26. 二次函数 全章教案(华师大版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时
通过具体问题引入二次函数的概念;
在解决问题的过程中体会二次函数的意
通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.)正方形边长为(cm
4
则面积增加
请观察上面列出的两个式子,
是
为自变量
.因此,当
出下列各函数关系,并判断它们是什么类型的函数.
)某种储蓄的年 1.98%
息和
形的两条对角线的和为)与一对角间的函数关系.
为二次函数?
.已知正方形的面积为
的二次函数.
在四个角上各剪去一个边长为
曲线自左向右上升.
2
y-
=的图象开口向下,顶点是抛物线的最高点,在对称2x
轴的左边,曲线自左向右上升;
注意点:
在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的
)在自变量取值范围内,图象为抛物线的一部分.
向都向,对称
、,顶点
、.
请同学们完成填空,并观察三个图象之间的关系.
66
)1 ++
因此,抛物线开口向下,
,8).
P18
又因为点B在抛物线上,将它的坐标代入
如图,铅球落在x 轴上,则y=0,
03
5
322=++x x .
观察图象与x 轴的交点个数,分别是 个、 个、 个.你
知道图象与x 轴的交点个数与什么有关吗?
另外,能否利用次函数c bx ax y ++=2图象寻找方程
)(02≠=++a c bx ax ,不等式)0(02≠>+a c bx ax 或
)0(02≠<++a c bx ax 的解?
实践与 探索1
分析 (1)抛物线324)1(22-+++=k kx x k y 与x 轴相交于两点,相当于方程0324)1(22=-+++k kx x k 有两个不相等的实数根,即根
的判别式⊿>0.
(2)二次函数232)1(2-++-=a ax x a y 的图象的最低点在x 轴上,
也就是说,方程0232)1(2=-++-a ax x a 的两个实数根相等,即⊿=0.
(3)已知抛物线23)1(2----=k x k x y 与x 轴交于两点A (α,0),
B (β,0),即α、β是方程023)1(2=----k x k x 的两个根,又由
于1722=+βα,以及αββαβα2)(222-+=+,利用根与系数的关
系即可得到结果.
)0(0≠=a 的近似解时,0=+c ,然后分别画出函