长模板PCR反应检测BCR-ABL融合基因 1999

合集下载

Bcr/abl融合基因在慢性粒细胞白血病中的检测方法及意义

Bcr/abl融合基因在慢性粒细胞白血病中的检测方法及意义

Bcr/abl融合基因在慢性粒细胞白血病中的检测方法及意义bcr/abl 融合基因是慢性粒细胞白血病(CML)发病的分子生物学基础,通过灵敏的检验方法检测此基因对CML的诊断、治疗和预测疾病复发等具有重要临床意义。

标签:bcr/abl 融合基因;慢性粒细胞白血病慢性粒细胞白血病(CML)是一种发生在造血干细胞的以粒系细胞慢性增殖为主要特征的恶性克隆性疾病,分子学水平上形成bcr/abl融合基因。

bcr/abl 融合基因的表达水平反映了患者体内白血病细胞的负荷量。

因此,精确检测bcr/abl融合基因的表达水平,对白血病的临床分型诊断、个体化治疗方案的制定、治疗效果监测、缓解后复发风险的估计和预防、干细胞移植后残留细胞的检测和早期干预治疗等方面具有重要的指导作用。

本文对bcr/abl融合基因的检测方法及意义进行综述。

1 Bcr/abl融合基因的检测方法1.1 Southern Blot和Western BlotSouthern 印迹即DNA印迹,可以对bcr/abl融合基因DNA重排进行分子生物学检测。

Southern Blot可使用从外周血或骨髓细胞提取的DNA对bcr/abl融合基因进行检测,不需要保持细胞的活力和所处周期,灵敏度约1~5%,多适用于科研而不是临床诊断[1]。

Western 印迹的原理类似Southern印迹,它是从混合蛋白质中区分并定量分析某种特殊蛋白质的重要手段[2-3]。

但由于不同蛋白质的电转移效率以及单抗的结合能力不同,Western印迹的敏感性和可重复性较差,其敏感性为0.5%~1%[4]。

另外该法操作繁琐、检测时间长,限制了其在临床上的应用。

1.2 常规RT-PCR1988年RT-PCR被首次应用于CML的bcr/abl基因的检测[5]。

在RT-PCR中,应用随机引物或abl特异引物,mRNA被反转录为cDNA,随后应用针对M-bcr 的bl或b2和abl的a2或a3的引物进行扩增,扩增产物在琼脂糖或聚内烯酰胺凝胶电泳中出现特异的条带,在典型的CML病例中,b3a2和b2a2扩增产物条带相差75bp。

血液学检查病例分析

血液学检查病例分析

ALL免疫分型
CD2 CD7 CD19 HLA-DR CD33
202X
CIICK HERE TO ADD A TITLE
单击添加副标题
血液学检查病例分析
病例 患者女性,35岁。乏力、腹胀、消瘦半年。查体:贫血貌,肝于右肋下1cm,脾于左肋下5cm;Hb:90g/L,WBC:152×109/L,分类以中、晚幼粒细胞为主,PLT:400×109/L,NAP积分降低。第1问:根据以上资料,诊断考虑为:
单击此处添加大标题内容
ITP骨髓象特点
骨髓增生明显活跃 红系和粒系比例、形态常无明显异常,合并出血时红系可增多 巨核细胞增多,伴成熟障碍
二、细胞免疫分型
即细胞免疫标记检测,是利用单克隆抗体及免疫学技术对细胞膜表面和/或细胞内存在的特异性抗原进行检测。 常用:流式细胞仪(FCM)
临床应用
识别不同系列的细胞
自身免疫性溶血性贫血
1
诊断标准:
临床:贫血、黄疸、肝脾肿大 网织红细胞增多; 骨髓增生象,以幼红细胞增生为主; Coombs试验阳性; 近4个月内无输血或特殊药物服用史。
2
巨幼细胞性贫血 诊断标准: 临床上有叶酸或维生素B12缺乏的病因和表现; 大细胞性贫血; 中性粒细胞核分叶过多(5叶>5%;见6叶); 骨髓呈典型的巨型改变(巨幼红>10%,粒、巨核系也有巨型改变),无其它病态造血表现。 血清叶酸<3ng/ml;红细胞叶酸<100ng/ml;血清维生素B12<100-140pg/ml。
Leukemia-1
白血病是造血系统的一种恶性肿瘤,其特征为造血组织中某一类血细胞过度增生,并浸润和破坏其它组织,骨髓和外周血中常有血细胞质和量的异常。 临床常有贫血、发热、出血和肝、脾、淋巴结肿大等表现。 根据自然病程及血细胞的分化程度而分急性、慢性。 根据白血病细胞类型不同而分为髓细胞性和淋巴细胞性。

BCR-ABL概述

BCR-ABL概述

继续使用相同的TKI药物 更换可替代的TKI药物 继续使用相同的TKI药物 继续使用相同的TKI药物或更换可替代的TKI药物
加大伊马替尼的使用量,最大可至800mg。(在没有可替代的TKI药物时) 更换可替代的TKI药物 更换可替代的TKI药物
加大伊马替尼的使用量,最大可至800mg。(在没有可替代的TKI药物时) 继续使用相同的TKI药物 更换可替代的TKI药物 更换可替代的TKI药物
ABL激酶区突变种类
伊马替尼耐药机制中,主要是BCR-ABL点突变,超过 90%,可分为4 类 :
在 ATP 结合位点形成突变( P-loop) 、 发生于激活环,阻止形成伊马替尼结合所需的构象激酶 发生于催化区 直接损害伊马替尼结合
NCCN推荐BCR-ABL激酶突变分析的检测规范
2%-5%的儿童 ALL 患者中。
BCR-ABL
• 根据BCR基因的断裂点不同,可分为 m-BCR(p190),M-BCR(p210),uBCR(p230)三种。
在30-50%的成人ph+的ALL,20-30% 儿童ph+的ALL病例中BCR/ABL融合基 因是p210型的。 60%的ph+的ALL患者的BCR-ABL融合 基因是p190型的 。 其中P230融合基因非常罕见。 p190刺激细胞增殖的能力比p210要 强,病情发展快、恶性程度更高,
e1a3
测序结果:
采用VCP化疗方案联合伊马替尼治 疗1个月后,BCR-ABL融合基因转阴, 进一步证实e1a3对TKI敏感。
e14a3和e19a2
伴不典型 BCR-ABL 融合基因 的CML发病率极低,酪氨酸 及酶抑制剂或 HSCT 都 可 以 取得疗效。
实例分析:e13a3

