光纤光学4章讲义
光纤光学
![光纤光学](https://img.taocdn.com/s3/m/e3a13d7459eef8c75ebfb32f.png)
1.4 光纤与通信网络 光纤的带宽和具有吸引力的特征使其成为理想的线缆 传输媒介。对于通信系统,光纤是具有强大运载信息 能力的工具。光纤工业已经进入显著的繁荣期。在过 去的20年里,一根光纤所能承载的最大数据率差不多 平均每年翻一番,比电子行业的摩尔定律(每18个月 翻一番)还要快 1.4 光纤与通信网络(续) (1)全球海底网络(2)陆地网络 (3)卫星系统与光纤网络(4)光纤到户 (5)局域网
光纤传感技术应用: 工业、制造、土木工程、军用科技、环境保护、地质勘
探、石油探测、生物医学等。
光纤传感器种类: 包括湿度、温度、应变、应力、振动、声音和压力传感
器等。 (1)光纤光栅传感器(2)光纤法布里-珀罗传感器(3)光 纤白光干涉传感器 (4)光纤陀螺传感技术(5)其他光纤传感技术 1.6 光纤的发展 种类:多模光纤 单模光纤、保偏光纤、塑料光纤、掺杂 光纤、光子晶体光纤等数十种; 材料:石英光纤 聚合物/塑料光纤、光子晶体光纤、掺 稀土光纤等
z ds
路径 dr
r r+dr
ls
ls=
dr ds
dr=ds
o
y
x
图 光线传播路径示意图
z
a
b
r
r=(s/n)a+b
o
y
x
图 均匀介质中路径方程的解
矢量b 指出了光线的起始位置; 矢量a 则指明了光线的传播方向。
总结
当光纤纤芯的横向尺寸(直径)远大于光 波长时,可以用较成熟的几何光学(射线光 学)分析法进行分析;
在工业发达国家及我国:干线大容量通信线路不再新建 同轴电缆,而全部铺设光缆。
《光纤光学教学课件》第三讲
![《光纤光学教学课件》第三讲](https://img.taocdn.com/s3/m/f4d3306d195f312b3069a58e.png)
缺点:不能解释诸如模式分布、包层模、模式耦合以及光场分 布等现象,分析单模光纤时结果存在很大的误差。
14.11.2020
.
2
© HUST 2012
14.11.2020
波动光学方法:
是一种严格的分析方法,从光波的 本质特性电磁波出发,通过求解电磁波所遵 从的麦克斯韦方程,导出电磁波的场分布。
2 (x ,y ,z) k2 (x ,y ,z) 0
ke /V p2/n0k
14.11.2020
.
© HUST 2012
12 14.11.2020
2.2 程函方程与射线方程
一、程函方程:光程函数方程
设上述的标量场方程的解有如下形式: 0 ( x, y, z)eik0Q( x, y,z)
Q(x,y,z) 是光程函数,代入亥姆赫兹方程得:
由 Q2 n2
.
n
14 14.11.2020
单位矢量相等:
u ndr Q
n ds
又有:
d dxi dr•
ds i dsxi ds
对式 Q2 n2 ,求导数得:
2 Q Q 2 n n
nddrsQnn
14.11.2020
.
© HUST 2012
15 14.11.2020
nd Qnn
ds ddsnddrsn
光线方程
14.11.2020
.
