沪教版(上海)初中数学九年级第一学期 26.1 二次函数的概念 教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:§26.1 二次函数的概念

【教学目标】

1、理解二次函数的概念,会识别二次函数;

2、会求一些简单的实际应用问题中二次函数的解析式和它的定义域;

3、经历从实际应用问题引进二次函数概念的过程,初步体会用二次函数描述、研究变量之间的变化规律,并初步培养团队协作意识.

【教学重难点】

教学重点:二次函数概念的理解.

教学难点:由实际问题确定函数解析式和定义域.

【教学过程】

一、复旧引新,探索新知

1、复习提问

【忆一忆】

问题1 我们已经学习过哪些函数?

问题2什么是一次函数?解析式中为什么k≠0 ?那么b呢?一般地,它的定义域是什么?

2、探索新知

【填一填】

(1)一个边长为x 厘米的正方形,若它的面积是y 平方厘米,

那么y关于x 的函数解析式是_____________

(2)一个圆的半径是x 米,另一个圆的半径是1米,若它们的面积和是y 平方米,

那么y关于x的函数解析式是_____________

(3)某厂四月份的产值是100万元,设第二季度每个月产值的增长率相同,都为x(x>0).

六月份的产值为y万元,那么y关于x的函数解析式是_________________

(4)如图,用长为20米的篱笆,一面靠墙(墙的长度超过20米),围成一个矩形花圃,设

AB边的长为x米,花圃的面积为y平方米,

那么y关于x的函数解析式是 ________________

二次函数:一般地,解析式形如y=ax2+bx+c(其中a、b、c是常数,且a≠0)的函数叫做二次函数.二次函数的定义域为一切实数.

二、师生互动,内化新知

【辨一辨】在下列关系式中,哪些是y关于x的二次函数?

(1) y =−0.5x 2+x

5 (2)y =1

x 2+1 (3)0=x(x −1)

(4)y =3

4+x 3 (5)y =(x +2)2−3 (6)y =(x +4)2−x 2 (小结如何识别二次函数的方法)

【想一想】已知函数y =ax 2+bx +c (a ,b ,c 为常数),那么y 是关于x 的什么函数? 【试一试】

1、已知函数y =(m −1)x 2−4x +3,当这个函数是二次函数时, 求m 的取值范围? 变式1:已知函数y =x m−1−4x +3,当这个函数是二次函数时, 求m 的值? 变式2:已知函数y =(m −1)x m

2+1

−4x +3,当这个函数是二次函数时,求m 的值?

变式3:已知函数y =(m −1)x m+2−4x 2+3,当这个函数是二次函数时,求m 的值? 2、已知y 关于x 的二次函数y =mx 2+3x −m 2,当x =1时,函数值为3,求m 的值.

(小组讨论,合作完成)

三、学以致用,深化新知

回到【填一填】环节中,探索实际应用问题中函数的定义域. 例题1 如图,用长为20米的篱笆,一面靠墙(墙的长度 超过20米),围成一个矩形花圃,并在花圃中间用篱笆 隔出两个矩形小花圃.设AB 边的长为x 米,花圃的面积 为y 平方米,求y 关于x 的函数关系式及函数的定义域.

例题2 圆柱的体积V 的计算公式V =πr 2ℎ,其中r 是圆柱底面积的半径,h 是圆柱的高.(1)当r 是常量时,V 是h 的什么函数? (2)当 h 是常量时,V 是r 的什么函数?

变式: 已知长方体ABCD -A’B’C’D’的底面是正方形,

若将底面边长记为m ,长方体的高记为n , 请用y 表示一个与该长方体有关的变量并 写出一个y 关于m 或n 的二次函数.

四、自主小结,发展提高

通过本节课的学习谈谈自己的收获与体会.

五、分层作业,发展个性

必做:练习册P 50习题26.1 选做:习题26.1【试一试】

相关文档
最新文档