bcr-abl融合基因检测报告解读

bcr-abl融合基因检测报告解读

bcr-abl融合基因检测报告解读内容如下:
BCR-ABL 是一种融合基因,常见于慢性粒细胞白血病(CML)和一些急性淋巴细胞白血病(ALL)患者中。

以下是一份可能包含的BCR-ABL 融合基因检测报告解读:
1.样本信息:包括样本编号、样本类型、采样日期等信息。

2.试验方法:列出使用的实验方法和设备。

3.检测结果:列出BCR-ABL 融合基因的检测结果,通常包括定量和定性两个方面。

•定量:BCR-ABL 融合基因定量通常以百分比或比率的形式报告。

百分比是指白血细胞中BCR-ABL 融合基因所占的百分比,而比率是指BCR-ABL 融
合基因与正常基因的比值。

这些数字通常与参考值一起给出。

•定性:BCR-ABL 融合基因定性通常指是否检测到该基因。

如果检测到了,通常会给出检测到的融合点位置信息。

4.解释和建议:根据检测结果,可能提供相应的解释和建议,例如进一步检查、治疗
方案等。

对于CML 患者,检测结果通常用于评估治疗的疗效。

如果治疗后BCR-ABL 融合基因的定量结果低于特定的阈值,通常认为治疗有效。

需要注意的是,每个实验室可能会使用不同的检测方法和报告格式,因此具体的报告解读可能会有所不同。

如果您有任何疑问或需要进一步解释,应咨询医生或检测实验室的专业人员。

Bcr-Abl

Bcr-Abl

1.Bcr-Abl(1)关于Bcr-Abl的介绍及TKIBCR gene位于chromosome 22 的长臂上(22q11),是种十分复杂的分子,其表达产物具有许多功能的结构域,主要作用于2种信号通路,即磷酸化和GTP binding。

ABL gene 位于chromosome 9,其功能为非受体型酪氨酸激酶。

由于philadelphia chromosome translocation 而形成的BCR-ABL表达产物具有高度的酪氨酸激酶活性,即t(9;22)异常引导了chromosome 9和22之间的DNA交换,ABL的3’端从chromosome 9转移到chromosome 22上,并且将原本在chromosome 22上的BCR gene 切断,重新加入组合形成BCR-ABL嵌合基因。

Bcr-Abl 蛋白本身是一种高活性的酪氨酸激酶,可以消除对于生长因子的依赖,对于部分细胞内信号传递和信号分子有效,与生长因子受体相互作用,增强生长因子的表达,促进细胞的生长、增殖、转移等,从而引起癌症的发生,特别是CML。

这种异常的酶活化是对于Bcr-Abl来说是重要的致癌潜能。

[Figure1、2]Figure 1. The normal Bcr and Abl protei ns and the various aberrant Bcr-Abl counter parts.Functional sites in the Bcr pr otein include a serine and t hreonine ki nase domain in e xon 1, a central guanine e xchange factor (GEF) domain,and acar boxy-terminal guanosi ne triphos phatase–activating protei n (GA P) domain.Src hom ology-2(SH2)–binding sites are also prese nt in e xon 1. The Bcr-associated pr otein (Bap-1) interacts wit h the m ore distal of t hese sites. Growt h factor rece ptor–bound protein 2 (Grb-2) associates wit h t he proximalSH2-bi ndi ng site containi ng a phos photyr osine in position 177. A bl interacts with t he second and third S H2 bi nding sites. The GEF domain i nteractswith t he xeroderma pigme ntos um B (XPB) DNA repair protein. T he normal A bl protein contains three SH domains near the N-terminal. T he tyrosi neat position 393 (Y393) is the maj or site of autophosphorylation within the ki nase domain. Phe nylalanine 401 (F401) is highly conserve d in protei ntyrosi ne kinases contain i ng SH3 domains. The ce ntral area of t he pr otein has proline-rich regions (PXXP) capable of bindi ng to SH3 domains and anuclear localization signal (N LS). The carboxy-terminus contains DNA as well as G- and F-actin–bi nding domai ns, a nuclear e xport signal (NES), andnuclear localization si gnals.The phos phorylation sites by Atm, cdc2, and pr otein kinase C (PKC) are de picted.At the bottom of t he fi gure, various Bcr-Abl protei ns and their junction breakpoints are show n. Ragge d re d lines indi cate breakpoi nts in Bcr and Abl.Figure 2. p210-e ncoding Bcr-Abl signaling pathw ays.Bcr-Abl interacts with t he interleuki n-3 re cept orβ(c) s ubunit and constitutively i nduces its phosphorylation. Dow nstream signaling occurs indepe nde ntlyof ligand bi nding. A dapt or mole cules conne ct Bcr-Abl to Ras and PI-3 kinase pathways; t o f ocal adhesion comple xes (affe cted m olecules i ncl ude focaladhesion kinase [Fak], paxillin, and actin cyt oskeleton); and t o messe nger systems, s uch as Jak-Stat (Janus kinase si gnal trans ducer and activator oftrans cription) ki nases. Downstream effect ors invol ve mitogen-activated pr otein kinases(MA PKs) and survival proteins i nteracting with the Bcl-2family.GDP=guanosine diphos phate; GEF=guanine e xchange fact or; GT P=guanosine triphos phate; NES= nuclear export signal; N LS ? nuclearlocalization signal; PI-3 =phosphatidylinosital-3; SOS = son of sevenless; XPB= xeroderma pigme ntos um B.由于Bcr-Abl机制的已经被了解,很多作为Bcr-Abl inhibitor的药物被研制出来。

慢性粒细胞白血病BCR-ABL融合基因检测及其临床意义

慢性粒细胞白血病BCR-ABL融合基因检测及其临床意义
* 陕 西 省 自 然 科 学 研 究 计 划 项 目 (2014JM3 检 测 方 法 抽 取 患 者 骨 髓 或 者 静 脉 血 5. 0ml
加 人 装 有 E D T A K 2作 为 抗 凝 剂 的 试 管 中 ,混 匀 ,将标 本通过使用红细胞裂解液除去血液(骨髓 )中的红细 胞 ,获得白细胞;用 RNAprep p u re 血 液 总 R N A 提取 试剂盒从上步获得的白细胞沉淀中提取R N A 。将核 酸 荧 光 P C R 混 合 液 分 别 与 等 人 份 的 R T-P C R 酶混 合 ,震荡混匀数秒,3000r/m in 离 心 5s。将上述配制好 的体系置于P C R 管 中 ,然 后 将 提取好的R N A 、DEPCH 20 、对 照 品 、标 准 品 分 别 加 人 对 应 管 内 。反应管置 于 荧 光 P C R 仪 上 ,设 置 循 环 参 数 :45°C X 20 min — 95°C X 5 m in ,再按 95 °C X 15s— 58 °C X 30 s— 72 °C X 45 s ,循 环 4 5 次 ;单 点 荧 光 检 测 在 58°C 。利用荧光 信号的变化实时检测PCR扩增反应中每一个循环扩 增产物量的变化,通 过 C t值和标准曲线的分析对起始 模板进行定量分析。整个实验操作均严格按照操作规 范 进 行 ,同 时 做 内 参 ,阳 性 和 阴 性 对 照 ,均 在 控 。
bcrabl融合基因的表达水平反应了患者体内白血病细胞的负荷量精确检测bcrabl融合基因表达水平对白血病的临床分型诊断个体化治疗方案的制定治疗效果检测缓解后复发风险的估计和预防干细胞移植后残留细胞的检测和早期干预治疗等方面具有重要作用
陕西医学杂志2017年 3 月 第 46卷 第 3 期