© HUST 2012
16 14.11.2020
光线方程的物理意义:
当光线与z 轴夹角很小时,有:
物理意义:
ddznddrznr
• 将光线轨迹(由r描述)和空间折射率分布(n)联系起来;
基础光学第4章光波在界面的反射和折射规律课件
![基础光学第4章光波在界面的反射和折射规律课件](https://img.taocdn.com/s3/m/235d413c9a6648d7c1c708a1284ac850ad0204b4.png)
无论 n1 n2 或 n1 n2
透射光1’和2’振动方
向相同。即无半波损失。
只要光线2存在,光线1
和2的振动方向总是相
反的,即1和2的光程之
间存在半波损失。
光在多层透明介质界面的反射和折射
n1 < n2< n3 或n3 < n2< n1
时,光线1和2之间的光程
没有半波损失。
当折射率不按顺序排列时,
p
s
n2 n1
t p ts
2n1
n2 n1
入射
反射
约定
n1 < n2 n1 > n2
rp
rs
tp
ts
+
+
+
+
+
约定
实际
实际
+
反射
入射
n1
n2
约定
实际
透射
(a) n1 < n2
n1 < n2 时反射光与入射光振动方向相反
n1 > n2 时反射光与入射光振动方向相同
在任何情况下,透射光的方向和入射光相同
中的多次反射,分别求光从空气(折射率为1.0)正入射到玻
璃上表面,以及光从玻璃下表面射出时的振幅反射率、光强
反射率、振幅透射率和光强透射率。
【解】 正入射: i1 i2 0
n n
2n1
rp 2 1 rs , t p ts
n2 n1
n2 n1
2
n2 n1
在反射和折射过程中,p, s两个分量的振动是相互独立的
4.2 菲涅尔反射和折射公式
n cos i1 n1 cos i2
光纤光学大学物理实验讲义
![光纤光学大学物理实验讲义](https://img.taocdn.com/s3/m/9dff86a9c67da26925c52cc58bd63186bceb921e.png)
光纤通信实验 光纤通信就是利用光纤来传输携带信息的光波以达到通信的目的。
光纤通信是现代通信网的主要传输手段,主要通过在发送端把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。
因此构成光纤通信的基本要素是光源、光纤和光检测器。
半导体激光器可以作为光纤通信的主要光源,其具有超小型、高效率和高速工作的优异特点,到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源.光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
前香港中文大学校长高锟和G eorge A. Hockha m 首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖<。
光检测器:把光发射机发送的携带有信息的光信号转化成相应的电信号并放大、再生恢复为原传输的信号的器件。
【实验目的】1. 了解和掌握半导体激光器的电光特性和测量阈值电流2. 了解和掌握光纤的结构和分类以及光在光纤中传输的基本规律。
3. 对光纤本身的光学特性进行初步的研究,对光纤的使用技巧和处理方法有一定的了解。
4. 了解光纤通信的基本原理。
【实验仪器】导轨,半导体激光器+二维调整,三维光纤调整架+光纤夹,光纤,光探头+二维调整架,激光功率指示计,一维位移架,专用光纤钳、光纤刀,示波器,音源等。
【实验原理】一、半导体激光器的电光特性实验采用的光源是半导体激光器,由于它的体积小、重量轻、效率高、成本低,已进入了人类社会活动的多个领域。
因此对半导体激光器的了解和使用就显得十分重要。
本实验对半导体激光器进行一些基本的实验研究,以掌握半导体激光器的一些基本特性和使用方法。
《光纤光学教学课件》第七讲
![《光纤光学教学课件》第七讲](https://img.taocdn.com/s3/m/4112c47b3968011ca3009168.png)
NA(r) n0 (r)sinimax(r) n2 (r) n22
n2 n n1
2020/4/22
一、倾斜光线
射线方程:
d (n dr) n(r) dS dS
轴向分量方程:
d n dz 0 dS dS
角向分量方程:
n dr d d nr d 0
dS dS dS dS
2020/4/22
约束光线:
条件: n22 n 2 n12 即:
n2 n(r0 )cosz (r0 ) n1
光线存在区域: rg1 r rg2 内散焦面半径: rg1 外散焦面半径: rg 2
n12
ng2
n22
n22
I2 a2
0
2020/4/22 © HUST 2012
n2 r
n2
r
I2 r2
dn dz
0
横向分量:
d dS
ur (rer )
dr dS
ur er
r
ur d er
dS
(矢量关系式
ur d er
d
uur
euur,dde
ur er )
dr dS
ur er
r
d
dS
uur e
d dS
[n
d dS
ur (rer )]
d dS
(n
dr dS
ur er )
d dS
(nr
d
dS
uur e )
r
Const
n :第一射线不变量,由光线的入射条件所决定!
同一光线:n 值相同;不同光线:n值不同!
轴向运动:广义折射定理
2020/4/22 © HUST 2012
物理光纤光学课件
![物理光纤光学课件](https://img.taocdn.com/s3/m/e9fd44ba710abb68a98271fe910ef12d2bf9a917.png)
理论——耦合模理论
基本思想:相耦合的两波导中的场, 各自保持了该波导独立 存在时的场分布和传输系数, 耦合的影响表现在场的复数振 幅的沿途变化。设两波导中的复数振幅为A1和A2。由于耦合作 用, 它们沿长度方向变化。
dA1 (z) dz
i(1
C11 ) A1
iC12 A2
dA2
(
Z
)
dz
i(2
•Light of the specified wavelength traveling along the fiber is
reflected from the grating back in the direction from which it came.
