复合材料界面与设计课件

合集下载

材料表界面第八章-复合材料界面PPT课件

材料表界面第八章-复合材料界面PPT课件
❖ 分子链中引入环氧基一般有两种方法,一种是由含 活泼氢的化合物如酚类、有机酸类、胺类与环氧氯 丙烷发生开环反应,然后在碱的作用下闭环,引入 环氧基:
16
缩水甘油醚型环氧树脂
R - O H + C H 2 - C H - C H 2 C l O
R - O - C H 2 - C H - C H 2 C l O H
陶瓷基、水泥基、玻璃基
3
复合材料的特性
(1). 轻质高强
复合材料的密度低,在1.4~2.0之 间,约为钢的1/5,铝的1/2,因而 其比强度(抗张强度与密度的比)、 比模量(弹性模量与密度的比)比 钢、铝合金高,如高模量碳纤维/环 氧复合材料的比强度为钢的5倍,铝 合金的4倍。其比模量是钢、铝、钛 的4倍。轻质高强是复合材料适宜用 作航空、航天材料的宝贵性能。
缩水甘油胺型环氧树脂
R - O - C H 2 - C H - C H 2 O
R - N H 2 + C H 2 - C H - C H 2 C l O
R - N H - C H 2 - C H - C H 2 C l O H
R - N H - C H 2 - C H - C H 2 O
O
O
C O HC= C O CH HC=C
调节饱和二元酸和不饱和二元酸的比例,可以控制不饱和聚酯中双键的含量
然后,在引发剂的存在下,不饱和聚酯中的双键与苯乙烯 发生自由基共聚反应,交联成三元网状结构
O CO
O HC-CHCO
HC-CH
CH-Ph
CH-Ph
CH
O
n
O
CH n
CO
HC-CHCO
HC-CH
第8章 复合材料的界面

复合效应与界面ppt课件

复合效应与界面ppt课件
16
为 了规范 事业单 位聘用 关系, 建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
2 非线性效应 复合材料的性能和其组元的对应性能没有相应的(线 性)关系的效应 1)乘积效应(Product Properties) 传递特性、交叉 耦合效应。
与未增强树脂基体相比
高强度、高模量、
高耐腐蚀性、加工 成型性好、低成本




军太








工舰电程艇来自机产建




环环休



9
为 了规范 事业单 位聘用 关系, 建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
4 复合材料的特征 具有材料性能的可设计性、各向异性及材料和结构一 次成型性。
复合材料。考虑环境协调性要求。
4
为 了规范 事业单 位聘用 关系, 建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
天 然 纤 维 复 合 材 料 制 品
亚麻衬垫
轿车车门护板





发动机隔音罩
5
为 了规范 事业单 位聘用 关系, 建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
为 了规范 事业单 位聘用 关系, 建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益

材料导论第十四章复合材料ppt课件

材料导论第十四章复合材料ppt课件
混凝土=水泥+砂+石
复合材料的种类
金属基
陶瓷基
按基体相分
聚合物基
水泥基
复 合 材
按增强相 的形态分
颗粒增强 纤维增强 晶须增强
碳纤维 玻璃纤维 有机纤维
复合纤维

编织物增强
按用途分
结构复合材料 承受载荷,作为承力结构使用
功能复合材料
电、磁、光、热、声、摩 擦、阻尼、化学分离性能
复合材料的特点
多相: 至少两相 复合效应:不仅保留了原组成材料的特色,而且
3、石墨/镁复合材料
这种材料密度低、线膨胀系数为零,尺寸的稳定性好,是金属基复合材料中具 有最高比强度和比弹性模量的复合材料。可在石墨纤维表面沉积TiB2,提高石 墨纤维的润湿性。
金属基复合材料
长纤维增强金属基复合材料
4、碳化硅/钛复合材料
碳化硅纤维比强度高、比模量高,高温强度高,耐热、耐氧化,与金属的反 应小,润湿性好。
主要应用于飞机发动机部件和涡轮叶片以及火箭发动机箱体材料。
5、氧化铝/铝复合材料
氧化铝纤维在氧化气氛中稳定,能在高温下保持其强度、刚度, 且硬度高,耐磨性好。这种复合材料具有高强度和高刚度,可用于 汽车发动机活塞和其他发动机零件。
金属基复合材料
1、氧化铝/铝复合材料
短纤维/晶须增强金属基复合材料 2、碳化硅/铝复合材料 3、氧化铝/镍复合材料
突出特点
性树脂基体—热塑性玻璃钢。
密度低:1.6~2.0g/cm3;
比强度高:较最高强度的合金钢还高3倍;
耐烧蚀
耐腐蚀
应用
航空航天工业:如雷达罩、机舱门、燃料箱、行李架和地板等。 火箭:发动机壳体、喷管。 汽车工业:如汽车车身、保险杠、车门、挡泥板、灯罩、内部装饰件等。 石油化工工业:如玻璃钢贮罐、容器、管道、洗涤器、冷却塔等