2023-2024学年北京东城区一六六中高三(上)期中生物试题及答案

2023-2024学年北京东城区一六六中高三(上)期中生物试题及答案

2023北京一六六中高三(上)期中生物(考试时长:90分钟)班级:姓名:考查目标知识:必修一、必修二能力:理解,应用,思辨,创新,科学表述一、单选(20小题,共40分)1. 脂肪、葡萄糖和ATP的共性是()A. 均含有C、H、O、N、PB. 均在线粒体中被利用C. 均可以在细胞中大量储存D. 均为细胞的能源物质2. 光合作用强度受环境因素的影响。

车前草的光合速率与叶片温度、CO2浓度的关系如下图。

据图分析不能得出()A. 低于最适温度时,光合速率随温度升高而升高B. 在一定的范围内,CO2浓度升高可使光合作用最适温度升高C. CO2浓度为200μL·L-1时,温度对光合速率影响小D. 10℃条件下,光合速率随CO2浓度的升高会持续提高3. 下图为某遗传病的家系图,已知致病基因位于X染色体。

对该家系分析正确的是()A. 此病为隐性遗传病B. III-1和III-4可能携带该致病基因C. II-3再生儿子必为患者D. II-7不会向后代传递该致病基因4. 赫尔希和蔡斯的T2噬菌体侵染大肠杆菌实验证实了DNA是遗传物质,下列关于该实验的叙述正确的是()A. 实验需分别用含32P和35S的培养基培养噬菌体B. 搅拌目的是使大肠杆菌破裂,释放出子代噬菌体C. 35S标记噬菌体的组别,搅拌不充分可致沉淀物的放射性增强D. 32P标记噬菌体的组别,放射性同位素主要分布在上清液中5. 蚕豆根尖细胞在含3H标记胸腺嘧啶脱氧核苷的培养基中培养充足时间后,置于不含放射性标记的培养基中继续分裂,则第一次和第二次有丝分裂中期染色体的放射性标记分布情况是A. 第一次:每条染色体仅有1条染色单体被标记B. 第一次:半数的染色体含有被标记的染色单体C. 第二次:每条染色体仅有1条染色单体被标记D. 第二次:半数的染色体含有被标记的染色单体6. 真核细胞核仁染色质的铺展图呈现大树的形状(见下图),此结构是核仁内rRNA基因的DNA片段上进行转录的状况。

慢粒白血病患者 要定期做PCR检测

慢粒白血病患者 要定期做PCR检测

慢粒白血病患者要定期做PCR检测慢粒白血病(Chronic Myeloid Leukemia, CML)是一种骨髓性白血病,其中骨髓中的粒细胞发生异常增殖。

CML患者需要定期进行多种检查,其中PCR(聚合酶链反应)检测是一项重要的检测技术。

本文将详细介绍慢粒白血病患者为什么需要定期进行PCR检测以及PCR检测的原理和步骤。

慢粒白血病患者需要定期进行PCR检测的原因有以下几个方面。

首先,PCR可以帮助监测慢粒白血病的进展情况。

通过定期检测白血病细胞(BCR-ABL1融合基因)的存在和数量,可以评估患者的疾病状态以及治疗效果。

其次,PCR可以帮助判断治疗方案的调整时机。

如果PCR检测结果显示融合基因的数量明显增加,说明患者的疾病可能复发或进展,需要及时调整治疗方案来控制病情。

此外,PCR还可以检测患者是否存在耐药突变。

一些慢粒白血病患者在长期使用靶向治疗药物(例如伊马替尼)后,可能会产生耐药突变,导致治疗效果下降。

通过PCR检测,可以及早发现这些突变并及时调整治疗。

PCR(Polymerase Chain Reaction)是一种基于DNA模板的体外扩增技术,能够通过复制特定DNA片段的过程来扩增目标DNA序列。

PCR检测主要包括三个步骤:变性、退火和延伸。

首先是变性步骤。

在这一步,样本中的DNA双链被加热至95°C,使其变性成两条单链。

这种变性可以打断所有DNA链之间的氢键,使其解开成为两条单链。

接下来,将样本降温至50-60°C,使引物能够与目标DNA序列的互补链结合。

接下来是延伸步骤。

在这一步中,将DNA聚合酶(DNA polymerase)加入反应体系中,它能够识别引物与DNA模板的结合部位,并在引物的3'端引导下合成新的DNA链。

延伸过程需要在55-75°C下进行。

最后是退火步骤。

在这一步中,将反应温度降至37°C,使引物从目标DNA上退离下来,为下一轮PCR循环做准备。

BCR-ABL融合基因在慢性髓系白血病诊断及治疗中的意义

BCR-ABL融合基因在慢性髓系白血病诊断及治疗中的意义

BCR-ABL融合基因在慢性髓系白血病诊断及治疗中的意义刘雪梅;李丽梅;徐海芹;李玲;徐长荣【摘要】目的:评价 BCR - ABL 融合基因在慢性髓系白血病(CML)诊断及治疗中的临床意义。

方法用实时定量 RQ - PCR 方法动态监测48例 CML 的 BCR - ABL 融合基因,对所有患者进行微小残留病变(MRD)的动态监测,共128人次。

结果48例 CML 患者,47例 BCR - ABL 融合基因阳性。

服用甲磺酸伊马替尼患者融合基因总转阴率81.3%(39/48),转阴时间在用药后90~395 d 之间,中位数为210 d 。

结论BCR - ABL 融合基因动态监测对慢性髓系白血病患者诊断、治疗、病情监测及预后判断有重要临床意义。

%Objective To evaluation clinicalsignificance of detection of BCR /ABL fusion gene in diagnosis and treatment of chronic myeloidleukemia (CML) .Methods With real - time quantitative RQ - polymerase chain reaction (RQ - PCR) dynamic monitoring of 4 8 cases of CML BCR - ABL fusion gene ,for all patients with tiny residual disease (MRD) dynamic monitoring ,a total of 1 2 8 people .Results 4 8 patients with CML , 4 7 cases of BCR - ABL fusion gene positive .Taking imatinib mesylate in patients with fusion gene always overcast rate was 8 1 .3 % ,(3 9 /4 8 ) ,turn the time between 9 0 - 3 9 5 d after medication ,the median of 2 1 0 d . Conclusion The dynamic monitoring ofBCR - ABL fusion gene has important clinical significance in diagno -sis ,treatment ,outcome monitoring and prediction of prognosis of CML .【期刊名称】《内蒙古医学杂志》【年(卷),期】2016(048)006【总页数】3页(P641-643)【关键词】BCR/ABL 融合基因;慢性髓系白血病;诊断;基因监测【作者】刘雪梅;李丽梅;徐海芹;李玲;徐长荣【作者单位】内蒙古自治区人民医院血液科,内蒙古呼和浩特 010017;内蒙古自治区人民医院血液科,内蒙古呼和浩特 010017;内蒙古自治区人民医院血液科,内蒙古呼和浩特 010017;内蒙古自治区人民医院血液科,内蒙古呼和浩特010017;内蒙古自治区人民医院血液科,内蒙古呼和浩特 010017【正文语种】中文【中图分类】R733.7慢性髓系白血病(chronic myelogenous leukemia,CML)简称慢粒,是一种发生在多能造血干细胞的恶性骨髓增生性肿瘤,主要涉及髓系,占白血病的15%~25%[1,2],主要特征是成熟和未成熟粒细胞的克隆性表达[1]。

