泡沫金属材料的调研

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泡沫金属材料的调研

引言:人们很早就使用了泡沫材料, 如木头、砖头等。而对于金属泡沫材料, 却比较陌生。尽管在60 年代就有人提出了泡沫金属的概念, 但对其研究远远不够。直到90 年代左右, 随着人们对新型、轻型建筑材料的需求不断增加, 以及一些特殊应用场合对材料的要求, 美国、德国、澳大利亚等国家才逐渐开始对这一新型金属材料进行研究。研究工作主要集中在金属泡沫材料的生产方法及其性能上。相对而言, 对金属泡沫材料性能的研究比较成熟, 但对其生产方法的研究和其用途的开发, 目前仍在继续探索之中。

1、泡沫金属材料简介

所谓金属泡沫材料( 又称泡沫金属) , 即为内部含有许许多多球形或多面体形状气孔的金属材料, 气孔率一般应高于50%。实际上, 气孔率可达到60% ~90%。对于铝及铝合金, 其密度可达到( 0. 4~1. 0) g / cm3( 实心铝的密度为2. 7 g / cm3) 。金属泡沫材料的性能受下列三组参数的影响:母体金属( 又称基体金属) 的性能; 气孔的相对密度; 气孔的形态和分布。金属泡沫材料的气孔结构分为闭孔和开孔两种形式。闭孔结构是其内部气孔相互独立, 由母体金属分离, 每个气孔都是封闭的。开孔结构为内部气孔相互连接在一起, 单个气孔不是封闭的。在许多泡沫金属中, 内部同时存在闭式气孔和开式气孔。金属泡沫材料最明显的特点是重量轻、密度低。本文以泡沫铝为例, 介绍金属泡沫材料的性能及其与实心金属材料的差异。

2、泡沫铝的制备方法、性能及应用

泡沫铝是一种新型多功能材料,具有独特的结构和许多优异的性能 ,其应用前景可观,应用范围日益扩大。本文概述了泡沫铝的各种制备方法、性能及应用。结果表明:根据制备过程中铝的状态可以将制备方法分为三类:液相法、固相法、电沉积法;泡沫铝的性能研究方面主要研究了物理性能、力学性能、吸能特性、阻尼性能、吸声性能;泡沫铝主要应用为建筑材料、装饰材料、防音材料、抗振材料、型材及汽车制造业。国外对该领域的研究已相当深人、系统,与国外相比,我国对泡沫铝材料的研究起步较晚,研究尚处于实验范围内,所以,我国今后还应进一步加强泡沫铝材料的研究。

泡沫铝是一种在金属铝基体中分布有无数气泡的多孔质材料。目前,日本与德国在研究、生产和应用泡沫铝与其他金属泡沫方面居世界领先地位。我国对泡沫铝材的研究始于1980s后期,已取得了一系列的研究成果,但尚未取得突破性的成就,仍然处于起步阶段,未形成生产力。

3、泡沫铝的制备方法

制备泡沫铝的方法有多种, 根据制备过程中铝的状态可以分为三大类:液相法、固相法、电沉积法。

3.1 液相法

通过液态铝产生泡沫结构, 可在铝液中直接发泡,也可用高分子泡沫或紧密堆积的造孔剂铸造来得到多孔材料。

3.1.1 熔体发泡法

在铝液中直接产生气泡可得到泡沫铝。通常,气泡由于浮力而快速上升到铝液表面,但可以加入一些细小的陶瓷颗粒增加铝液粘度阻止气泡的上升。当前,熔体发泡主要有两种方法:直接从外部向铝液中注入气体;在铝液中加入发泡剂。

(1) 直接注气法各种泡沫铝合金都可用此法生产, 包括铸造铝合金A359,锻造合金1061、3003、6061等。为了增加铝液粘度,需要加入碳化硅、氧化铝等颗粒。此方法的难点在于如何使颗粒被铝液润湿并均匀分布在液体中, 颗粒的体积分数通常为 10 % - 20 %, 颗粒尺寸为 5 - 20微米。然后把气体 (空气、氮气、氩气)通入铝液中,同时对液体进行搅拌使气泡细小并均匀分布,这一步工艺的好坏将直接影响产品质量。含有气泡的铝液将浮向液面,由于颗粒的存在,使液体中的气泡相对稳定。用转动皮带将表面半固态的泡沫拉出就得到泡沫铝板。这种方法优点是可以连续生产,可获得低密度、大体积的产品。缺点是要对泡沫板材进行剪切,造成泡沫开孔,同时由于颗粒的加入,使胞壁变脆,对力学性能产生不利影响。

