛应用,如生产塑料管道、门窗框等建筑材料。
2.包装行业:塑料挤出成型技术可生产各种塑料包装制品,如塑料瓶、塑料薄膜等,应用于食品、日用品等包装行业。
3.交通运输:塑料挤出成型技术也用于生产汽车配件、船舶构件等交通运输领域的制品。
4.家居用品:塑料挤出成型技术可制造家具、厨房用具等家居用品,广泛应用于家居生活领域。
综上所述,塑料挤出成型技术作为一种常见的塑料加工方法,具有高效率、成型精度高、节能环保等特点,被广泛应用于建筑、包装、交通运输、家居用品等领域,为各行业提供了高质量的塑料制品。
随着科技的不断进步,塑料挤出成型技术将在未来有更广阔的发展空间,为塑料制品的生产带来更多创新和可能性。
尼龙66挤出成型工艺条件
尼龙66挤出成型工艺条件一、引言尼龙66是一种热塑性高分子材料,具有良好的物理性能和热稳定性,被广泛应用于各个领域。
挤出成型是尼龙66加工的一种常用工艺,本文将详细介绍尼龙66挤出成型的工艺条件。
二、挤出成型原理挤出成型是通过将塑料熔融后挤出成型口,然后通过模具冷却固化得到所需形状的工艺。
尼龙66的挤出成型过程主要包括塑料熔融、挤出、冷却和固化四个阶段。
三、工艺条件1. 温度控制:尼龙66的熔融温度一般在250℃-280℃之间,具体的熔融温度需要根据材料的牌号和厂家提供的工艺参数进行调整。
熔融温度过低会导致熔体流动性不佳,熔融温度过高则容易引起材料分解和气泡等缺陷。
2. 挤出速度:挤出速度是指塑料在挤出机进料段的进料速度,一般控制在10-30mm/s之间。
挤出速度过快会导致熔体温度下降过快,挤出速度过慢则会导致熔体在挤出机内停留时间过长,容易引起熔体分解和降解。
3. 模具温度:模具温度是指模具表面的温度,一般控制在80℃-100℃之间。
模具温度过低会导致产品冷却速度过快,容易引起产品表面缩孔和收缩不均匀;模具温度过高则容易引起产品收缩不足和变形。
4. 冷却方式:常用的冷却方式有自然冷却和水冷却两种。
自然冷却速度较慢,适用于产品尺寸较小、精度要求较高的情况;水冷却速度较快,适用于产品尺寸较大、生产效率要求较高的情况。
5. 挤出压力:挤出压力是指挤出机内塑料的压力,一般控制在50-100MPa之间。
挤出压力过低会导致挤出速度不稳定,产品表面光洁度差;挤出压力过高则容易引起产品收缩不均匀和内部应力过大。
6. 挤出机参数:挤出机的螺杆直径、螺杆长径比、螺杆转速等参数也会对挤出成型的工艺条件产生影响。
一般来说,螺杆直径较大、螺杆长径比较小、螺杆转速较低的挤出机适用于尼龙66的挤出成型。
四、注意事项1. 要保证挤出机的清洁,避免杂质和污染物的混入,以免对挤出成型的产品质量产生影响。
2. 挤出过程中应定期检查模具和挤出机的磨损情况,及时更换损坏的部件,以确保挤出成型的稳定性和产品的质量。
挤出成型工艺
02 挤出成型设备
(1)主机: ·单螺杆挤出机
·双螺杆挤出机
02 挤出成型设备
(2)机头:机头的型孔(口模)决定制品断面的形状,不 同的制品可以更换
03 挤出成型工艺优、缺点
优点:1、能加工绝大多数热塑性复合材料及部分热固性复合材料; 2、生产过程连续,自动化程度高,生产效率高; 3、工艺易掌握及产品质量稳定等; 4、生产线占地面积小,且生产环境清洁。 缺点:只能生产线型制品。