中国异基因造血干细胞移植治疗血液系统疾病专家共识(Ⅱ)——移植后白血病复发(完整版)

中国异基因造血干细胞移植治疗血液系统疾病专家共识(Ⅱ)——移植后白血病复发(完整版)

中国异基因造血干细胞移植治疗血液系统疾病专家共识(H)——移植后白血病复发(完整版)白血病复发是异基因造血干细胞移植(allo-HSCT)失败的主要原因之一。

国际骨髓移植登记组(CIBMTR)的资料显示,复发在非血缘和同胞相合移植后的死因中分别占33%和47%[1]。

北京大学血液病研究所的资料显示,单倍型和同胞相合移植后的复发相关死亡率在总体人群中分别为15.6%和16.7%[2],在死因中分别占32%和42%。

移植后一旦复发预后很差,目前治疗选择仍然有限;各移植中心在处理移植后复发方面各自进行了探索。

本共识综合各移植中心的经验和临床研究,并参考国外文献,进行归纳总结,旨在对移植后白血病复发的诊断和处理原则进行推荐。

一、定义和分类根据复发时肿瘤负荷分为血液学复发、细胞遗传学和(或)分子生物学复发;根据肿瘤细胞来源可分为供者型复发和受者型复发;从复发部位上可分为髓内复发、髓外复发和髓内伴髓外复发。

指移植后完全缓解的患者外周血中又出现白血病细胞或骨髓中原始细胞>5%或出现新的病态造血或髓外白血病细胞浸润。

2•细胞遗传学复发:指移植后已达细胞遗传学完全缓解的患者又出现原有细胞遗传学异常,或性别染色体由完全供者型出现受者一定比例的嵌合(比例界值尚无统一标准,且不等同于白血病细胞的增加),尚未达到血液学复发的标准。

3•分子生物学复发:是近年硏究的热点指应用流式细胞术(FCM)和(或)聚合酶链反应(PCR)等分子生物学方法检测到特异或非特异分子生物学标志异常或超过一定界值、尚未达到血液学复发的标准。

参见以下微小残留病(MRD)判定标准。

二MRD检测(一)常用MRD检测方法1•染色体:G显带、R显带和(或)荧光原位杂交(FISH)分析证明有白血病细胞或肿瘤细胞特异的染色体易位和融合基因存在是检测MRD的标志技术。

FISH检测MRD的敏感度为10-2〜10-3,佥测结果阳性即表明患者体内有残留白血病细胞。

2・FCM:FCM检测的MRD为白血病相关免疫表型(LAIP)感度达10-4左右。

bcrabl融合基因

bcrabl融合基因

bcrabl融合基因1 基本信息编辑本段慢性粒细胞白血病(Chronic Myelognous Leukemia,CML)是一种发生于造血干细胞的血液系统恶性克隆增生性疾病。

在受累的细胞系中可找到Ph标记染色体或(和)bcr/abl基因重排。

2 基因结构编辑本段人abl基因位于9号染色体长臂,有1b、1a和2~11共12个外显子[1]。

转录始自1b或1a,形成的两种mRNA长度分别为7kb和6kb,合成的两种蛋白质分子量均约为145,前者定位于细胞膜,而后者主要在细胞核内。

abl主要结构有N端的肉瘤同源2(srchomology,SH2)、SH1。

SH2结合磷酸化的酪氨酸残基,SH1具有酪氨酸激酶活性[2]。

近C端富含酸性氨基酸残基,可结合DNA。

abl蛋白参与细胞周期调节[3]。

在G0期,abl-Rb蛋白复合物与DNA 结合。

在G1→S转变过程中,Rb被磷酸化,abl与之分离,并激活,使RNA聚合酶磷酸化,促进转录,细胞进入S期。

bcr基因位于22号染色体长臂,有23个外显子[1]。

蛋白产物分子量均为160。

bcr蛋白第1~63个氨基酸是二聚体化结构,参与bcr蛋白多聚体的形成[4]。

bcr蛋白参与细胞周期调节[5],但详细过程还不十分明确。

bcr基因断裂点集中在三个区域:主要(major bcr,M-bcr)、次要(minor bcr,m-bcr)和μ(μ-bcr)区域。

abl基因断裂位于第1或第2内含子。

因断裂点不一,bcr/abl融合基因及其mRNA和蛋白产物呈多样性。

慢性粒细胞白血病的bcr基因断裂点常位于M-bcr,主要是b2a2和b3a2[4],蛋白分子量为210kb。

3 形态特点编辑本段90%以上的CML患者的血细胞中出现Ph1染色体,t(9;22)(q34;q11),9号染色体长臂上C-abl原癌基因易位至22号染色体长臂的断裂点集中区(bcr),形成bcr/abl融合基因。

此基因产生一种新的mRNA,编码的蛋白为P210,P210具有增强酪氨酸激酶的活性,改变了细胞多种蛋白质酪氨酸磷酸化水平和细胞微丝机动蛋白的功能,从而扰乱了细胞内正常的信号传导途径,使细胞失去了对周围环境的反应性,并抑制了凋亡的发生[6]。

BCR-ABL融合基因在慢性粒细胞白血病临床诊治中的研究进展

BCR-ABL融合基因在慢性粒细胞白血病临床诊治中的研究进展

BCR-ABL融合基因在慢性粒细胞白血病临床诊治中的研究进展蒋明;陈文聪;郑多【摘要】BCR-ABL融合基因是慢性粒细胞白血病( CML)的特征性标志,根据BCR的断裂位置主要分为3个类型:M-BCR、m-BCR及μ-BCR。

采用分子生物学技术检测BCR-ABL融合基因的表达、突变对于CML的临床诊断、治疗以及预后都具有非常重要的意义。

【期刊名称】《中南医学科学杂志》【年(卷),期】2016(044)003【总页数】5页(P356-360)【关键词】慢性粒细胞白血病;BCR-ABL融合基因;分子生物学技术【作者】蒋明;陈文聪;郑多【作者单位】深圳市盐田区人民医院科教科,广东深圳518081;深圳大学医学院部;深圳大学医学院部【正文语种】中文【中图分类】R733.7慢性粒细胞白血病CML(chronic myeloid leukemia,CML)是由于造血干细胞的恶性克隆而引起的疾病,在白血病病例中占15%~20%[1-2]。

CML的主要特征是在外周血、脾以及骨髓中的未成熟或者成熟的髓细胞增多,并且细胞中带有异常的染色体Ph(Philadelphia Chromosome)。

Ph染色体是由位于第9号染色体长臂远端的白血病原癌基因ABL易位至第22号染色体BCR基因的断裂点形成的[3-5],在分子水平上产生了BCR-ABL融合基因,导致持续且异常活化的酪氨酸激酶,干扰细胞的正常增殖和凋亡程序,导致白血病的发生[6-7]。

以往临床使用细胞遗传学的方法以及荧光原位杂交(fluorescence in situ hybridization,FISH)技术检测Ph染色体用于诊断CML的金标准,并进行疗效的监测。