•Wavelengths which are not selected are passed through with little
制作工艺:熔锥型、磨抛型
熔锥型器件(强耦合模激励理论),使两光纤芯靠近,使 传播场向外扩展,以便在相当短的锥体颈部区域出现有效 的功率耦合。在耦合器中功率耦合最有效区域(颈部区域) 内的模式基本上是包层模,传播场脱离纤芯,这时场是在 包层和外部媒体(空气或其他适合的填料)所形成的新波 导中传播。
磨抛型器件(弱耦合理论),利用光学冷加工(机械抛磨) 除去光纤的部分包层,使光纤波导能相互靠近,以形成瞬 逝场相互渗透。利用微调装置改变两光纤的相对位置可以 改变耦合器的耦合率。
•the most important aspect is that the effect is asymmetric.
•materials : YIG (YttriumIron-Garnet)
2. Polarisation Independent Isolator
chapter光纤光学ppt课件
![chapter光纤光学ppt课件](https://img.taocdn.com/s3/m/6909fde2581b6bd97e19eacb.png)
在z=30km时的输出功率(用dBm表示) Pout(dBm)=Pin(dBm)-αz
=-7dBm-0.8dB/km×30km =-31dBm
Pout=10-31/10(mW)=0.79×10-3mW=0.79uW
整理ppt
35
2.群延时
延时差:
d( 1 )
g
Vg d
色散系数
整理ppt
36
3.色散系数
引进色散系数D,指的是光信号在单位轴向距离上、单位波长间隔
产生的时延差:Dd dgd d V 1 g 2 2c2 cd d2n 2
群速率色散参数β2
()n()c01012202...
mdd mm0
(dB /km )1 z0log10[P P ((0 z))]4.343 p
整理ppt
5
dB=10log10(PA/PB)是功率增益的单位,是一个相对值。 例如:PA的功率比PB的功率大一倍,那么
10log10(PA/PB)=10log10(2)=3dB
为了方便计算光纤链路中的光功率,通常将dBm作为光功率 的运算单位,这个单位的含义是相对于1mW的功率。
=10log10[PA(mW)/PB(mW)] 例1:如果PA的功率为46dBm,PB的功率为40dBm,则PA比PB大 6dB。
46dBm-40dBm=6dB
10log10[PA/PB]=6 PA/PB=100.6=3.98≈4
整理ppt
7
例2:设想一根30km长的光纤,在波长1300nm处的衰减为 0.8dB/km,如果我们从一端注入功率为200uW的光信号,求 其输出功率Pout。 解:首先将输入功率的单位转换成dBm。
2020090 光纤光学(中英文)(2011)
![2020090 光纤光学(中英文)(2011)](https://img.taocdn.com/s3/m/ec9d81305727a5e9856a61e4.png)
天津大学《光纤光学》课程教学大纲课程编号:2020090 课程名称:光纤光学学时:32 学分: 2学时分配:授课:32 上机: 0 实验: 0 实践: 0 实践(周):授课学院:精密仪器与光电子工程学院适用专业:电子科学与技术(光电子方向)、光电子技术科学、光学工程先修课程:激光原理、物理光学一、课程的性质与目的本课程是一门专业选修课。
通过本课程的学习,学生应能掌握光纤光学的基本理论和基本方法,分析和解决光纤光学中的实际问题,同时了解光纤光学的应用和发展动态。
二、教学基本要求1.了解光纤的基本应用领域,系统掌握光纤的基本性质和光纤中的光传输的基本理论,并能运用这些基本理论解释、推导光纤光学中的有关问题。
2.掌握分析和衡量光纤无源、有源器件性能的基本方法,熟知各类器件的基本特性、使用方法和基本应用,了解当前国内外相关的前沿动态和研究热点趋势。
3.熟知光纤领域研究中基本参数的测量方法、原理和使用的测量仪器。
能运用仪器进行简单操作。
三、教学内容第一章光纤概述本章主要介绍光纤的基本应用领域、光纤的基本特性和分析方法。
1 绪论2 光纤概述3光波在光纤中的传播特性4 光纤的色散特性5 光纤的损耗6单模光纤中的非线性效应第二章光无源器件本章主要介绍光纤光学中常用的光无源器件,分析各类器件的基本原理和特性、衡量指标以及典型应用。
1光纤连接器2光纤耦合器3 偏振控制器4光隔离器)5 光滤波器/复用器第三章光有源器件本章主要介绍光纤光学中基本的光有源器件及其典型应用,分析各类器件的原理、特性。
1 光调制器2光放大器3 光纤激光器第四章故障诊断和测试设备简介本章主要介绍光纤光学中常见参数的测量方法和常用的测量仪器。