原材料(FRTP粒料)
03
03 原材料
树脂
增强纤维
树脂:绝大部分热塑性塑料及部分热固性塑料, 如PVC、PS、ABS、PC、PE、PP、PA、环氧 树脂、酚醛树脂及丙烯酸树脂
增强纤维:玻璃纤维
长纤维:纤维长度等于粒料长度(3mm~13mm ) 树脂及助剂 增强粒料 增强纤维 短纤维 :纤维和树脂无规混合(0.25mm~0.5mm)
挤出成型工艺
组员:刘畅 郝均雨 陈兵
目录
CONTENTS
01 03
挤出成型原理
02 工艺流程、设备及优、缺点
原材料
04 主要应用
挤出成型原理
01
01 挤出成型原理
将塑料加热呈粘流状态,加 压使之通过口模,而成为截 面与口模形状相仿的连续体, 再通过冷却,使其具有一定
几何形状和尺寸的塑料由粘
流态变为高弹态,最后定型 为玻璃态,得到所需要的制 品。
纤维平行于粒料长度排列;
04
主要应用
04 主要应用 01 生产制备管材
04 主要应用 02 生产制备棒材
04 主要应用 03 生产制备异型断面型材
04 主要应用 04
其他应用(板材、塑料薄膜、打包带、网材等)
挤出工艺简介
3.挤出速度
• 挤出速度是指在单位时间内,从挤出机头 的口模中挤出塑化好的物料量或塑件长度。它 反映挤出生产能力的高低。
• 影响挤出速度的因素有很多,如料筒的结 构、螺杆转速、加热冷却系统的结构和塑料的 性能等。在挤出机结构和塑料品种及塑件类型 确定的情况下,挤出速度与螺杆转速有关,因 此调整螺杆转速是控制挤出速度的主要措施。
4.牵引速度
• 从机头和口模中挤出的成型塑件,在 牵引力作用下将会发生拉伸取向,拉伸 取向程度越高,塑件沿取向方位上的拉 伸强度也越大,但冷却后长度收缩也大。 通常,牵引速度可与挤出速度相当,两 者的比值称为牵引比,一般应略大于1。
挤出成型产品设计要点
请做过挤出成型产品的同仁现身说法ห้องสมุดไป่ตู้传 授宝贵经验。
B.挤出成型的特点
• (1)连续成型,生产量大,生产率高,成本 低。
• (2)塑件截面恒定,形状简单。 • (3)塑件内部组织均衡紧密,尺寸比较稳定
准确。 • (4)适用性强,除氟塑料以外,几乎能加工
所有热塑性塑料和部分热固性塑料。
• 挤出成型的工艺过程
1.塑化阶段
• 经过干燥处理的塑料原料由挤出机料 斗加入料筒后,在料筒温度和螺杆旋转、 压实及混合作用下,由固态的粒状或粉状 转变为具有一定流动性的均匀熔体,这一 过程称为塑化。
• 通过牵引的塑件可根据使用要求在切割装 置上裁剪(如棒材、管材、板材、片材等)或 在卷取装置上绕制成卷(如薄膜、单丝、电线 电缆等)。
挤出成型工艺参数
1.温度
挤出成型的基本原理及应用
挤出成型的基本原理及应用1. 挤出成型的基本原理挤出成型是一种常见的塑料加工工艺,通过将塑料料料加热到熔化状态,然后将其挤压通过模具,使其形成所需形状的工件。
其基本原理如下:1.塑料熔融:将塑料原料通过加热的方式进行熔融处理,使其变为可流动的熔融塑料物料。
2.挤出机构:熔融的塑料物料经过挤出机构的螺杆等装置,通过机械作用被推送到模具中。
3.挤出模具:挤出模具是用来形成所需形状的工件的装置。