随着对BCR-ABL融合基因的不断研究,对酪氨酸激酶的功能了解越来越深入。

目前对CML患者的治疗,已从传统的姑息性治疗、化疗,发展到使用特异的酪氨酸激酶抑制剂(tyrosine kinase inhibitors,TKI)进行分子靶向治疗[8] 。

BCR-ABL概述件

BCR-ABL概述件
精选ppt2021最新
初诊CML时需做BCR-ABL基因检测进行确诊(Ph)
注: IS(国际标准化) Ph( 费城染色体 ) TKI(酪氨酸激酶抑制剂)
www.themeg精all选eryp.pcto2m021最新
成人CML 慢性期
慢性髓系白血病(CML)慢性期患者的诊断及初始治疗示意图
症状体征:脾大情 况 血常规 血生化检查 HLA配型 骨髓穿刺及活检 骨髓评价 原始细胞比例 嗜碱粒细胞比例 细胞遗传学分析 FISH检测 QPCR(IS)检测 判断风险分期
BCR-ABL
精选ppt2021最新
主要内容
➢典型BCR-ABL融合基因检测 ➢不典型BCR-ABL融合基因检
测 ➢ABL激酶区耐药检测 ➢相关检测产品
精选ppt2021最新
典型BCR-ABL融合基因检测
精选ppt2021最新
背景知识
t(9;22)(q34; q 11)易位形 成
存在于95%的慢性髓细胞白 血病(CML),20%-30%的成 人急性淋巴细胞白血病(ALL) 和2%-5%的儿童 ALL 患者中。
CML-如何进行相关实验室检测
QPCR检测:
1,在诊断时; 2, 当患者对治疗有反应时,每三个月检测一次; 达到CCyR后,3年时间里每三个月检测一次, 之后每3-6个月检测一次; 3,若发现在MMR阶段, BCR-ABL上升(1 Log),应在1-3个月内重复QPCR检测.
精选ppt2021最新
CCyR PCyR 有少量或没有细胞遗传学反应 细胞遗传学复发 CCyR PCyR 细胞遗传学复发
继续使用相同的TKI药物 伊马替尼为主要治疗药物 更换可替代的TKI药物
推荐方案
加大伊马替尼的使用量,最大可至800mg。(在没有可替代的TKI药物时)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Long-Template DNA Polymerase Chain Reaction for the Detection of the bcr/abl Translocation in Patients with Chronic Myelogenous Leukemia1Cornelius F.Waller,Gereon Dennebaum, Christoph Feldmann,and Winand Lange2 Department of Internal Medicine I,Hematology/Oncology,Albert Ludwigs University Freiburg Medical Center,D-79106Freiburg, GermanyABSTRACTIn most patients with chronic myelogenous leukemia (CML)primitive hematopoietic progenitors carry the ac-quired reciprocal bcr/abl gene rearrangement t(9;22)(q34.1; q11.21).However,not all of the progenitor cells express the bcr/abl hybrid mRNA or the p210fusion protein.These cells, therefore,might escape detection by techniques that are based on expression of the fusion gene.To circumvent this problem,we established a new detection method for the rearrangement at the DNA level.Because breakpoints might occur in a very large genomic region(>200kb),we devel-oped a long-template DNA-PCR(LT-DNA-PCR).In22of59 CML patients,fragments of up to19kb could be amplified. Furthermore,6of7leukapheresis products of three bcr/abl-positive patients which were collected after mobilization chemotherapy and had been shown to be negative for the bcr/abl rearrangement by FISH and by RT-PCR were clearly positive by ing a specific pair of primers,it is possible to detect the presence of,and to characterize,the individual gene rearrangement.This ap-proach could serve for diagnostic purposes as well as detec-tion of minimal residual disease under cytotoxic therapy or after purging regimens,being independent of expression of the bcr/abl hybrid mRNA or the fusion protein. INTRODUCTIONCML3is a clonal hematological stem cell malignancy. Usually,a typical peripheral blood count leads to the diagnosis.In95%of patients the Philadelphia chromosome(Ph)is present (1,2).This is the result of an acquired reciprocal translocation t(9;22)(q34.1;q11.21)of the c-abl oncogene from chromosome 9to the bcr on chromosome22(3).Due to this positioning effect a patient-specific chimeric fusion gene ually, fusion gene products of two slightly different sized mRNAs of approximately8.5kb are expressed,b2a2and b3a2.Both of them encode for a Mr210,000fusion protein(p210bcr/abl),a protein with increased tyrosine kinase activity(4,5).In the bcr,the translocation occurs somewhere in an intron within a5.8-kb genomic region(6,7).In abl,the chromosomal breakpoints are dispersed over an intron region as large as about 200kb(8).Complete intron sequence is available only for the bcr introns,whereas in abl,approximately95kb of the200kb are yet unknown(Fig.1A).Two research groups independently reported that primitive CML progenitors carry the rearrangement but do not necessarily express the bcr/abl hybrid mRNA or the p210fusion protein(9, 10).Because of this,these cells might escape detection by techniques that are based on expression of the fusion gene. Therefore,we intended to establish a method for detection of patient-specific rearrangements at the DNA level.Unfortu-nately,the breakpoints in CML are dispersed over such a large genomic region that at present,it is not possible to cover them by conventional PCR methods.In1994,Cheng et al.(11) showed effective amplification of long targets from human genomic DNA using a recombinant Thermus thermophilus DNA polymerase.In accordance with their approach,we de-signed a set of LT-PCRs with one constant bcr primer and10abl primers at a distance of approximately15kb each.Depending on the translocation site the first abl primer3Јof the transloca-tion together with the constant5Јbcr primer should be able to amplify the fusion region(Fig.1B).MATERIALS AND METHODSPatient Samples.Peripheral blood from59patients with CML,4healthy volunteers,3control patients and three Phϩcell-lines(BV173,K-562,and LAMA84)were analyzed (Table1).Furthermore,samples from leukapheresis products of three patients with CP-CML collected after mobilization chem-otherapy consisting of idarubicin,cytosine arabinoside,and etoposide were analyzed(Table3).Samples were drawn after informed consent was obtained according to institutional guide-lines.RNA Isolation.Total cellular RNA from1ϫ105to1ϫ106cells from peripheral blood or thawed leukapheresis samples was extracted using a RNeasy Total Kit(Quiagen,Hilden, Germany)according to the manufacturer’s instructions.RT-PCR.RT-PCR amplification using nested primers was performed according to standard protocols as described previously(12).Received5/6/99;revised8/24/99;accepted9/10/99.The costs of publication of this article were defrayed in part by thepayment of page charges.This article must therefore be hereby markedadvertisement in accordance with18U.S.C.Section1734solely toindicate this fact.1Supported in part by the W.Sander-Stiftung(C.F.W.,W.L.),theDeutsche Krebshilfe(W61/93/La1),and the Zentrum Klinische For-schung I,Albert Ludwigs University Freiburg(C.F.W.,W.L.).2To whom requests for reprints should be addressed,at Department ofHematology/Oncology,University of Freiburg,Hugstetter Strasse55,D-79106Freiburg,Germany.Phone:49-761-270-3852;Fax:49-761-270-3418;E-mail:Lange@l.uni-freiburg.de.3The abbreviations used are:CML,chronic myelogenous leukemia;CP,chronic phase;Ph,Philadelphia chromosome;bcr,breakpoint clusterregion;LT-PCR,long template-PCR;RT-PCR,reverse transcription-PCR;FISH,fluorescence in