煤层气地质学8 煤储层的地球物理特征

合集下载

关于煤层气储层地质特征及勘探开发新领域研究

关于煤层气储层地质特征及勘探开发新领域研究

161随着经济不断发展,温室效应显著,经济水平的提高使得人们环保意识逐步提高,从而对绿色能源发展问题进行探索。

我国地域辽阔,具有丰富的资源,煤层气储备量位居世界第二,并且分布范围广,其中包括我国华北、西北、华南等诸多地区。

1 我国煤层气主要特征从20世纪80年代初开始到90年代末,20年的时间内,我国煤层气井多口,其中有很多失败案例,主要原因就是受到勘探技术的限制,煤层气井深度不够,大部分井都没有达到煤层气储层的实际深度,所以导致含气量较低,煤层气井产量少,煤层气勘探受到影响[1]。

煤层气在生成过程中,会受到火山岩活动影响,导致其中出现次生演变逐步加剧,煤层中逐渐出现一个饱和度高、煤层物性好、含气量高的区域。

同时,煤层气还会受到其他局部热动力影响,与其接触的岩石会出现一个高热区域,其周围环境较为封闭,导致这些热量无法排出,就会吸附于煤层颗粒中,随后扩散到岩石储层中。

受到水的影响后,导致煤层物性变差,饱和度降低[2-5]。

2 储藏煤层气在我国,煤层气分布具有明显分带性,在勘探过程中,应当对煤层气储层中的吸附带重点关注,从而提高勘探效率。

2.1 压力封闭型经过多次的压实、抬升,一个超出压力范围的煤层气储层就逐渐形成,但是由于自身发育不够完善,导致煤层气缺乏物性与联通性,所以在开采过程中,会出现解吸性差等问题,最终导致煤层气产量低。

2.2 微渗滤封闭型通常情况下,底板与中顶板都较薄,岩石缺乏密封性,局部的水与岩层相通后,水逐步向煤层进行渗透,最终产生动力,并且带走部分地层中的甲烷,小部分甲烷处于滞留状态,形成一个较为封闭的环境。

这种情况就会导致煤层气中具有较低的含气饱和度,煤层气产量较低,导致工业价值低,但是有时也会出现例外情况。

2.3 地质构造封闭型一部分煤层气受到地质构造影响,地质构造的特殊性导致其含水量较低,煤层气开采过程中解吸半径小,影响开采量。

我国幅员辽阔,煤层气类型丰富多样,目前我国都是采用构造变形差异聚集承压水封堵型的煤层气作为主要开采目标。

煤层气储集层课件

煤层气储集层课件
矿物质对煤的孔隙产生两方面的影响:① 它充填了一部分大、中孔隙,使孔隙总孔容下降;② 矿物本身可能存在一些孔隙,如晶间孔,对煤的孔隙度有微弱贡献。
(4) 煤体结构的影响
煤体结构的分类
糜棱煤与原生结构煤不同孔径孔的孔容也存在差异
在构造应力或其它力(如重力)的作用下煤体将发生变形,煤体原生结构将遭到破坏,同时也改变了煤的孔隙特征。总体上破坏程度越深,煤的孔隙度和比表面积增加越大。
2、Ro,max=1.3%∼2.5%,大孔的孔容和比表面积则呈现缓慢下降趋势,这可能是由于煤中植物组织残留孔仍然存在的结果。该阶段中孔、过渡孔和微孔的孔容与比表面积达到了极大值,说明该阶段大量的烃类生成,造成气孔的大量增加。 3、Ro,max>2.5%,各类孔隙的孔容和比表面积均呈现下降趋势。这是由于此阶段煤的生烃能力显著下降,新的气孔的生成微弱,而高温高压作用下进 一步的煤化作用引起的大规模缩聚作用导致各类孔隙的减少。
一、基质孔隙
基质孔隙为煤的基质块体单元中未被固态物质充填的空间,由孔隙和通道组成。一般将较大空间称为孔隙,其间连通的狭窄部分称为通道。
1. 基质孔隙的分类
(1) 成因分类
气孔
残留植物组织孔
次生孔隙
晶间孔
原生粒间孔
(2)孔径分类
气孔
气孔是指煤化作用过程中气体的生成与逸出留下的痕迹,是煤体在较高的温度、压力条件下,处于近塑性状态,由其自身形成的气体作用的结果
割理被次生显微组分充填,因后期应力的作用沿一侧被裂开,焦作古汉山山西组二1煤
割理内充填的次生显微组分形成的次生裂隙,焦作古汉山山西组二1煤。
经有机溶剂刻蚀后显示出割理被次生显微组分充填的特征,充填的割理与现存的方向、大小基本一致,焦作古汉山山西组二1煤组3号煤,SEM