《复合材料教学课件》4复合材料设计理论

《复合材料教学课件》4复合材料设计理论

如表面的几何形状、分布状况、纹理结构; 表面吸附气体和蒸气程度; 表面吸水情况,杂质存在; 表面形态在界面的溶解、浸透、扩散和化 学反应; 表面层的力学特性,润湿速度等。
由于界面区相对于整体材料所占比重甚 微,欲单独对某一性能进行度量有很大困难。
因此常借于整体材料的力学性能来表征 界面性能,如层间剪切强度(ILSS)就是研究 界面粘结的良好办法;
对于一个结定的体系,接触角随着 温度、保持时间、吸附气体等而变化。
浸润性仅仅表示了液体与固体发生 接触时的情况,而并不能表示界面的粘 结性能。
一种体系的两个组元可能有极好的浸润 性,但它们之间的结合可能很弱,如范德华 物理键合形式。
因此良好的浸润性,只是两个组元间可 达到良好粘结的必要条件,并非充分条件。
界面上产生的这些效应,是任何一种单 体材料所没有的特性,它对复合材料具有重 要作用。
例如在粒子弥散强化金属中,微形粒子 阻止晶格位错,从而提高复合材料强度;
在纤维增强塑料中,纤维与基体界面阻 止裂纹进一步扩展等。
因而在任何复合材料中,界面和改善界 面性能的表面处理方法是关于这种复合材料 是否有使用价值、能否推广使用的一个极重 要的问题。
2.静电作用理论
当复合材料的基体及增强材料的表面带有 异性电荷时,在基体与增强材料之间将发生 静电吸引力,如图所示。静电相互作用的距 离很短,仅在原子尺度量级内静电作用力才 有效。因此表面的污染等将大大减弱这种粘 结作用。
界面粘结机理示意图 静电作用理论(electrostatic bonding)
粘结(或称粘合、粘着、粘接)是指不 同种类的两种材料相互接触并结合在一起 的一种现象。
当基体浸润增强材料后,紧接着便发 生基体与增强材料的粘结(Bonding)。

金属基复合材料界面问题课件.ppt

金属基复合材料界面问题课件.ppt

———
2.界面的作用
2024散射与吸收效应、诱导效应及不连续效 应。
传递效应:是指界面可以将外力通过基体传递给增强体,起连接基体与增强 体的作用。
阻断效应:是指界面具有阻断裂纹扩展、延缓应力集中的作用。 散射与吸收效应:是指界面具有透光、隔热、隔音、吸振、耐热冲击的性能。 诱导效应是指界面使周围物质的结构发生改变,从而产生出一系列特殊的性 质。不连续效应是指界面的物理不连续性。
产生界面反应产物一脆性相 :界面反应结果形成各种类型的化 合物,如A14C3、AIB2、A12MgO4、MgO、Ti5Si3、TIC等。
造成增强体损伤和改变基体成份 : 严重的界面反应使高性能纤 维损伤。
界面反应还可能改变基体的成份。
———
主要的界面问题:
1.界面反应及其控制途径: 2.界面微结构及其表征: 3.界面结构特性对微观、宏观性能的影响: 4.界面结构与复合材料组分的关系: 5.界面稳定性: 6.界面的优化设计和优化界面的有效途径
———
2024/10/8
Cf/Al复合材料界面反应工艺控制
在现有的金属基复合材料体系中, Cf/Al复合材料对界面是最为敏感的, 甚至成为复合材料能否成功应用的关键技术障碍一般地,C 与 Al的复合界面在 773K便可生成 Al4C3
三方面的危害: 1.呈脆性,可降低界面在复杂应力下传递载荷的作用; 2.会导致碳纤维损伤,降低纤维的承载能力 3.易于水解,潮湿环境下易腐蚀。
———
3.界面的类型
3.界面分类
2024/10/8
•结合的原理 机械结合 化学结合
•相互作用
既不反应又不扩散 不反应但溶解扩散 界面反应
———
4.界面反应
4.1界面过程 (1)界面的吸附和偏聚 (2)扩散和传质 (3)成核和生长 (4)界面化学反应