通过挤出机构的压力,塑料物料被挤压通过模具的孔口,形成工件的截面形状。
4.冷却固化:挤出后的热塑性塑料物料通过空气或水冷却,迅速降温并固化,使其保持所需的形状。
挤出成型的基本原理是通过控制塑料物料的熔融状态、挤出机构的作用以及模具的形状,实现将熔融的塑料物料挤压成所需形状的工件。
2. 挤出成型的应用挤出成型技术在各个领域有着广泛的应用,下面列举其中几个常见的应用领域及实例:2.1 塑料制品挤出成型技术在塑料制品领域应用广泛。
通过该技术可以生产出各种形状的塑料制品,如管道、板材、薄膜、条材等。
例如,家庭用水管、塑料薄膜包装、塑料门窗等产品都是通过挤出成型技术制造的。
2.2 橡胶制品挤出成型技术也适用于橡胶制品的生产。
通过挤出成型,可以生产出橡胶密封条、橡胶管、橡胶密封圈等产品。
这些橡胶制品在汽车、建筑等行业都有广泛的应用。
2.3 金属制品除了塑料和橡胶制品外,挤出成型技术还可以应用于金属制品的生产。
通过金属的加热和挤压,可以制造出各种形状的金属材料,如铝型材、铜管等。
这些金属制品在建筑、航空等领域有着重要的应用价值。
2.4 食品加工挤出成型技术还在食品加工领域得到了应用。
通过该技术可以制造出各种形状的食品,如面条、膨化食品等。
通过挤出成型技术,可以将食材挤出成形,使其具有特定的形状和口感。
3. 挤出成型的优势挤出成型技术具有以下几个优势:•生产效率高:挤出成型是一种连续生产工艺,可以实现高效的批量生产。
•成本较低:挤出成型所需的设备和模具相对较简单,成本较低。
挤出成型的工作原理
挤出成型的工作原理
挤出成型是一种常见的塑料加工工艺,其工作原理主要是通过加热和加压使塑料材料软化,然后通过挤出机将软化的塑料挤出成型,最终得到所需形状的制品。
在工业生产中,挤出成型被广泛应用于生产各种塑料制品,如管材、板材、型材等。
挤出成型的过程可以简单地分为以下几个步骤:
1.塑料颗粒预处理:首先将塑料颗粒放入挤出机的料斗中,通过传送带或其他方式
将颗粒输送到挤出机内部。
2.加热和软化:当塑料颗粒被输送到挤出机内部后,通过加热系统将塑料颗粒加热
至软化温度。
软化的塑料颗粒在挤出机内部形成连续的熔融塑料。
3.挤出头与模具:挤出机将软化的塑料送入挤出头中,挤出头内部有一个或多个成
型孔,通过调整挤出头和模具的形状,可以生产出不同形状的塑料制品。
4.加压挤出:软化的塑料被送入挤出头后,通过挤出机的螺杆和加压系统对塑料进
行加压,使其通过挤出头的成型孔挤出。
5.冷却固化:挤出后的塑料制品通过空气或水冷却系统降温,使其迅速固化,并得
到最终的形状和尺寸。
通过以上步骤,挤出成型就完成了整个加工过程。
挤出成型具有以下几个特点:•高效率:挤出成型的生产效率较高,可以实现连续生产,适用于大批量生产。
•成型精度高:通过精确控制挤出机的参数,可以获得形状精密、尺寸稳定的制品。
•适用性广:挤出成型不仅适用于塑料加工,还可用于金属、橡胶等材料的加工。
总的来说,挤出成型是一种常见且实用的塑料加工工艺,通过加热和加压软化塑料,再通过挤出机挤出成型,可以生产出各种形状的塑料制品。
在工业生产中,挤出成型技术的应用范围广泛,为生产制造业带来了便利和效益。
1。
陶瓷挤出成型工艺