situ hybridization.4146Vol.5,4146–4151,December1999Clinical Cancer ResearchDNA Isolation.DNA was isolated using 1–10ml of EDTA-blood or samples from leukapheresis products with a Quiagen Blood and Cell Culture DNA Midi Kit (Quiagen)according to the manufacturer’s instructions.Three ϫ107cells yielded a median of 97.6␮g genomic DNA,which was dis-solved in Tris-EDTA buffer (pH 8.0)and stored at Ϫ20°C.LT-DNA-PCR Primer Design.A constant bcr -primer and 10abl -primers at a distance of approximately 15kb each were designed (Fig.1B ).All of the 22-mer primers where chosen with an annealing temperature of 68.0–68.7°C and a GC content of 50–55%.Primers were adjusted to 20pmol per reaction.abl genomic localization (Fig.1B ;Table 2A )refers to GenBank sequences hsablgr1(access code (ac):UO7561),hsablgr2(ac:UO7562),hsablgr3(ac:UO7563)and bcr to hsuo7000(ac:UO7000).The sequence of used primers is shown in table 2A .LT-PCR.Initially,a set of ten PCR reactions per patient was performed.After identification of a patient characteristic amplification product the specific primer combination was used for subsequent analysis.A Perkin-Elmer GeneAmp XL PCR Kit (Perkin-Elmer,Foster City,CA)was used.Briefly,the reaction mix (100␮l)is divided into a lower reagent mix,the upperreagent mix and the sample.The lower reagent mix (40␮l)was composed of 12␮l of 3.3XL Buffer II;10m M dNTPs,20pmol of each abl primer and the bcr B2primer and 25m M Mg(OAc)2.The volume was adjusted to 40␮l with dH 20.To this mix,an AmpliWax PCR Gem 100(Perkin-Elmer)was added and melted at 75°C for 5min.Thereafter,as soon as the wax hardened,the upper reagent mix was placed above the solid wax layer.The upper reagent mix (20␮l)consisted of 18.5␮l of 3.3XL Buffer II and 3units of rTth (recombinant T.thermophilus )polymerase.The sample was added to the upper reagent mix.It was composed of 0.5␮g of DNA (in 0.5␮l)and 39.5␮l of dH 20.Division of the lower and upper reagent mix allowed a hot-start technique and ensured that all of the tubes had a synchronized start time.Cycle conditions were as follows:de-naturation time for 10s at 93°C;annealing and extension time,starting at 10min and increased by 10s per cycle both at 68°C.Thirty-six cycles were performed with a final hold at 72°C for 10min.All of the steps were performed using a Perkin-Elmer DNA Thermal Cycler.Restriction Enzyme Digestion.Two ␮l of 10ϫrestric-tion endonuclease buffer,7␮l of dH 2O,and 1␮l of restriction endonuclease (4–5units)were added to 10␮l of PCR products and then incubated at 37°C for 60min.The reaction was stopped by adding 0.5␮l of 5M EDTA buffer (pH 8.0).Agarose Gel Electrophoresis.For the analysis of ampli-fied products,agarose gel electrophoresis was performed to visualize PCR products.Fifteen ␮l of the amplification product were loaded per lane and run at a constant voltage of 80V.A 0,8%SeaKemGold Agarose gel (FMC BioProducts,Rockland,ME)was used and stained with ethidium bromide.Hybridization with Specific bcr Probes and DNA Se-quencing.Aliquots of amplified products were dot-blotted and hybridized with eight digoxigenin probes about 400bp apart spanning the bcr region between exons 13and 15(Fig.1C ).The DIG easy Hyb system (Boehringer,Mannheim,Germany)to detect complementary sequences was used according totheFig.1A ,exon-intron distribution .Map of bcr and abl exon-intron region.The bcr gene with the two exons (b2and b3)including the 5.8-kb bcr;abl with exons (1b ,1a ,and 2)and the 200-kb breakpoint region.hsablgr refers to GenBank sequences hsablgr1(access code:UO7561),hsablgr2(access code:UO7562),hsablgr3(access code:UO7563);bcr,refers to hsuo7000(access code:UO7000);dashed line ,unknown sequence.B ,primer-location,restriction enzyme recognition sites.Primers A-2and 3–1to 3–9are complementary to abl sequences;primer B2represents the constant bcr primer.C ,localization of hybridization oligonucleotides within the bcr gene.Table 1Patient and LT-DNA-PCR data Samples n LT-DNA-PCR-positiveCML,1st CP 4521CML,2nd CP 40CML,AP a 61CML,BC40CML cell lines 31Healthy volunteers 40AML 20Ph ϩALL1aAP,accelerated phase;BC,blast crisis;AML,acute myeloid leukemia;Ph ϩALL,Philadelphia chromosome-positive acute lympho-cytic leukemia.4147Clinical Cancer Researchmanufacturer’s instructions.The most3Ј-located probe that gave a positive signal was subsequently used as sequencing primer for sequence analysis of the breakpoints at the3Јend of the bcr gene and the5Јend of the abl gene.Sequence analysis was performed by PCR cycle sequencing using the Big Dye Terminator Cycle Sequencing Ready Reaction(PE Applied Biosystems,Foster City,CA)with an automated sequencer (DNA Sequencer,model373A,PE Applied Biosystems).FISH.Cells from leukapheresis products were analyzed by interphase FISH for quantitation of Phϩcells as described previously(13).The threshold of detection was determined at Ͼ6%to classify any specimen as Ph-positive.FISH was per-formed using a DNA probe mixture for the M bcr/abl translo-cation(Oncor,Gaithersburg,MD)according to the manufactur-er’s instructions.RESULTSIn22(37.3%)of59CML patients,fragments of up to19 kb could be amplified by LT-PCR showing an individual patient characteristic PCR product(Table1).The breakpoints were dispersed throughout intron1b without any obvious clustering. In one patient,the breakpoint was in intron1a.With the excep-tion of primer3–3,3–7,and3–8,every abl primer generated fragments in selected patients.To prove the identity of the amplified fragments,restriction endonuclease digestion was used in four patients.Fragments matching exactly the calculated size according to the available sequence information could be generated(Fig.2).In addition,nine of the amplified products were further characterized by sequence analysis.In eight samples,the break-points on the abl gene could be located in published sequences, whereas in one sample a localization was impossible(Fig.3).In DNA dilution experiments,the sensitivity of our LT-PCR method was determined to be25pg,the DNA content of approximately four primary CML cells(Fig.4A)or the equiv-alent of four BV173cells(data not shown;a fragment ofϽ1kb was amplified).RT-PCR was able to detect the RNA equivalent of about one cell(Fig.4B).Six of seven leukapheresis products from three