复合材料第四章复合材料界面幻灯片PPT

复合材料第四章复合材料界面幻灯片PPT
复合材料第四章复合材料 界面幻灯片PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
4.1 概 述
复合材料的界面是指基体与增强物之间化学成分 有显著变化的、构成彼此结合的、能起载荷传递作 用的微小区域。
Al2O3纤维/ 钛 硼纤维/ 钛
硼纤维/ 钛-铝 SiC纤维/ 钛 SiO2纤维/ 铝
金属基纤维复合材料的几种界面结合形式:
不同的界面结合形式形成不同的界面类型:
〔1〕机械结合〔物理结合〕……产生类型Ⅰ界面
定义:基体与增强体之间仅仅依靠纯粹的粗糙外 表相互嵌入〔互锁〕作用,以及借助基体收缩应力 包紧纤维时产生的摩擦而进展的连接,称为机械结 合。
溶解与浸润结合的要求:为了到达润湿,纤维外表应当作 适当处理,首先应除去污染物、吸附的气体和工艺涂层 (如纺织型浸润剂),其次通过外表处理形成外表润湿层、 阻挡层,或使增强材料形成利于机械结合的粗糙外表。
〔3〕反响结合………产生类型Ⅲ界面
定义:基体与纤维间发生化学反响,在界面上形成 一种新的化合物而产生的结合称为反响结合。这是 一种最复杂、最重要的结合方式。
类型Ⅲ
纤维与基体互相反应形 成界面反应层
钨丝/ 铜 Al2O3纤维 / 铜 Al2O3纤维 / 银 硼纤维(表面涂BN)/ 铝 不锈钢丝/ 铝 SiC纤维(CVD)/ 铝
硼纤维 / 铝 硼纤维 / 镁
镀铬的钨丝/ 铜 碳纤维 / 镍 钨丝/ 镍
合金共晶体丝/ 同一合金
钨丝/铜-钛合金
碳纤维/ 铝(>580℃)
研究复合材料界面的组成、构造、控制、性能和 改进界面相的工作被称为“界面工程〞。

复合材料界面课件

复合材料界面课件

汽车工业领域应用案例
碳纤维复合材料
在汽车工业领域,碳纤维复合材料被用于制 造高性能跑车的车身和车架。例如,兰博基 尼Aventador使用了碳纤维复合材料制造车 身,具有较高的强度和刚度,同时减轻了车 身重量,提高了车辆性能。
玻璃纤维复合材料
玻璃纤维复合材料在汽车工业中也被广泛应 用。例如,汽车保险杠、车门等部件使用了 玻璃纤维复合材料,具有较高的强度和刚度, 能够承受碰撞时的冲击合材料被用于制造桥梁、高速公路等基础设施的结构件。例如, 美国加州长滩大桥使用了碳纤维复合材料制造桥梁结构件,具有较高的强度和刚度,能
够承受车辆和自然灾害的荷载。
玻璃纤维复合材料
玻璃纤维复合材料在建筑领域也得到了广泛应用。例如,建筑外墙板、保温材料等使用 了玻璃纤维复合材料,具有较好的保温性能和耐候性能,能够提高建筑物的使用寿命和
界面材料匹配
通过合理的界面材料匹配,提高界面结合强度,降低界面应力集中,提高复合材料的整体性能。
制备工艺优化策略
制备工艺流程优化
通过优化制备工艺流程,减少生产过程中的能耗和污染,提高生产效率。
制备工艺参数优化
通过调整制备工艺参数,如温度、压力、时间等,提高复合材料的整体性能和稳定性。
06
复合材料界面应用案例分 析
复合材料界面课件
• 复合材料概述 • 界面基本概念与分类 • 复合材料界面研究方法 • 复合材料界面性能影响因素 • 复合材料界面优化设计策略 • 复合材料界面应用案例分析
01
复合材料概述
定义与分类
定义
复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观 上组成具有新性能的材料。
用。
04
复合材料界面性能影响因 素