煤层气储层特征研究分解

煤层气储层特征研究分解
饱和的
欠饱和的
饱和煤层(A)含有最大的气含量, 这在理论上是可能的,如由实验室确定 的等温吸附曲线所定义的。在开始脱水 和压力下降时,气生产立即开始。
欠饱和煤层(B)含有比煤层可能吸 附量要少的甲烷,由于先前发生过脱气事 件。为了使气产气甚至需要几年的时间进 行脱水和降压,而最终的储力
超压——煤层气井喷
三、储层的空隙压力与原地应力
2、煤层气瓦斯压力
煤层气(瓦斯) 压力是指在煤田勘探钻孔或煤矿矿井中测得的煤 层孔隙中的气体压力。煤储层试井测得储层压力是水压,二者的测试 条件和测试方法明显不同。煤储层压力是水压和气压的总和,在封闭 体系中,储层压力中水压等于气压;在开发体系中,储层压力等于水 压与气压之和。
同一煤样吸附不同气体:CO2>CH4>N2
CH4 CO2 N2
8
10
CH4 CO2 N2
8
10
四、煤储层的吸附性
2、煤层气吸附/解吸过程的差异与解吸作用类型划分
地质条件下的煤层气吸附过程与开采条件下的煤层气解吸过程的差异对比
煤层气物理吸附
煤层气物理解吸
作用过程
吸附偶于煤的热演化生烃、排烃 人为的排水-降压-解吸过程(是一 过程之中(是一种“自发过程”) 种“被动过程”)
一、煤层气的概念
1、煤层气
煤层气是以甲烷为主要成分的矿产,是在煤化作用过程中形成、储集 在煤层及其临近岩层中的非常规天然气。
2、煤层气储层
煤层作为煤层气的源岩和储层,具有2方面的特征:一是在压力作用 下具有容纳气体的能力; 二是具有允许气体流动的能力。
二、煤储层的渗透性
1、概念
储集层的渗透性是指在一定压力差下,允许流体通过其连通孔隙的 性质,也就是说,渗透性是指岩石传导流体的能力,渗透性优劣用渗透 率表示。

煤层气

煤层气

一、名词解释1煤层气:是指煤层生成的气体经运移、扩散后的剩余量,包括煤层颗粒基质表面吸附气,割理、裂隙游离气。

2煤型气:是相对于油型气的概念,是煤成气和煤层气的总和。

3割理:是指煤层中近于垂直层面的天然裂隙。

4构造煤:是指煤层中分布的软弱分层,是煤层在构造应力作用下发生破碎或强烈的韧、塑性变形及流变迁移的产物。

5煤层气吸附平衡:当吸附和解吸两种作用速度相等(单位时间内被固体颗粒表面吸留的气体分子数等于离开表面的分子数)时,颗粒表面上的气体分子数目就维持在某一定量,称为吸附平衡。

6煤层气藏:是指在地层压力(水压和气压)作用下保有一定数量气体的同一含煤地层的煤岩体,具有独立的构造形态;是在煤层演化作用过程中形成的,在后期构造运动中未被完全破坏,呈层状产出。

7煤层气地质储量:是指在原始状态下,赋存于已发现的具有明确计算边界的煤层气藏中的煤层气总量。

8煤成气:是煤层和煤系中分散有机质在热演化过程中生成的气态烃,经运移到煤系中或煤系以外的储层中聚集的煤型气。

9瓦斯突出煤体:构造严重破坏并具有发生瓦斯突出的瓦斯能(即含有大量瓦斯)介质条件的煤体称为瓦斯突出煤体。

10坚固性系数:用于表示岩石抗冲击能力的大小或破坏时破碎功的大小。

11瓦斯放散初速度△P:是指煤在0.1MPa压力吸附瓦斯的条件下,向一固定体积的真空空间放散时,某一时间段内所散放的瓦斯量。

12原生结构煤:指煤原生构造未受构造变动,保留原生沉积结构和构造特征,每层原生层理完整、清晰,仅有少量内、外生裂隙发育,煤体呈块状的煤;原生结构煤的煤岩成分、结构、构造与内生裂隙清晰可辨。

13煤与瓦斯突出:采煤生产过程中,在一瞬间(几秒钟)采煤工作面或巷道某处突然被破坏,迅速放出大量瓦斯,同时抛出大量的煤、岩碎块和煤粉,这种现象称为煤与瓦斯突出。

14吸附等温线:按照气体解吸特性描述的煤的响应性曲线称为吸附等温线二填空题1煤层气形成阶段:原生生物气生成阶段、热降解气生成阶段、热裂解气生成阶段和次生生物气生成阶段。