陶瓷挤出成型工艺陶瓷挤出成型工艺是一种常见的陶瓷制造技术,它通过挤压陶瓷材料将其塑造成所需的形状和尺寸。
该工艺具有高效、精确和可重复性等优势,广泛应用于陶瓷制品的生产过程中。
陶瓷挤出成型工艺的基本原理是利用挤压机将陶瓷材料挤出成所需的形状。
一般来说,陶瓷材料需要经过粉末制备、成型和烧结等工序。
在挤出成型的过程中,陶瓷粉末被输送到挤压机的进料口,然后通过螺杆的旋转和挤压,使陶瓷材料通过模具的孔道,最终形成所需的形状。
陶瓷挤出成型工艺相比于传统的陶瓷成型工艺具有许多优势。
首先,挤出成型可以实现大规模的生产,提高生产效率。
其次,挤出成型可以实现复杂形状的制造,满足不同产品的需求。
此外,挤出成型还能够实现陶瓷材料的节能和环保制造,减少原材料的浪费。
在陶瓷挤出成型工艺中,关键的一步是选择合适的陶瓷材料。
陶瓷材料通常具有高硬度、高耐磨性和高温稳定性等特点,因此在选择材料时需要考虑产品的使用环境和要求。
常用的陶瓷材料包括氧化铝、氧化锆和硼氮化硅等。
这些材料具有良好的机械性能和化学稳定性,适合挤出成型工艺的应用。
挤出成型的模具设计也是关键的一步。
模具的设计需要考虑产品的形状和尺寸要求,以及材料的流动性和挤出压力等因素。
合理的模具设计可以提高产品的质量和生产效率。
陶瓷挤出成型工艺的应用范围非常广泛。
在陶瓷制品的生产中,挤出成型可用于制造各种陶瓷管道、陶瓷砖块和陶瓷管件等产品。
此外,挤出成型还可以应用于陶瓷电子元件、陶瓷纤维和陶瓷薄膜等领域。
需要注意的是,在陶瓷挤出成型过程中,还需要对成型后的陶瓷产品进行烧结处理。
烧结是将陶瓷制品加热到一定温度,使其颗粒结合成致密的块体的过程。
烧结过程中,需要控制温度和时间等参数,以确保产品的质量和性能。
总的来说,陶瓷挤出成型工艺是一种高效、精确和可重复性的陶瓷制造技术。
通过合理选择陶瓷材料、优化模具设计和控制烧结过程,可以实现陶瓷制品的高质量生产。
这种工艺在陶瓷制品制造行业中具有重要的应用前景,将为陶瓷产品的发展和创新提供有力支持。
陶瓷挤出成型工艺
陶瓷挤出成型工艺陶瓷挤出成型工艺是一种常用的陶瓷制造工艺,通过挤压陶瓷材料使其成型,广泛应用于陶瓷制品的生产中。
本文将介绍陶瓷挤出成型工艺的原理、优势以及应用领域。
一、原理介绍陶瓷挤出成型工艺是将陶瓷粉末与一定比例的添加剂混合均匀,形成可挤出的糊状物料。
糊状物料通过挤出机的螺杆挤压,经过模具挤出成型,形成所需的陶瓷制品。
整个过程中,需要控制挤出速度、挤出压力以及模具的温度等参数,以保证成品的质量。
二、工艺优势1.高效节能:陶瓷挤出成型工艺通过挤压形成制品,相比传统的手工成型或模压成型,减少了能源的消耗,提高了生产效率。
2.形状复杂度高:由于挤出成型的特点,可以制造出各种形状复杂的陶瓷制品,如管道、花瓶、复杂结构的陶瓷零件等。
3.材料利用率高:挤出成型不仅可以利用普通陶瓷粉末,还可以利用陶瓷废料进行再利用,降低了资源浪费。
4.产品质量稳定:通过挤出成型工艺,可以控制成型过程中的温度、压力等参数,确保产品质量的稳定性,提高了产品的合格率。
三、应用领域1.建筑陶瓷:陶瓷挤出成型工艺可以制造出各种形状的建筑陶瓷制品,如瓷砖、瓷片等,用于室内装饰、外墙装饰等领域。