聚合物基复合材料的界面ppt课件

聚合物基复合材料的界面ppt课件
第二阶段:
液态(或粘流态)组分的固化过程,即凝固或化学反应。
固化阶段受第一阶段影响,同时它也直接决定着所形成的 界面层的结构。
以热固性树脂的固化过程为例,固化剂所在位置是固化反 应的中心,固化反应从中心以辐射状向四周扩展,最后形成 中心密度大、边缘密度小的非均匀固化结构,密度大的部分 称做胶束或胶粒,密度小的称做胶絮。
18
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
1)浸润吸附理论
浸润吸附理论认为,高聚物的黏结作用可以分为两个阶段: 第一阶段:高聚物大分子借助于宏观布朗运动从溶液或
熔融体中,移动到被粘物表面;再通过微布朗运动,大分子 链节逐渐向被粘体表面的极性基体靠近。没有溶剂时,大分 子链节只能局部靠近表面,而在压力作用下或加热使黏度降 低时,便可与表面靠得很近。
所谓浸润,即是把不同的液滴放到不同的固体表面上,有时液 滴会立即铺展开来,遮盖固体的表面,这一现象称为“浸润”。 有时液滴仍团聚成球状,这一现象称为“不浸润”或“浸润不 好”。 液体对固体的浸润能力,可以用浸润角θ来表示 当θ≤90°时,称为浸润; 当θ≥90°时,称为不浸润; 当θ=0°及180°时,则分别为完全浸润和完全不浸润。
21
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
2)化学键理论(在复合材料组分之间发生化学作用,在界面上形 成共价键结合.)
1949年提出化学键理论。 该理论的主要观点是:偶联剂分子应至少含有两种官能团, 第一种官能团在理论上可与增强材料起化学反应,第二种官 能团在理论上应能参与树脂的固化反应,与树脂分子链形成 化学键结合,于是,偶联剂分子像“桥”一样,将增强材料 与基体通过共价键牢固地连接在一起了。 例如,使用甲基三氯硅烷、二甲基二氯硅烷、乙基三氯硅烷 和乙烯基烷氧基硅烷及二烯丙基烷氧基硅烷于不饱和聚酯/玻 璃纤维体系中。结果表明含不饱和基硅烷的制品强度比饱和 基的高出几乎2倍,显著地改善了树脂/玻璃纤维两相间的界 面黏结。