patients that repeatedly had been found to be negative for the bcr/abl rear-rangement by RT-PCR and interphase FISH were clearly posi-tive by LT-DNA-PCR(Fig.5).Only one of seven apheresis products was constantly negative by all three of the methods (Table3).All three of the patients were positive by RT-PCR for bcr/abl before mobilization chemotherapy. DISCUSSIONA point of controversy is the question whether all of the CML cells actively express the hybrid fusion gene or not(14). Primitive CML progenitor cells were shown to be RT-PCR-negative despite carrying the bcr/abl translocation.In these cells,bcr/abl mRNA might be either absent or minimally ex-pressed.Antisense oligonucleotides targeted against the hybrid mRNA might,therefore,not be effective as eradication tech-niques(9).A second research group reported that23%of Phϩmyeloid colonies were found to be bcr/abl mRNA-negative (10).Both of the studies have been criticized because of their inadequate controls for cDNA synthesis(15,16).Now that we are able to use PCR at the DNA level,the presence of gene expression as mRNA or protein is no prereq-Table2Primer and sequence dataPrimer Location a Sequence5Ј–3ЈPosition(GenBank)A.Primer locations,sequences,and genomic positionsB2bcr exon b2CAGAAGCTTCTCCCTGACATCC hsuo7000;123599–123620A2abl exon a2ATTATAGCCTAAGACCCGGAGC hsablgr3;50667–506463-1abl intron1b CTGGATCTGAAGCTCCCAGATG hsablgr3;34346–343253-2abl intron1b TTTCCCCTGATCAGTCTGGGTA hsablgr3;16817–167963-3abl intron1b GCCATGGGAGAAGAATATCCCG hsablgr3;228–2073-4abl intron1b CCATGCCCACATTCAGGACTTG hsablgr2;58991–589703-5abl intron1b CTACCAACTTCACACCAGCCTG hsablgr2;44891–448703-6abl intron1b GGGAGAGAGAAAAGACCATGGG hsablgr2;29633–296123-7N abl intron1b TGGAACAAGGGGTCAGAGTGAT hsablgr2;15276–152553-8abl intron1b TGGTCTCCACTATTCAAGGGACA hsablgr2;318–2973-9N abl intron1b CACCCCCATATCCCACATCTAA hsablgr1;35766–35745B.Hybridization primer locations and sequenceshyb0bcr intron13TCAGATGCTC TGTGCCTT hsuo7000;123606–123623hyb1bcr intron13ACACAGTGTC CACCGGAT hsuo7000;123955–123972hyb2bcr intron13CCTGCAGGTG GATCGAGT hsuo7000;124377–124394hyb3bcr intron14TGAGTTGCAC TGTGTAAG hsuo7000;124618–124635hyb4bcr intron14TTAGGTGAGA GCAGTGTC hsuo7000;125047–125064hyb5bcr intron14CATGGCCAAG CCAGAAAC hsuo7000;125474–125491hyb6bcr intron14TACACCTCTC TGTCCCCA hsuo7000;125930–125945hyb7bcr intron14GCGTCTACAG GGACACAG hsuo7000;126319–126336a abl genomic localization refers to GenBank sequences hsablgr1(access code(ac):UO7561),hsablgr2(ac:UO7562),hsablgr3(ac:UO7563);bcr genomic location refers to hsUO7000(ac:UO7000).4148LT-DNA-PCR for bcr/abl in Patients with CMLuisite for positive testing.There have been earlier attempts to establish detection methods at the DNA level.A bubble PCR technique was described to facilitate cloning of bcr/abl break-points (14).DNA from patients with CP-CML was diluted into normal DNA and subjected to two-step PCR.It is necessary to clone and sequence the breakpoint from each patient and to design patient specific oligonucleotide primers.Therefore,this technique involves an appreciable amount of time and effort and,in addition,has a lower sensitivity than RT-PCR (17).On the other hand,the new LT-PCR is an easy way to perform a one-step PCR,once a patient-specific primer pair has been identified.In comparison with RT-PCR,the DNA LT-PCR offers certain advantages.Because of the independence of gene ex-pression,genomic DNA could be more informative for the detection of residual disease or for very immature selected progenitors (14).A technical advantage of LT-PCR is the han-dling of stable DNA instead of RNase sensitive RNA and using patient-specific primers would help to minimize the problem of PCR contamination.In this first study,we used a set of indi-vidual LT-PCR reactions to show the feasibility of the method-ology.In future studies,however,multiplex LT-PCR with all of the different primer pairs in the same reaction tube might facilitate the practicability of this approach.To our knowledge,only about one-half of the sequence of the involved part of the abl gene is known (Fig.1).Nevertheless,it was possible to amplify the breakpoint region in more than one-third of the examined samples.In addition,further characterization of the amplified products by endo-nuclease restriction digest in four patients and sequence analysis at the breakpoint were successful in eight of nine analyzed samples.Once the complete intron sequence of abl will be available,every breakpoint should be representable after appropriate primer design.With reference to the break-point site in the abl gene,our results do not yet support data published by Jiang et al.(18).In our findings,the breakpoints were equally dispersed over intron 1b and did not cluster,whereas Jiang et al.suggested three cluster regions—30Ϯ5,Fig.2Agarose gel electrophoresis of one representative patient sam-ple.A characteristic fragment of approximately 6000bp could be amplified with the constant bcr primer and the abl primer 3–2(Lane 2).Restriction enzyme digestion produced fragments of approximately 5400bp and 600bp,respectively.On the basis of sequence information,the calculated size of the smaller fragment is nes 1and 4,␭HindIII.Fig.3Breakpoint localization in the abl gene .Individual breakpoints were dispersed throughout the entire abl intron sequence without clus-tering.Fig.4A ,sensitivity of LT-DNA-PCR.An approximately 4400-bp fragment could be generated with the constant bcr primer and abl primer 3–5in one representative patient with 100%Ph ϩhematopoiesis at the time of analysis.On the basis of sequence analysis,the calculated size is 4341bp.For amplification,a dilution series of template DNA was used as follows:Lane 2:0.25␮g;Lane 3:25ng;Lane 4:2.5ng;Lane 5:250pg;Lane 6:25pg;Lane 7:2.5pg;Lane 8:250fg;Lane 9:25fg;Lanes 10and 11:not loaded;Lanes 1and 12:␭Hin dIII.B ,sensitivity of RT-PCR .For amplification,a dilution series of BV173mRNA was used as follows:Lane 2:5␮g;Lane 3:500ng;Lane 4:50ng;Lane 5:5ng;Lane 6:500pg;Lane 7:50pg;Lane 8:5pg;Lane 9:0.5fg;Lanes 1and 10:␾X174/HAE III.4149Clinical Cancer Research100Ϯ13,and135Ϯ8kb—downstream from exon1b.In one case,the breakpoint was identified in intron1a,a finding previously reported in three other patients(7,17).Neverthe-less,because