1 光功率测量2 波长和频率测量3 时间测量4 信号质量测量5 光时域反射计四、学时分配五、评价与考核方式平时成绩10%,期末成绩90%六、教材与主要参考资料1.《光纤光学》,廖延彪编著,清华大学出版社,19992.《光纤光学》,Jeff. Hecht 著,贾东方等译,人民邮电出版社, 20043.《光无源器件》,林学煌等编著,人民邮电出版社,19984.《光通信器件与系统》,J. H. Franz 著,徐宏杰等译,北京电子工业出版社,20025.Fiber-Optic Communication Systems, G. P. Agrawal,A John wiley & Sons, Inc.Publication,2002TU Syllabus for Fiber OpticsCode: 2020090Title: Fiber Optics Semester Hours: 32 Credits: 2Semester Hour Structure Lecture:32 Computer Lab:Experiment:Practice:Practice (Week):Offered by:College of precision instrument and opto-electronicsengineeringfor: Electronic science and technology (optoelectronics); opto-electronic technology science; information engineeringPrerequisite: Laser principle, physical optics1. ObjectiveWe start by covering the basics of fiber optics theories, fiber structures and characteristics. Light propagation through multi-mode and single-mode optical fibers is studied, including the effects of dispersion, attenuation and nonlinear effects. The passive and active optical fiber components are also covered extensively, including the basic principles, parameters and applications. The last part of the course focused on instruments usually used in fiber systems.2. Course DescriptionThis course is a specialized optional course. This course covers the fundamentals of fiber optics. Its goal is to help students develop a thorough understanding of the underlying physical principles and possess analytical ability to deal with problems of fiber systems. Students are also expected to know applications and developmental tendency of fiber optics.3. TopicsChapter 1 Introduction1 Introduction of fiber2 Light propagation in fibers3 Group-velocity dispersion4 Fiber losses5 Nonlinear effects in fibersChapter 2 Passive fiber devices1 Fiber connectors2 Fiber couplers3 Polarization controllers4 Optical isolators5 Optical filtersChapter 3 Active fiber devices1 Optical modulators2 Optical Amplifiers3 Optical fiber lasersChapter 4 Instruments in fiber systems1 Optical power measurements2 Wavelength and frequency measurements3 Time measurements4 Signal quality measurements5 OTDR4. Semester Hour StructureHomework 10%, Final exam 90%6. Text-Book & Additional