2024版《复合材料》PPT课件

2024版《复合材料》PPT课件
基体材料选择
如环氧树脂、聚酰胺、聚酯等,具有良好的粘结性、耐腐蚀性等 特点。
原材料预处理
包括清洗、干燥、剪裁、浸润等步骤,以确保原材料的质量和性 能。
成型工艺方法介绍
手糊成型
喷射成型
将纤维增强材料和基体材料手工逐层铺设在 模具上,通过手工涂刷或喷涂基体材料,形 成复合材料制品。
利用喷枪将基体材料和短切纤维同时喷向模 具表面,形成复合材料层。
复合材料可用于制造汽车发动机罩、底盘护板等部件,具 有减振、降噪和提高耐久性等优点。
建筑领域应用
结构构件
复合材料用于制造建筑结构如梁、板、柱等,具有轻质高强、耐腐蚀和耐候性等优点,如纤 维增强混凝土(FRC)在建筑中的应用。
外墙材料
复合材料可用于制造建筑外墙板、保温材料和装饰材料等,提高建筑的保温性能和美观度。
汽车工业应用
车身结构
复合材料用于制造汽车车身、车门、车顶等结构件,具有 减重、提高刚度和耐撞性等优点,如碳纤维复合材料在高 端跑车和电动汽车中的应用。
内饰部件 复合材料可用于制造汽车座椅、仪表盘、门板等内饰部件, 提高舒适性和美观度,如玻璃纤维增强塑料(GFRP)在 内饰中的应用。
发动机和底盘部件
光子复合材料
能够调控光的传播路径和性质, 具有隐身、光学存储等智能特性, 在光通信、光计算等领域具有重 要应用价值。
THANKS
汇报结束 感谢聆听
《复合材料》PPT课件
目录
contents
• 复合材料概述 • 复合材料的组成与结构 • 复合材料的制备工艺 • 复合材料的性能特点 • 复合材料的应用实例分析 • 复合材料的未来发展趋势
01
复合材料概述
定义与分类
定义

复合材料原理--复合材料的界面结合特性 ppt课件

复合材料原理--复合材料的界面结合特性  ppt课件

ppt课件
15
4.2 树脂基复合材料的界面结构及界面理论
4.2.2 树脂基复合材料的界面结合理论
(3)优先吸附理论 界面上可能发生增强体表面优先吸附树脂中的某些组分 ,这些组分与树脂有良好的相容性,可以大大改善树脂对增 强体的浸润;由于优先吸附作用,在界面上可以形成“柔性 层”,“柔性层”极可能是一种欠固化的树脂层,它是“可 塑的”,可以起到松驰界面上应力集中的作用,故可以防止 界面脱粘。
ppt课件
18
4.2 树脂基复合材料的界面结构及界面理论
4.2.2 树脂基复合材料的界面结合理论
(5)可逆水解理论 这两个可逆反应建立了键形成-断裂动态平衡,依靠这 种动态平衡,在界面上起着几个作用。
对水的排斥
界面上应力松弛 使界面始终保持一定的粘合强度。
可解释偶联剂处理过的树脂基复合材料湿态强度保留率
界面结合形式 机械结合:增强体和基体间纯粹的机械接触; 溶解与浸润结合:由单纯的浸润和溶解作用,使增强体 和基体形成交错的溶解扩散界面; 反应界面结合:主要主价键力而结合,在界面上形成新 的反应物层;
氧化结合:增强体表面吸附的空气所带来的氧化作用;
混合结合。
ppt课件
33பைடு நூலகம்
4.4 树脂基复合材料界面的破坏机理
4.3.1晶态非树脂基基体的结构特性 (5)固定的熔点
在恒压下对晶体加热时,晶体温度升高但状态不变,到
达熔点温度时,晶体温度保持不变而由固态熔融为液态 。对非晶体材料,则随温度升高使材料变软,再逐渐由
粘稠态转变为低粘度液体。
ppt课件
30
4.3 非树脂基复合材料的基体及界面结构
4.3.1晶态非树脂基基体的结构特性

复合材料界面教学课件PPT

复合材料界面教学课件PPT
2.1概述
• 复合材料的界面是指基体与增强相之间化学 成分有显著变化的、构成彼此结合的、能起 载荷传递作用的微小区域。
• 复合材料的界面是一个多层结构的过渡区域, 约几个纳米到几个微米。此区域的结构与性 质都不同于两相中的任何一相。这一界面区 由五个亚层组成,每一亚层的性能都与基体 和增强相的性质、复合材料成型方法有关。
接触角随温度、保持时间、吸附气体等而变化。
2.4 复合材料的界面理论
2.4.1界面润湿理论 : 根据力的合成:
L cos = S - SL , 粘合功可表示为:
WA = S + L - SL= L(1+ cos )。 粘合功WA最大时, cos =1,即 = 0,液体完全 平铺在固体表面。同时 = SL , S = L 。 热力学说明两个表面结合的内在因素,表示结合的 可能性;动力学反映实际产生界面结合的外界条件, 如温度、压力等的影响,表示结合过程的速度问题。
4)交换反应结合。基体与增强材料间发生化学反应,生成化合物, 且还通过扩散发生元素交换,形成固溶体而使两者结合。
5)混合结合。这种结合较普遍,是最重要的一种结合方式。是以 上几种结合方式中几个的组合。
2.2 复合材料的界面效应
• 界面是复合材料的特征,可将界面的机能归 纳为以下几种效应:
• (1)传递效应:界面可将复合材料体系中 基体承受的外力传递给增强相,起到基体和 增强相之间的桥梁作用。
• 对SiC晶须表面采用化学方法处理后XPS(X-ray Photoelectron Spectroscopy)分析的结果。由C(1s)和Si(2p)的波谱可以看出, 有 态的的地差方来存增在强界SiO面2的,结有合的力地。方不存在SiO2。利用这样的表面状