of the relatively small number of cases exam-ined,these findings should not be overrated.A potential disadvantage of LT-DNA-PCR could be single-copy target amplification,whereas,in RT-PCR,high expression per sin-gle cell might allow potentially more sensitive detection. However,our results comparing RT-versus LT-DNA-PCR showed comparable sensitivity no matter whether large or small fragments were amplified from DNA templates.LT-PCR analysis of seven leukapheresis products of three CP-CML patients after mobilization chemotherapy showed re-producibly the presence of bcr/abl at the DNA level in six of them whereas analysis by RT-PCR and FISH failed to detect the fusion gene.The sensitivity of FISH does not allow detection of the rearranged bcr/abl gene unlessϾ5%of rearranged cells are present within the analyzed cell population,a percentage also comparable to classical cytogenetic analysis.This fact is well known from patients receiving␣-IFN therapy who become negative by cytogenetics or FISH,but are still positive by RT-PCR. Considering the sensitivity of RT-PCR and LT-DNA-PCR about equal,our results imply either that some rearranged cells do not express the bcr/abl fusion gene or that the expression is rather low, possibly just below the detection limit of RT-PCR.The data that is shown support the usefulness of our method as a diagnostic tool and as a means to detect residual disease even in the absence of gene expression in CML patients. It will probably improve the evaluation of purging strategies in CML.In addition,a modification of the methodology could also be used to detect breakpoints associated with Ph-positive acute lymphocytic leukemia.ACKNOWLEDGMENTSWe thank J.Fischer and A.Rosenstiel for excellent technical assistance.Also we would like to acknowledge Dr.M.Follo for se-quence analysis.REFERENCES1.Carella,A.M.,Frassoni,F.,Melo,J.,Sawyers,C.,Eaves,C.,Eaves,A.,Apperley,J.,Tura,S.,Hehlmann,R.,Reiffers,J.,Lerma,E.,and Goldman,J.New insights in biology and current therapeutic options for patients with chronic myelogenous leukemia.Haematologica,82:478–495,1997.2.Gale,R.P.,Grosveld,G.,Canaani,E.,and Goldman,J.M.Chronic myelogenous leukemia:biology and therapy.Leukemia(Baltimore),7: 653–658,1993.3.Bartram,C.R.,de Klein,A.,Hagemeijer,A.,van Agthoven,T., Geurts van Kessel,A.,Bootsma,D.,Grosveld,G.,Ferguson-Smith, M.A.,Davies,T.,Stone,M.,Heisterkamp,N.,Stephenson,J.R.,and Groffen,J.Translocation of the c-abl oncogene adjacent to a translo-cation break point in chronic myelocytic leukemia.Nature(Lond.),306: 277–280,1983.4.Konopka,J.B.,and Witte,O.N.Detection of c-abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products.Mol.Cell.Biol.,5:3116–3123,1985.5.Shtivelman,E.,Lifshitz,B.,Gale,R.P.,and Canaani,E.Fused transcript of abl and bcr genes in chronic myelogenous leukemia. Nature(Lond.),315:550–554,1985.6.Groffen,J.,Stephenson,J.R.,Heisterkamp,N.,de Klein,A.,Bar-tram,C.R.,and Grosveld,G.Philadelphia chromosomal breakpoints are clustered within a limited region,bcr,on chromosome22.Cell,36: 93–99,1984.7.Heisterkamp,N.,Stam,K.,Groffen,J.,de Klein,A.,and Grosveld,G.Structural organization of the bcr gene and its role in the PhЈtranslocation.Nature(Lond.),315:758–761,1985.8.Bernards,A.,Rubin,C.M.,Westbrook,C.A.,Paskind,M.,and Baltimore,D.The first intron in the human c-abl gene is at least200 kilobases long and is a target for translocations in chronic myelogenous leukemia.Mol.Cell.Biol.,7:3231–3236,1987.9.Bedi,A.,Zehnbauer,B.A.,Collector,M.I.,Barber,J.P.,Zicha, M.S.,Sharkis,S.J.,and Jones,R.J.BCR-ABL gene rearrangement and expression of primitive hematopoietic progenitors in chronic myeloid leukemia.Blood,81:2898–2902,1993.10.Keating,A.,Wang,X.H.,and Laraya,P.Variable transcription of BCR-ABL by Phϩcells arising from hematopoietic progenitors in chronic myeloid leukemia.Blood,83:1744–1749,1994.Table3Analysis of leukapheresis productsPatientno.Apheresisno.FISH RT-mRNA-PCR LT-DNA-PCR 11Negative Negative Positive2Negative Negative Positive3Negative Negative Negative 21Negative Negative Positive2Negative Negative Positive 31Negative Negative Positive2Negative Negative Positive Fig.5Apheresis sample analysis.Analysis of two apheresis sampleseach of patients S.I.(Lanes2and3)and H.G.(Lanes4and5).Molecular weight marker in Lane1.a,abl mRNA RT-PCR to controlintegrity of the RNA preparation.All of the samples are positive;bandsat106bp.b,bcr/abl mRNA RT-PCR to detect the b2a2or b3a2mRNA.All of the samples are negative;no bands at234bp.c,bcr/abl LT-DNA-PCR;for patient S.I.,primers abl3–2and bcr B2and,for patientH.G.,primers abl3–4and bcr B2were used to generate amplificationproducts of approximately6.0kb(Lanes2and3and Lanes4and5,respectively.4150LT-DNA-PCR for bcr/abl in Patients with CML11.Cheng,S.,Fockler,C.,Barnes,W.M.,and Higuchi,R.Effective amplification of long targets from cloned inserts and human genomic A,91:5695–5699,1994.12.Maurer,J.,Kinzel,H.,Nentwig,T.,and Thiel,R.Molecular diag-nosis of the Philadelphia chromosome in chronic myelogenous and acute lymphoblastic leukemia by PCR.Disease Markers,8:211–218, 1990.13.Heinzinger,M.,Waller,C.F.,Rosenstiel,A.,Scheid,S.,Burger, K.J.,and Lange,W.Quality of IL-3and G-CSF-mobilized peripheral blood stem cells in patients with early chronic phase CML.Leukemia (Baltimore),12:333–339,1998.14.Zhang,J.G.,Goldman,J.M.,and Cross,N.C.Characterization of genomic BCR-ABL breakpoints in chronic myeloid leukemia by PCR. Br.J.Haematol.,90:138–146,1995.15.Cross,N.C.,Lin,F.,and Goldman,J.M.Appropriate controls for reverse transcription polymerase chain reaction(RT-PCR).Br.J. Haematol.,87:218,1994.16.Melo,J.V.,Kent,N.S.,Yan,X.H.,and Goldman,J.M.“Controlsfor reverse transcriptase-polymerase chain reaction amplification of BCR-ABL transcripts”(Letter).Blood,84:3984–3986,1994.17.Zhang,J.G.,Lin,F.,Chase,A.,Goldman,J.M.,and Cross,N.C. Comparison of genomic DNA and cDNA for detection of residual disease after treatment of chronic myeloid leukemia with allogeneic bone marrow transplantation.Blood,87:2588–2593,1996.18.Jiang,X.Y.,Trujillo,J.M.,and Liang,J.C.Chromosomal break-points within the first intron of the ABL gene are nonrandom in patientswith chronic myelogenous leukemia.Blood,76:597–601,1990.4151Clinical Cancer Research。

相关文档
最新文档