Readings1. Fiber optics, Liao Yanbiao, Tsinghua University Press, 19992. Fiber optics, Jeff. Hecht, People postal Press, 20043. Passive fiber devices, Lin Xuehuang, People postal Press, 19984. Optical communications components and systems, J. H. Franz, Beijing electronic industry Press, 20025.Fiber-Optic Communication Systems, G. P. Agrawal,A John wiley & Sons, Inc.Publication,2002。
光纤光学-1-6课件
![光纤光学-1-6课件](https://img.taocdn.com/s3/m/7fcac13353d380eb6294dd88d0d233d4b14e3f93.png)
Ur cos(m -1)
J m+1 (
a
)
sin(m +1)
-
Jm-1(
a
)
sin(m -1)
EyI
A Jm (U )
Ur cos m
Jm(
a
)
sin m
HxI
-n
0 0
A Ur cos m
Jm (U )
Jm(
a
)
sin m
ExI 0
H
I y
0
2022/10/18
4
线偏振模LPml 的构成(r>a)
EyII
A Km
Wr cos m
Km (
a
)
sin m
H
II x
-n
0 0
A Km
Wr cos m
Km (
a
)
sin m
ExII 0
H
II y
0
2022/10/18
5
LPml模的偏振态:
• LPml模的简并态是以光纤的弱导近似为前提的。实 际上,n1和n2不可能相等,因此HEm+1,l模与EHm-1,l模的 传播常数β不可能绝对相等,即两者的相速并不完全 相同。随着电磁波的向前传播,场将沿z轴作线偏振 波-椭圆偏振波-园偏振波-椭园偏振波-线偏振 波的周期性变化。场形变化一周期所行经的z向距离, 即差拍距离为:
Jm(U)
Km(W)
2022/10/18
8
LPml模式本征值
• 模式的截止与远离截止:
– 远离截止: W→∞, 场在包层中不存在 – 临近截止: W=0 , 场在包层中不衰减
• 截止与远离截止条件:
光纤光学4章讲义
![光纤光学4章讲义](https://img.taocdn.com/s3/m/e4ae4f9ac281e53a5902ff82.png)
2、散射损耗
特点:不可能消除的损耗
光纤技术
2、散射损耗
特点:产生新的频率分量 受激拉曼散射和受激布里渊散射的阈值,对于不同光纤
多模光纤的阈值:约为500W和2.5W; 单模光纤的阈值:降为500mW与2.5mW
光纤技术
3、散射和吸收损耗的对比
长波长区域: 损耗主要来自吸收的影响。玻璃中的OH-1的吸收在长 波长去急剧增加,1.65m外很少用于通信系统
– 弯曲光纤中的场可以看成某一等效折射率分布下直光纤 – 产生相移exp(-ibLz)=exp(-iθ) 由几何关系:Z=(Rc+rcosφ)θ 在纤轴处,场不变,bL=b,Z=Rcθ,bRc 可得:
bL b[1 (r / Rc ) cos]
光纤技术
过渡弯曲损耗
– 满足波导场方程
[
2 r2
1 r
光纤技术
8、偏振模色散
理想光纤,两种不同的偏振模没法区分,是 简并的
产生原因:由于光纤内部应力和外界压力引起 折射率的微小差别,造成双折射,因而有了偏 振模色散
偏振模色散不是传输长度的简单累加
因为 1、双折射沿光纤是随机变化 2、两种偏振模间的转化是随机的
因此脉冲展宽是一种统计量,随光纤长度的平方根增 大
光纤技术
多模色散-GIOF
渐变折射率分布光纤的纤芯中,折射率n(r)是径向
距离r的函数; n2 (r ) nn2212 1 2(r / a)g
ra ra
g=1: 三角分布 g=2: 平方率分布 g=: 阶跃分布
光纤技术
多模色散-GIOF
不计纤芯与包层材料的色散差,最佳折射率 分布参数为: g 2 2.4
pout pin x L
光纤光学学习指引2doc272KB
![光纤光学学习指引2doc272KB](https://img.taocdn.com/s3/m/f44a010a5f0e7cd18425367d.png)
第一部分.光纤光学需要掌握的基本概念与重要结论第一章.绪论1.光纤的优缺点优点:大容量;低损耗;抗干扰能力强;保密性好;体积小重量轻;材料取之不竭;抗腐蚀耐高温。
缺点:易折断;连接分路困难;怕水;怕弯曲。
2.光纤的分类重点掌握(1)光纤的结构,纤芯、包层、涂覆层的特点与作用(2)阶跃折射率分布光纤(SIOF)与渐变折射率分布光(GIOF)的特点与区别,折射率分布形式。