《复合材料设计》PPT课件

《复合材料设计》PPT课件
范畴:研究单向(或单层)复合材料的平均物理性能与各相材料的物理
性能和相几何之间的关系,以及研究复合材料各相内部的真实应力 与应变场分布,以此作为确定复合材料性能与破坏机制的根据。
基本假设:
(1)复合材料被视为连续的非均匀介质,它不是以原子、分子尺度 量级,而是以颗粒或纤维的直径为其特征尺寸。 (2)“典型单元体” :细观单元,包含有复合材料的各个相,并且 有与整个复合材料相同的特征(这主要是指各相体积的比例及增强体 几何分布)的最小体积,因此,它的尺寸远远大于原子、分子尺度量 级,又不同于经典连续介质理论中的微分单元。
由于增强纤维模量远大于基体模量,因此复合材料纵 向模量主要受增强体影响,横精向选P模PT 量主要受基体的影响。 17
• 修正问题之一
考虑纤维对基体的约束作用,复合材料的弹性模量修正为:
纵向弹性模量: Ec1=Efvf+Em ' vm
式中,基体的弹性模量:
E
' m
=
Em
1
2
2 m
纵向弹性模量: 1=vf +v mvf (E f m /E m )f 2 E c2 E f E m E f (vfE f /v m E m )+ 1
精选PPT
19
3、剪切模量
细观力学假设,增强体和 基体所承受的剪切应力均 匀相等,剪切特性呈线性, 如图所示:
精选PPT
20
材料的总剪切变形量=rw,
r为剪切应变w为 ,宽度
c =f =m
r=
G
总变形量为:
剪切力 剪切模量
= f + m
rw =rf(vfw )+rm(vm w )
精选PPT
21
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、XPS
X射线光电子能谱是测量材料表面化学组成的有 效工具,可以定性测量元素存在,可以根据谱线 强弱测定元素含量。以及官能团含量。
2、红外光谱
3、紫外光谱研究
4、核磁共振法
5、原子发射光谱研究
6、化学分析和热分析
热失重 -COOH在500-800℃分解成CO2,R-OH在900-1000℃ 分解生成CO,由热失重测定CO2 、CO量,可以求出表 面-COOH和-OH
20TEM图,与基体相邻的明亮层CL为碳层,与纤维相邻的TL为 过渡层,F为纤维层 21TEM是CL与基体M图像,可以看到清晰的晶格条纹相应于C平 层,具有典型的湍层碳结构特征
可以确切看到两界面层之间的相接触区域,CL层可以看到 湍层碳,TL层可以看到大量纳米级的SICA晶粒。
三、增强纤维表面化学分析表征
冲击载荷与冲击时间关系曲线
该研究方法对复合材料的界面结合进行了分析,得到了十分有意义的结果。将未经 处理、氧等离子处理、接枝聚丙烯酰胺(接枝层厚度约为300nm) 和接枝聚丙烯酸(接 枝厚度100nm)四种处理的碳纤维按微量冲击分析法制成复合丝样品,分别在室温下 用微量冲击仪冲击,结果如下图所示。
复合材料界面与设计
2011年11月
复合材料界面分析表征 提纲
界面形貌结构分析表征 增强材料表面化学表征 界面力学性能分析表征
一、界面形貌结构分析表征
界面结合强弱与与界面区域的微观结构密切相关; 复合材料的结构缺陷常常集中于界面区域; 制造与使用过程中,界面的结构前景都吸引人们
关注; 界面结构的最重要的手段是TEM、SEM,AFM和拉
涂聚苯乙烯树脂的玻璃纤维的DMA
a—接枝玻纤
b—未接枝玻纤
不同碳纤维增强聚丙烯酸复合树料损耗角正切 与温度DMA a一未处理碳纤维 b一接枝聚丙烯酸碳纤维
8、微量冲击分析
微量冲击分析是一种以一定速度对微小试样进行冲 击,记录下冲击过程中冲击锤受到的反作用功与冲 击时间对应关系的一种研究方法,为了能清晰反应界 面的结合状况,纤维必须是单向的,所以多采用纤 维的复合丝试样。
C/C复合材料横断面SEM
C/C复合材料界面结构与先驱体种类和热处理形式有关, 以上显示纤维相同,基体及处理不同,界面状况不同
2-6显示SIC/SIC复合材料受压力破坏后显示复合材料 几乎所有破坏形式 2-7显示纤维拉出和断裂破坏,界面结合弱
碳化硅增强某种钛合金复合材料,A纤维表面有一层碳, B纤维表面未覆盖C,反应层有明显区别。厚度、均匀性
课程考核与课程论文
根据以上思考题,最好能够结合实际工作和 课程内容,撰写一篇课程论文,作为课程考 核依据。
论文要求:
观点明确,内容完整,格式准确,逻辑清楚; 3000-5000字;标准格式撰写;打印;学期 结束前交稿。