2.陶瓷管道:挤出成型可以制造出各种规格的陶瓷管道,用于化工、电力、石油等工业领域。
3.陶瓷零件:挤出成型工艺可以制造出各种复杂结构的陶瓷零件,广泛应用于电子、机械等领域。
总结:陶瓷挤出成型工艺是一种高效、灵活、环保的陶瓷制造工艺。
它通过挤压陶瓷材料使其成型,制造出各种形状复杂的陶瓷制品。
该工艺具有高效节能、形状复杂度高、材料利用率高、产品质量稳定等优势,并广泛应用于建筑陶瓷、陶瓷管道、陶瓷零件等领域。
通过陶瓷挤出成型工艺的应用,可以满足不同领域对陶瓷制品的需求,推动陶瓷工业的发展。
塑料的挤出成型工艺
Ⅱ 若在螺帽上加一定压力,再旋转螺丝,则 螺帽就会随螺丝旋转而前移。
(2) 成型时,塑料与螺杆的摩擦力应小于塑 料与料筒的摩擦力,也即螺杆的光洁度应大于料筒 的光洁度。否则,塑料只能抱着螺杆空转打滑不能 前移。
整理ppt
25
图3-6-7 螺槽中固体输送的理想模型(a) 和固体塞移动速度的矢量图(b)
主要适用于聚酰胺、聚乙烯等结晶高聚物。 c. 鱼雷头型螺杆:
特点:计量段没有螺纹,剪切作用大,塑化效果好。 (但易使物料分解)
适用范围:PS、PE、PA、PMMA、PDVC等。
整理ppt
13
Ⅱ. 等深不等距螺杆: A. 计量段h3太大,塑化效果不好。 原因:螺槽越深,物料受到的剪切作用越小。 B. 传热面积减小,不利于传热、塑化。 原因:因为螺距变小了。 C.生产率Q降低,料流不稳定。 D. 适用于L/D大的小型挤出机。 原因:因加料段d较大,螺杆强度高。
整理ppt
18
2 双螺杆挤出机主要参数 (1)螺杆直径/mm: 国外多在28--340 mm。 (2)螺杆长径比: 整体式:过去多为7—18,有增大趋势。 组合式:可达36:1以上。 (3)螺杆的转向:同向(混料),异向(生产 制品)。 (4)螺杆承受的扭矩 (5)推力轴承的承载能力 (6)驱动功率、加热功率和加热段数。
则 Va=l×N。由图3-6-8中螺杆的几何关系可求出: πD=b1+b2= l·cotθ+l·cotφ= l(cotθ+ cotφ)
整理ppt
30
πD 所以 l =
cotθ+cotφ
(3-6-3)
πDN
πDNtanθ·tanφ
塑料成型工艺第六章-挤出成型
适用的树脂材料: 绝大部分热塑性塑料及部分热固性塑料,如
PVC、PS、ABS、PC、PE、PP、PA、丙烯酸 树脂、环氧树脂、酚醛树脂及密胺树脂等 应用:
塑料薄膜、网材、带包覆层的产品、截面一定、 长度连续的管材、板材、片材、棒材、打包带、 单丝和异型材等等,还可用于粉末造粒、染色、 树脂掺和等。
面灰暗无光泽等。
努力方向是尽可能减少或消除这种波动和温差。
产生这种波动和温差的原因:
如加热冷却系统不稳定,螺杆转数的变化等, 但 以螺杆设计的好坏影响最大。
普通三段螺杆存在的问题
1.熔融效率低 熔融段熔体与固体床共同存在于一个螺槽中,减
小了料筒壁与固体床的接触面积;固体床随着熔融 解体,部分碎片进入熔体中,很难从剪切获得热量, 这样,固体床不能彻底熔融;另外,已熔物料与料 筒壁接触,从料筒壁和熔膜处获取热量,温度继续 升高过热。 2.压力、温度和产量波动大
的物料量或塑件长度。它表示挤出能力的高低。 4.牵引速度