一些基本参数的意义与其表达式:相对折射差∆的意义与表达式;折射率分布参数g的意义(当g=∞时为SIOF,当g=2时为平方率分布光纤,当g=1时为三角分布光纤)。
(3)单模光纤与多模光纤的特点与区别(传输的模式数,芯径的大小,归一化频率);归一化频率的意义与表达式(阶跃单模光纤的判据:V<2.405,渐变单模光纤的判据:V<3.508。
注意我们经常见到的2.405 是对阶跃光纤而言的)。
简单了解其它种类的光纤,例如保偏光纤与有源光纤(后面的课程会学到)。
3.光纤的制备工艺简单的了解一下。
第二章.光纤光学的基本方程1.分析光纤波导的两种理论“几何光学方法”与“波动光学理论”的应用条件(几何光学方法:芯径远大于光波长;波动光学理论:芯径与波长可比例)与特点。
2.由麦克斯韦方程组出发推导波导场方程(1)“三次分离”,基本过程以及能够这样分离的依据“电磁”分离:由麦克斯韦方程组到波动方程“时空”分离:由波动方程到亥姆霍兹方程“横纵”分离:由亥姆霍兹方程到波到场方程(2)SIOF与GIOF中光线方程的意义,即SIOF与GIOF中光线的传播形式3.模式及其基本性质(1)模式的基本概念与定义(2)TEM、TE、TM、HE、EH模式的特点(3)纵向传播常数β横向传播常数W、U的意义(重点了解W的意义),以及W、U、V之间的关系(4)截止与远离截止的概念与基本条件(W=0截止,W=∞远离截止)(5)相速度、群速度、群延时的基本概念(6)线偏振模的概念第三章.阶跃折射率分布光纤1.几何光学分析方法主要掌握一些基本的概念,“子午光线”与“偏斜光线”的定义;数值孔径的表达式,以及其物理意义(标志着光纤收光能力以及与光源耦合时偶和效率的大小),数值孔径与传输带宽的关系(成反比)。
光纤光学讲义三PPT课件
![光纤光学讲义三PPT课件](https://img.taocdn.com/s3/m/5e71ab375bcfa1c7aa00b52acfc789eb172d9ed9.png)
放大光信号,提高传输距离和可靠性。
半导体光放大器(SOA)和掺铒光纤放大器(EDFA)
SOA通常用于信号处理和逻辑门,EDFA则广泛应用于长距离通信。
光纤通信系统的性能指标
带宽与色散
带宽决定了传输速率,色散则 影响信号质量。
损耗与增益
光纤的损耗和增益对系统性能 有重要影响。
噪声与信噪比
噪声会影响信号质量,信噪比 则是衡量信号质量的重要参数 。
塑料光纤
由塑料材料制成,具有成本低、柔软 易弯曲的特性,通常用于短距离照明 、显示等领域。
光纤的损耗与色散特性
损耗特性
光纤传输光信号时会因为吸收、散射等原因产生能量损耗。石英光纤的损耗较 低,而塑料光纤的损耗较高。
色散特性
光信号在光纤中传输时会产生时延,导致信号畸变。石英光纤的色散较小,适 用于长距离通信;而塑料光纤的色散较大,适用于短距离应用。
05
光纤光学的未来发展
光子晶体光纤与光子束纤维
光子晶体光纤
光子晶体光纤是一种新型的光纤,其纤芯由光子晶体构成。由于其具有高非线性、低损耗、易于制作 等优点,因此在光通信、光学传感、激光器等领域具有广泛的应用前景。
光子束纤维
光子束纤维是一种能够传输高功率光束的特种光纤。它具有高强度、高光束质量、高稳定性等优点, 因此在激光武器、激光雷达、高能物理等领域具有重要的应用价值。
光纤互联网
利用光纤传输技术,实现全球范围内的互联互通,提供高速 、稳定的网络服务。
光纤物联网
通过光纤网络连接各种物联网设备,实现智能化、远程控制 等功能。
光纤传感技术及其应用
光纤传感原理
利用光纤的传光特性,感知外界物理 量(如温度、压力、位移等)的变化。
光纤光学演示文稿
![光纤光学演示文稿](https://img.taocdn.com/s3/m/999589d729ea81c758f5f61fb7360b4c2e3f2a42.png)
E1t=E2t; H1t=H2t; B1n=B2n; D1n=D2n
第十四页,共25页。
分离变量:电矢量与磁矢量分离
得到只与电场强度E(x,y,z,t)有关的方程式及只与磁
场强度H(x,y,z,t)有关的方程式:波动方程
第十五页,共25页。
分离变量: 时空坐标分离
前提:光纤传播单色光波,时间函数为简谐函数 令场分量为:
第二十页,共25页。
模式命名
根据场的纵向分量Ez和Hz的存在与否,可将 模式命名为:
(1)横电磁模(TEM): Ez=Hz=0;
(2)横电模(TE): Ez=0, Hz≠0; (3)横磁模(TM): Ez≠0,Hz=0; (4)混杂模(HE或EH):Ez≠0, Hz≠0。 光纤中存在的模式多数为HE(EH)模,有时 也出现TE(TM)模。
2=w2emb2=n2 k02b2横向传播常数
bn(r)k0cosqz 纵向传播常数
第十七页,共25页。
波导场方程的数学物理意义
波导场方程:是波动光学方法的最基本方程。 它是一个典型的本征方程,其本征值为或β。 当给定波导的边界条件时,求解波导场方程可 得本征解及相应的本征值。通常将本征解定 义为“模式”.