将纤维与基体压出,暴露出纤维与基体形貌,脱粘发生 在C层与反应层之间,可以看到碎片
图 高模量碳纤维复合材料 拉伸破坏断口侧壁SEM照片
图 高模量碳纤维复合材料 拉伸破坏的断口SEM图片
图中深色部分为纤维拔 出后留下的空洞
碳纤维水泥状态
玻璃纤维热塑性复合材料
复合材料界面SEM图
TEM是研究陶瓷基复合材料界面微观结构 的最重要的方法,据此可获得界相和其附 近基体纤维的结晶或无定型态,元素分布 和化学组成等微观结构的几乎全部资料。
思考题:
1. 纤维增强热塑性复合材料如何进行界面设计处理? 2. 难粘聚合物材料如何进行层间复合设计? 3. 含金属层复合材料结构如何进行界面设计处理? 4. 复合材料结构热处理过程会对界面产生哪些影响? 5. 浸润性提高从哪些方面影响复合材料界面及结构性能? 6. 橡塑复合、木塑复合、热固热塑复合如何进行界面处理设计? 7. 液晶树脂增强塑料、增强热固性树脂如何进行界面设计? 8. 新的测试手段如何应用于复合材料界面表征? 9. 查阅文献,综述先进聚合物复合材料界面设计与表征进展。 10. 界面设计处理与你正在进行的课题关联性。
聚丙烯酰胺接枝碳纤强复合丝试样的冲击承裁曲线,冲击韧始基线与冲击结束基线 没有重合(a)。这是由于聚丙烯酰胺接枝层过厚所致。因为在冲击过程中不仅纤维表 层界面产生应变,而且接技层中的分子链也会产生蠕变或滑移,两者综合的结果,
。 使微量冲击曲线产生了畸变
复合材料界面处理形式
机械处理 偶联剂处理 热处理 氧化处理 化学腐蚀处理 表面涂层法 表面沉积处理 冷等离子处理 辐射处理 光电处理 …….
曼光谱技术也为人们重视
1、纤维表面处理形态表征
低温等离子处理
热处理
电晕和低温等离子处理植物纤维
2、纤维表面接枝聚合物形态
碳纤维接枝聚苯乙烯
碳纤维接枝
3、复合材料界面状态
纤维拔出状态
C/C复合材料拉伸破坏断裂面
脱粘没有导致表面和内壁任何损伤,可以判定纤维与基体 之间只有松散结合不存在确定厚度的界面层
试样的尺寸很小,通常为0.5mm×10mm的圆柱状试样。 测试时试样呈简支梁状况进行冲击,冲击锤上端装 有载荷感受传感器将反作用功变成电信号送出,再 由A/D转换器转化成数字信号,同时送出信号形成 平面曲线图。
复合丝的全部冲击载荷可转化成体 系两种能量,其中E1为基体变形、 纤维变形及表面能变化等所需的能 量。其中E1在总能量中占有较大的 比例,并受界面结合强度的制约。 而E2为纤维拔出和纤维与基体脱粘 所需的能量。它是复合材料所特有 的冲击能量吸收机制,在全部能量 吸收中占有一定比重,而且基本上 以塑性能量形式存在,界面结合强 度越弱,则E2越大。但当界面结合 弱到不能有效传递载荷时其值又下 降,致使最大冲击载荷也下降,不 利于整体抗冲击性能的提高。所以 最佳界面结合状态时材料的抗冲击 性能方能达到最好。
聚丙烯酸接枝碳纤维复合丝试样的弹性承栽能E2很大(b),其时间对应上与氧等离子 处理者相近,也没有明显表现出纤维滑移的征状。与氧等离子处理者所不同的是接 枝纤维样品的E2部分也比较大,表明在界面上也容许有一定量的纤维产生滑移和脱 粘。与E1相比E2占有较大的比例,因此整个冲击承载能大大增加.超过了氧等离子 处理者。
6、层间剪切强度
➢ 压剪法 可参见GB1450.1—83,对试 样施加均匀连续的剪应力,直至破坏。 层间剪切强度可按下式计算:
短梁弯曲法
参见GB3357—82 ASTM D2544—84装置示 意如图,连续加载至试样破坏,记录最大载荷 值及试样破坏形式。层间剪切强度按下式 计 算:
7、动态力学分析
化学分析方法 碳纤维表面的羟基与羧基还可以通过化学检测来定量 测试
四、复合材料界面力学性能表征
界面残余应力 单丝拔脱实验法 临界纤维长度实验法 界面粘结能测试 层间剪切强度 动态力学分析 微量冲击分析
1、界面残余应力
消除残余压力可以通过引入 膨胀单体,提高综合性能, 可用冲击韧性来表示。
动态力学分析用于对复合材料界面结合 的评估,也是一种发展动向。
在基体的玻璃化转变温度之上将会出现 一个与界面结合有关的损耗峰,见图中 的b、 b1、 b2如果碳纤维未经处理,则 该损耗峰就不会出现,除非纤维的排列 方向完全一致,而且与应力的作用方向 也必须完全相同。
低体积分数单向碳纤维增强环氧树脂的E”的温度关系 ¢2纤维的体积分数