牵引速度与挤出速度相当,可略大于挤出速度。 牵引— 比— 牵引速度与挤出速度的比值,其值 等于或大于1。
§6.3 挤出管材成型工艺
一、挤出管材工艺控制要点
1.温度的控制
挤出成型温度是促使成型物料塑化和塑料熔体流动的 必要条件。对物料的塑化及制品的质量和产量有着十分 重要的影响。
分离型(屏障型)螺杆
原理:在螺杆熔融段再附加一条螺纹,将原来一 个螺纹所形成的螺槽分为两个,将已熔物料和未 熔物料尽早分离,促进未熔料尽快熔融。
销钉型螺杆 物料流经过销钉时,销钉将固体料或未彻底熔 融的料分成许多细小料流,这些料流在两排销钉 间较宽位置又汇合,经过多次汇合分离,物料塑 化质量得以提高。
料筒外部加热器提供的热量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
挤出成型原理及工艺
挤出成型是目前比较普遍的塑料成型方法之一,适用于所有的热塑性塑料及部分热固性塑料,可以成型各种塑料管材,棒材,板材、电线电缆及异形截面型材等,还可以用于塑料的着色、造料和共混等。
挤出型材的质量取决于挤出模具,挤出模具主要是由机头和定型装置两部分组成,其结构设计的合理性是保证塑件成型质量的决定性因素。
一挤出成型原理及特点
1.挤出成型原理
挤出成型主要用于成型热量性塑料,其成型原理如图2-4所示(以管材的挤出为例)。
首先将粒状或粉状塑料加入料斗中,在挤出机旋转螺杆的作用下,加热的塑料沿螺杆的螺旋槽向前方输送。
在此过程中,塑料不断地接受外加热和螺杆与物料之间、物料与物料之间及物料与料筒之间的剪切磨擦热,逐渐熔融呈粘流态,然后在挤压系统的作用下,塑料熔体通过具有一定形状的挤出模具(机头)口模以及一系列辅助装置(定型、冷却、牵引、切割等装置),从而获得截面形状一定的塑料型材。
图2-4挤出成型原理
1-挤出机料筒;2-机头;3-定径装置;4-冷却装置;5-牵引装置;6-塑料管;7-切割
装置
2.挤出成型特点
挤出成型所用的设备为挤出机,结构比较简单,操作方便,应用非常广泛,所成型的塑件均为具有恒定截面形状的连续型材。
挤出成型的特点如下:
1)生产过程连续,可以挤出任意长度的塑件,生产效率高。
2)模具结构也较简单,制造维修方便,投资少、收效快。
3)塑件内部组织均衡紧密,尺寸比较稳定准确。
4)适应性强,除氟塑料外,所有的热塑性塑料都可采用挤出成型,部分热固性塑料也可采用挤出成型。
变更机头口模,产品的截面形状和尺寸可相应改变,这样就能生产出各种不同规格的塑件。
二挤出成型工艺
热塑性塑料的挤出成型工艺过程可分为三个阶段。
第一阶段是塑料原料的塑化
塑料原料在挤出机的机筒温度和螺杆的旋转压实及混合作用下,由粉准或粒状变成粘流态物质。
第二阶段是成型
粘流态塑料熔体在挤出机螺杆螺旋力的推动作用下,通过具有一定形状的机头口模,得到截面与口模形状一致的连续型材。
第三阶段是定型
通过适当的处理方法,如定径处理、冷却处理等,使已挤出的塑料连续型材固化为塑件。
1.原料的准备
挤出成型用的大部分塑料是粒状塑料,粉状塑料用得较少。
因为粉状塑料含有较多的水分,会影响挤出成型的顺利进行,同时影响塑件的质量,例如塑件出现气泡、表面灰暗无光、皱纹、流浪等,其物理性能和力学性能也随之下降,而且粉状物料的压缩比大,不利于输送。