分析思路
电磁分离
时空分离 纵横分离
第十三页,共25页。
波动方程 wave equation
亥姆赫兹方程 Helmholtz equation 波导场方程
麦克斯韦方程
H D/t EB/t
D 0 B0
D=εE B=μH
e=e0n2
边界条件:在两种介质交界面上电磁场矢量的E(x,y)和H(x,y)切向分量要连续,
第二十一页,共25页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤的损耗谱
光纤技术
光纤通信波长
10.0
5.0 光 纤 衰 2.0 减 (dB)
1.0
0.5
1978 年
1982 年 2004年
1980 年
0.8
1.0
1.3
1.5
波长 (m)
1.7
光纤技术
全波光纤
光
纤
衰 减
除去 OH 峰外, 可用波长 >300nm
低损耗窗口
波长
全波光纤:从1280nm到1625nm波长都可 以使用。
F(r) e-102
r
04V2 8 a 2R c
2
3、与归一化频率有关
V越大,允许传输导模数越多,则α增大
(高阶模式的弯曲损耗强于低阶模式)
光纤技术
典型单模光纤过渡弯曲损耗的计算
V=2.4,Δ=0.003,ω/a=1,a=5um, Rc=2cm 则α=0.52dB
光纤技术
微弯损耗
单模光纤微弯损耗:主要取决于模场半径W0,相对折射率 差Δ和纤轴的畸变。 经验公式:
(r)dr
2
rd
02e 0
其中rd
04V2
8aRc
光纤技术
过渡弯曲损耗的计算
损耗系数:
α
10lg
Pout Pin
8.68(
ω0 a
)3
a Rc
V2 8Δ
由上可以看出:
1、过渡损耗,α与a/RC即弯曲程度有关;
RC减小,α增大(弯曲越狠,损耗越大)
2、与模场半径有关 ω0 / a
ω0越大,越大;
光纤技术
多模色散-GIOF
渐变折射率分布光纤的纤芯中,折射率n(r)是径向
距离r的函数; n2 (r ) nn2212 1 2(r / a)g
ra ra
g=1: 三角分布 g=2: 平方率分布 g=: 阶跃分布
光纤技术
多模色散-GIOF
不计纤芯与包层材料的色散差,最佳折射率 分布参数为: g 2 2.4
T1
T2 T2> T1, f2<f1 ,则色散限制了光纤中信号的传输速率。 也限制了无电中继的传输距离。
光纤技术
4.3.2 光纤的色散与带宽
色散种类: 模间(模式)色散:多模传输 材料色散:折射率对波长的依赖 波导色散:波导特性随波长变化 偏振模色散:单模光纤中特有
色度色散 模内色散
t 色散系数( ns / km) L
Stoke波:fR=fS-
反Stoke波:fR=fS+
对于 受激拉曼散射和受激布里渊散射产生的阈值
多模光纤的阈值约为500W和2.5W; 单模光纤的阈值降为500mW与2.5mW
光纤技术
4.3.3、光纤中的非线性效 应
科尔效应:n=n1+nnI
I为光场强度,nn为非线性折射率:
光纤技术
石英光纤的材料色散
对于石英光纤:
Dn
d n d
0
c
d2n
d2
01.27um,源自d2nd20, D
0, 正常色散区
0
1.27um,
d2n
d2
0,
D
0, 反常色散区
0
1.27um,
d2n
d2
0, D
0, 零色散点
Dn
二次曲线形状
1.27um
λ
光纤技术
3 色度色散的深入讨论-波导色散
波导色散:参数V变化引起,与频率ω有关。
4.3 光纤传输特性
三个重要因素: 损耗、色散、非线性
非线性:引起DWDM传输信道串扰。
光纤技术
4.3 光纤传输特性
光纤的衰减:包括耦合损耗、吸收损耗、散射损 耗 和弯曲损耗 耦合损耗:对于通信用长光纤,这项不重要 剩余功率:
p(D) ( p0 p)[1 ( s)]D
光纤技术
以 dB为单位计算光纤的损耗
F(r) e-102
r
04V2 8 a 2R c
2
场偏移的结果是导模向漏模转化, 引起功率泄露,造成过渡损耗。
光纤技术
过渡弯曲损耗的计算
在高斯分布下: 入射光功率:
Pin
2π rF02(r)dr
0
2( r )2
2π re 0 dr
0
2
02
出射光功率:
Pout
2π
0
rF0(r)F
光纤技术
色散的种类
材料色散:材料折射率随入射波长发生非线性的 变化引起的色散,与入射光波频率ω有关。 ω变 n变 Vg变;
光纤技术
色散的种类