玻纤单丝从PP基体中的拔出剪切强度测试来自4、临界纤维长度试验法
将单丝纤维埋人基体制成哑铃状试样,拉伸使纤维断裂成一段 段的残片,测量残片长度,可得到残片的长度分布图,统计出
残片平均长度L,临界纤维长度Lc与平均长度L的关系为:
临界剪切强度为:
5、界面粘接能测试法
在试样中埋人纤维单丝,试样尺寸 30mm×10mm×10mm,试样中间开一直径1.5MM 小孔,使小孔穿过纤维。对试样施加压应力,由于纤 维与基体压缩模量不同,界面产生剪应力,载荷足够 大时,纤维在小孔端点脱粘,此时粘结能G为:
2、单丝拔脱实验法
单丝拨脱试验是将增强纤维单丝垂直埋人基体之中,然后将 单丝从基体中拔出、测定纤维拔脱的应力,从而求出纤维与 基体间的界面剪切强度。显然,拔出力随埋人深度而增大, 达到临界长度Lc时,拔出纤维所需的应力等于纤维的拉伸强 度。
3、顶出法
单丝拔脱试验的离散度大,要做大量的试验,找到临界长度, 基体对纤维浸润时会沿纤维上爬,影响精 度。作为改进,又 发展了顶出法。
相关文档
最新文档