当然,不论是粉状物料还是粒状物料,都会吸收一定的水分,所以在成型之前应进行干燥处理,将原料的水分控制在0.5%以下。
原料的干燥一般是在烘箱或烘房中进行,此外,在准备阶段还要尽可能除去塑料中存在的杂质。
2.挤出成型
将挤出机预热到规定温度后,启动电机带动螺杆旋转输送物料,同时向料筒中加入塑料。
料筒中的塑料在外加热和剪切磨擦热作用下熔融塑化。
由于螺杆旋转时对塑料不断推挤,迫使塑料经过滤板上的过滤网,再通过机头成型为一定口模形状的连续型材。
初期的挤出塑件质量较差,外观也欠佳,要调整工艺条件及设备装置直到正常状态后才能投入正式生产。
在挤出成型过程中,要特别注意温度和剪切磨擦热两个因素对塑件质量的影响。
3.塑件的定型与冷却
热塑件塑件在离开机头口模以后,应该立即进行定型和冷却,否则,塑件在自重力作用下就会变形,出现凹陷或扭曲现象。
在大多数情况下,定型和冷却是同时进行的,只有在挤出各种棒料和管材时,才有一个独立的定径过程,而挤出薄模、单丝等则无需定型,仅通过冷却即可。
挤出板材与片材,有时还需要通过一对压辊压平,也有定型与冷却作用。
管材的定型方法可用定径套,也有采用能通水冷却的特殊口模来定径的,但不管那种方法,都是使管坯内外形成压力差,使其紧贴在定径套上而冷却定型。
冷却一般采用空气冷却或水冷却,冷却速度对塑件性能有很大影响。
硬质塑件(如聚苯乙烯、低密度聚乙烯和硬聚氯乙烯等)不能冷却得过快,否则容易造成残余内应力,影响塑件的外观质量;软质或结晶型塑件则要求及时冷却,以免塑件变形。
4.塑件的牵引、卷取和切割
塑件自口模挤出后,会由于压力突然解除而发生离模膨胀现象,而冷却后又会发生收缩现象,从而使塑件的尺寸和形状发生改变。
此外,由于塑件被连续不断地挤出,自重越来越大,如果不加以引导,会造成塑件停滞,使塑件不能顺利挤出。
因此,在冷却的同时,要连续均匀地牵引塑件。
牵引过程由挤出机辅机之一的牵引装置来完成。
牵引速度要与挤出速度相适应,一般是牵引速度大于挤出速度,以消除塑件尺寸的变化,同时对塑件进行适当的拉伸以提高质量。
不同塑件的牵引速度不同。
通常单丝的牵引速度可以快些,其原因是牵引速度大,塑件的厚度和直径减小,纵向抗断裂强度增高,扯断伸长率降低。
挤出硬质塑件的牵引速度则不能大,通常需将牵引速度规定在一定范围内,并且要十分均匀,不然就会影响其尺寸均匀性和力学性能。
通过牵引的塑件根据使用要求在切割装置上裁剪(如棒、管、板、片等),或在卷取装置上绕制成卷(如单丝、电线电缆等)。
此外,有些塑件有时还需进行后处理,以提高其尺寸稳定性。
图2-5所示为常见的挤出工艺过程示意图。
图2-5常见的挤出工艺过程示意图
1-挤管机头;2-定型与冷却装置;3-牵引装置;4-切断装置;
5-片(板)坯挤出机头;6-碾平与冷却装置;7-切边与牵引装置
三挤出成型的工艺参数
挤出成型工艺参数包括温度、压力、挤出速度和牵引速度等,下面分别进行讨论。
1.温度
温度是挤出过程得以顺利进行的重要条件之一。
塑料从加入料筒到最后成为塑件经历了一个极为复杂的温度变化过程。
图2-6所示为聚乙烯的温度变化曲线,它是沿料筒轴线方向测得的。