模间色散:多个模式传输时,不同模式的 传输速度不同引起的色散。只存在于多模 光纤,单模光纤中不考虑。 偏振模式色散:不同的偏振态偏振模式传 输速度不同所导致的色散。在高速率下必 须考虑。 通常小于0 .5 ps/nm/km
光纤技术
2、散射损耗
特点:不可能消除的损耗
光纤技术
2、散射损耗
特点:产生新的频率分量 受激拉曼散射和受激布里渊散射的阈值,对于不同光纤
多模光纤的阈值:约为500W和2.5W; 单模光纤的阈值:降为500mW与2.5mW
光纤技术
3、散射和吸收损耗的对比
长波长区域: 损耗主要来自吸收的影响。玻璃中的OH-1的吸收在长 波长去急剧增加,1.65m外很少用于通信系统
光纤技术
5、光源带宽与色散
光源带宽越宽,则色散越大,脉冲展宽越大 所以, LD光源用在长途通信上
LED光源一般用在短距离通信上
长距离、高速通信网络对光源要求很高
tc Dc () L
光纤技术
6、色度色散的补偿和修饰
光纤技术
6、色度色散的补偿和修饰
色散补偿光纤:具有较大的负波导色散,总 的色度色散为负值 因此要求:较短且在光接收机端 原因:1、 损耗较大
光纤技术
色度色散(模内色散)
色度色散:包括材料色散和波导色散
– 多模光纤的色散
t tm2 tc2
– 单模光纤的色散
t
t
2 p
tc2
光纤技术
多模色散-SIOF
最大时延差:
Tm
Ln1 c0
– 光纤的脉冲展宽:
减少可以减小 脉冲的展宽,但是减小 则NA减小
Tm2
1 Tm
3 2
2
Tm
Ln1 2c0 3
材料色散:折射率随波长变化,折射率高,光速 越慢,材料色散存在正负,
光纤技术
3色度色散的深入讨论-材料色散
材料色散引起的群延迟:
n
1 c
d(nk 0 ) dk 0
1 c
(n
0
dn
d
)
材料色散系数:
Dn
d n d
0
c
d2n
d2
可见:
材料色散取决于折射率对于波长的二阶导数, 表明群时延随波长变化的快慢程度。波长不同,引 起的材料色散不同。色散来源于折射率的非线性变 化。(若是线性,二阶导数为零)
短波长区域: 损耗主要来自瑞利散射,其大小随着波长减小激烈增 大
光纤技术
4、弯曲损耗
物
理 机
光纤发生弯 曲
全反射条件破 坏
制 导摸转化为辐射
能量逸
摸
出
约束能力下 降
光功率损 失
a、宏弯损耗:实际应用中必需的盘绕、曲折等引起的 宏观弯曲。
b、微弯损耗:光纤的制备过程中或在应用过程中由于 应变等原因引起的光纤形变所致。
D g d g 单位:ps /(km.nm) d
为光源的谱宽
光纤技术
2、色度色散的波长相关性
色度色散的波长相关:波导色散和材料色 散在某一波长处可以相互抵消
对于标准 石英单模光纤: 波导色散和材料色散的和在1310nm处为零 色散漂移:通过改变波导色散,色散零点移 到别的波长,通常为1550nm,即为色散位移 光纤
重要数据: 0.5dB~0.9; 1dB~0.8;2dB~0.6; 3dB~0.5; 10dB~0.1;20dB~0.01
光纤技术
总损耗dB= (dB/kM) x L (kM) dB 度量功率,分别为dBm 和 dB
0dBm 和 0dB分别相当与1mW和1 W
dBm与mW间的换算关系: dBm=10lg[P(mW)] 以dBm为单位,则
ω变 V(U,W)变 β变 Vg变; 对于阶跃折射率单模光纤 波导色散很小,但很重要 波导色散也有符号,用来表明波长变化是如何影响 色散的
色散补偿单模光纤-- 合理设计光纤的波导参数, 使其有较大的负波导色散,抵消正的材料色散
光纤技术
波导色散
波导色散引起的群延时 w
1 c
d(bnk0) dk0
n c
dVb dV
色散 d w d
n
c0
V
d(2 Vb dV2
)
0
总色散D Dn Dw
材料色散
D
总色散
1.27um
1.31um
λ
波导色散
光纤技术
光纤技术
4 色散斜率
假设一定波长范围内色散是线性变化
处在这个范围内的波长处的色散大小为:
D() k D(1)
色散斜率给出了色散值在一定波长范围内的变化
脉冲展宽:
(Tm)opt
N12 20 3c
可见:对于渐变折射率分布光纤
色散可以减少/10。
即如果=1%,可以减少1/1000。 实际只能减低到1/100, 原因:折射率分布很难精确控制
光纤技术
2、色度色散的波长相关性
色度色散:群速度与波长相关而造成的波长 展宽,包括波导色散和材料色散
色度色散:光源谱宽为1nm时,光脉冲信 号传播1km所引起的脉冲展宽。脉冲展宽通 常很小,以ns、ps为单位(1ps=10-12s)