(2) 加发泡剂法用发泡剂代替气体注入亦可得到泡沫铝。首先在680摄氏度的铝液中加入金属钙, 对于实际生产, 一般加入量为 1.5 % - 3.0 %( w t),搅拌几分钟增加液体粘度,钙的加入对铝液粘度的影响。钙也可用碳化硅等颗粒代替。粘度合适后,加入TH 2。在恒压下, TH 2分解出 H2,液体膨胀泡沫化, 冷却后即可得泡沫铝。TH 2可被 ZrH 2等发泡剂代替。这种方法的优点是可制得非常均匀的泡沫,并且气孔平均尺寸和铝液粘度以及泡沫铝密度和粘度之间存在关系,使孔径可控。

3.1.2 固-气共晶凝固法

近年来开发的一种新方法,依据是在H2中一些金属可形成共晶系统。在高压H2下能获得含氢的均匀铝液,如果降低温度通过定向凝固将发生共晶转变, H2在凝固区域内含量增加,并且形成气泡。因为体系压力决定共晶组成, 所以外部压力和氢含量必须协调好。最终孔的形状主要取决于氢含量、铝液外部压力、凝固的方向和速率、金属液的化学成分,通常沿凝固方向形成管状孔, 孔直径 10um -10mm, 长度 100um -300mm。

3.1.3 铸造法

(1) 熔模铸造熔模铸造工艺:先准备开孔的高分子泡沫, 用耐热材料填充高分子泡沫。耐热材料可用莫来石、酚醛树脂、碳酸钙混合物或石膏等, 然后通过加热除去高分子泡沫并将铝液铸入模型中来复原高分子泡沫的结构,这一步可以采用加压和加热模型

的方法使细小孔洞得到充分填充,最后用水溶等方法除去耐热材料,即得到与原高分子泡沫相同结构的泡沫铝。此法的难点在于如何使铝液充分填充到模型中, 以及如何在不破坏泡沫铝结构的同时除去耐热模型。优点是可制备多种泡沫金属,并且可以得到开孔结构,生产重复性好,有相对稳定的密度。

(2) 渗流铸造在无机或有机颗粒周围铸入铝液可制得多孔铝。无机材料可用蛭石、泥球、可溶性盐等,有机材料可用高分子颗粒。采用这种方法时,造孔剂堆积密度要高,以保证颗粒之间互相接触,以便将来除去,为了防止铝液在铸入时过早凝固,要将造孔剂预热。由于铝液具有大的表面张力,使得铝液很难成功铸入颗粒间隙中,所以可以先将造孔剂块体抽真空, 然后加压渗透。待铝液凝固后,可用水溶法或热解法除去造孔剂。此法的优点是通过控制造孔剂颗粒大小来控制孔径大小, 缺点是最大孔隙率不超过 80%。

3.2 固相法

用铝粉末代替液态铝同样可制得多孔材料。因为大部分固相法通过烧结使铝颗粒互相联结,铝始终保持在固态,所以此法生产的泡沫铝多数具有通孔结构。

3.2.1 散粉烧结法

这种生产方法包括三个过程: 粉末准备, 粉末压缩, 粉末烧结。此方法多用于制备泡沫铜。由于铝粉表面具有的致密氧化膜将阻止颗粒烧结在一起,因此用散粉烧结法制备泡沫铝相对困难。这时可以通过变形手段破坏氧化膜,使颗粒更易粘结在一起; 或加入镁、铜等元素在 595 ~ 625摄氏度烧结时形成低共熔合金。用散粉烧结制备的泡沫金属优点是工艺简单、成本低, 缺点是孔隙率不高、材料强度低。如果用纤维代替粉末烧结同样可制得多孔材料。

3.2.2 粉浆烧结

把金属粉浆、发泡剂、活性添加剂混合后注入模子中逐渐升温,在添加剂、发泡剂影响下,浆开始变粘,并随产生的气体开始膨胀。如果工艺参数控制得当, 经烧结后就可得到一定强度的泡沫金属。对于铝粉,可以用正磷酸加氢氧化铝充当发泡剂。该法存在的主要问题是制得的泡沫材料强度不高并有裂纹。如果把粉浆直接灌入高分子泡沫中,通过升温把高分子材料热解,烧结后同样可制得开孔泡沫材料。

3.2.3 填加造孔剂法

Bram等人用高分子球、镁颗粒、尿素作为造孔剂制备了多孔钛。由于铝表面致密的氧化层使颗粒之间在烧结时结合困难,所以用此法制备泡沫铝并不多。由于镁的加入可以有效消除氧化层的影响, 赵玉园等用类似方法制得泡沫铝, 称为烧结溶解法。基本过程为:①将铝粉、氯化钠颗粒、少量镁粉混合;②将混合粉压制成块;③对压制的预制块进行烧结;④烧结件在水中溶去氯化钠。

3.2.4 粉末冶金法

由于此法的原料是金属粉末, 所以有的文献将其列入固相法。但此法实际的发泡阶段是在液相, 因此也有文献将其列入液相法。本文将其列入固相法讨论。粉末冶金法自发明以来,备受人们关注,许多泡沫铝性能的研究均用此法制备试样,例如热处理性能、

相关文档
最新文档