由图2-6可知,料筒和塑料温度在螺杆各段是有差异的,要满足这种要求,料筒就必须有加热、冷却和温度调节等一系列装置。
一般来说,对挤出成型温度进行控制时,加料段的温度不宜过高,而压缩段和均化段的温度则可高一些,具体数值应根据塑料种类和塑件情况而定。
机头和口模温度相当于注射成型时的模温,通常机头的温度必须控制在塑料热分解温度以下,而口模处的温度可比机头温度稍低一些,但应保证塑料熔体具有良好的流动性。
图2-6挤出成型温度曲线
1-料筒温度曲线;2-螺杆温度曲线;3-物料(PE)的最高温度;
4-物料(PE)的平均温度;5-物料(PE)的最低温度图2-6所示的温度曲线只是挤出过程中温度的宏观表示。
在实际的挤出过程中,即使是稳定挤出,每个测试点的温度还会随时间的变化而产生波动,并且这种波动往往具有一定的周
期性。
习惯上,把沿着塑料流动方向上的温度波动称为轴向温度波动。
另外,在沿着与塑料流动方向垂直的截面上,各点的温度值也是不同的,存在有径向温差。
上述的温度波动和温差,都会给塑件质量带来十分不良的后果,使塑件产生残余应力,各点强度不均匀,表面灰暗无光。
产生这种波动和温差的因素很多,如加热、冷却系统不稳定,螺杆转速变化等,但以螺杆设计和选用的好坏影响最大。
表2-8是几种塑料挤出成型管材、片材和板材等的温度参数。
表
挤出过程中,由于料流阻力增加,螺杆槽深度逐渐变浅,以及塑料熔体经过滤板、过滤网和口模时运动状态发生变化等产生阴碍,因而在沿料筒轴线方向,塑料内部建立起一定压力。
这种压力的建立是塑料经历物理状态的变化,得以均匀密实并得到成型塑件的重要条件之一。
和温度一样,压力随时间的变化也会产生周期性波动,这种波动对塑件质量同样有不利影响,如局部疏松,表面不平,弯曲等。
螺杆、料筒的设计,螺杆转速的变化,加热、冷却系统的不稳定都是产生压力波动的原因。
为了减少压力波动,应合理控制螺杆转速,保证加热和冷却装置的温度控制精度。
3.挤出速度
挤出速度是指单位时间内在机头和口模中挤出的塑化好的物料量或塑件长度,它表征着挤出生产能力的高低。
影响挤出速度的因素很多,如机头、螺杆和料筒的结构,螺杆转速,加热和冷却系统结构以及塑料的性能等。
在挤出机的结构和塑料品种及塑件类型已确定的情况下,挤出速度仅与螺杆转速有关,因此,调整螺杆转速是控制挤出速度的主要措施。
挤出速度在生产过程中也存在有波动现象,对产品的形状和尺寸精度有显著的不良影响。
为了保证挤出速度均匀,应设计与生产的塑件相适应的螺杆结构和尺寸,严格控制螺杆转速,严格控制挤出温度,防止因温度改变而引起挤出压力和熔体粘度变化而导致的挤出速度的波动。
4.牵引速度
挤出成型主要是生产长度连续的塑件,因此必须设置牵引装置。
从机头和口模中挤出的塑件,在牵引力作用下将会发生拉伸取向。
拉伸取向程度越高,塑件沿取向方位的拉伸强度也越大,但冷却后长度收缩也大。
通常情况下,牵引速度可与挤出速度相当。
牵引速度与挤出速度的比值称牵引比,其值必须等于或大于1。
不同塑件采用的牵引速度不同,通常挤出单丝的牵引速度可以快些;挤出硬质塑件的牵引速度则不能大,通常需将牵引速度定在一定的范围内,并且要十分均匀,不然就会影响塑件的尺寸均匀性和力学性能。
表2-9是几种塑料管材的挤出成型工艺参数。
表。