煤层气储层的地球物理测井评价方法

煤层气储层的地球物理测井评价方法

四、煤层气储层的测井评价方法
4.4.1、利用与煤层气相关的测井响应,如密 度、声波时差、电阻率,以及其它相关因 素,如有效埋深等,与煤心分析的含气量 建立统计相关关系,这种关系也可以利用 人工神经网络获得,这两种方法都要求有 足够的样本[12][13];
四、煤层气储层的测井评价方法
4.4.2、利用近似分析得到的结果,如灰分含 量,根据吸附和解吸机制直接建立与煤层 含气量之间的对应关系[8],
二、煤层气与煤层气储层的特征
2.1、煤层气的生成与煤级关系及存在状态
二、煤层气与煤层气储层的特征
• 在成岩作用早期,天 然气主要通过生物活 动析出; • 后生作用是在温度压 力增大条件下发生, 是碳氢化合物形成阶 段; • 变生作用几乎将干酪 根全部转化成碳,甲 烷或干气与非烃类气 CO2、N2形成。
三、影响煤层气储层特性的因素
四、煤层气储层的测井评价方法
4.1、煤层的识别与划分 煤层的密度、电阻率和声波速度等参数与 围岩有明显差异。因此利用常规测井方法, 包括电阻率测井、密度测井、中子测井、 自然伽马测井和声波速度测井,通常可以 成功的识别和划分出煤层。 煤的密度、电阻率和声波速度以及水分如 下图所示。
三、影响煤层气储层特性的因素
焦作某区山西组煤甲 烷含量与上覆地层有 效厚度关系图
三、影响煤层气储层特性的因素
3.2. 煤层含气量与煤级的关系 煤级又称煤阶,表示煤化作用程度的等级,也用以表示煤 变质程度。1926年,怀特(D.White)首次以干燥无灰基的 碳含量表示。煤级有时也借助煤化过程中变化明显而且有 一定规律性的物理、化学性质,即煤级参数或煤化(程度) 参数表征。在煤化过程中,芳香环缩合程度加大,增长为 更大的结构单元,导致镜质组反射率值增高;而非芳香馏 分则逐渐减少,导致挥发分降低。由于镜质组反射率和挥 发分都与镜质组结构单元的芳构化程度有关,因而镜质组 反射率的增高和挥发分的降低,在变化程度上几乎是同步 的。因此,碳含量、挥发分含量和镜质组反射率常常作为 煤级参数。总体上,含气量随煤级的增高而增大。低煤阶 的煤含气量一般为2.5cm3/g,高煤阶的煤含气量可达 31cm3/ g。

测井资料解释(煤田测井解释)

测井资料解释(煤田测井解释)
为使煤层模型更接近于原生状态,模型中的灰分还包含有泥质及其它矿物成分在原生 状态下所含有的水及其在燃烧过程中的挥发物。为与化验室中的灰分相区别,这部分 成分称湿灰分;
对比泥质砂岩体积模型和煤的体积模型: 泥质砂岩的岩石骨架相当于碳分, 泥质相当于灰分, 而孔隙水则相当于水分。
煤的声波测井、密度测井及中子测井解释公式与泥质砂岩的测井解释公式具有相 同的形式:
t 1 Vatc Vata t f b 1 Vac Vaa f N 1 Vac Vaa f
上式中Va’=V0/V为灰分的相对体积含量;Δtc、Δta、Δtf分别为碳、灰、水的声波时差; δc、δa、δf分别为碳、灰、水的体积密度;Φc、Φa、Φf分别为碳、灰、水的含氢指 数;为水分的相对体积含量。
煤层的井径曲线受钻井工艺和钻井液性能影响,煤层会发生垮塌,使井径扩大。 煤层的声反射系数比其它地层都小,声波井周成像是记录声波在井壁处反射波的 能量,由于煤层反射系数小,声波透过地层的能量多,而反射的能量少,因此图像 颜色深。
煤储层孔渗特征
1. 煤储层孔隙结构 属裂缝—孔隙型结构,煤基质被天然裂缝(割理)网分隔成许多方块,每个方块 由煤粒和微孔隙组成。基质是储气空间,甲烷被吸附在微孔的表面,渗透率很低, 一般为(10-2~10-6)×10-3μm2。在浓度差的作用下,甲烷透过基质扩散到裂缝中, 裂缝在煤的总孔隙体积中占次要地位,储气功能很低,可有少量游离气储存其中, 但裂缝的渗透率高,是甲烷渗流的主要通道。 煤中的天然裂缝(割理)是煤化作用和构造应力影响的结果。成大致相互垂直的两 组,主要的、延伸较大的一组叫面割理,次要的、与面割理大致垂直的一组叫端割 理。割理是煤中流体运移的主要通道,并且有方向性,因而它是控制煤层气方向渗 透的主要因素,割理间距是煤储层模拟中的一个重要参数。

煤层气地质学--方勇

煤层气地质学--方勇
4.3构造类型
不同类型的地质构造,在其形成过程中构造应力场特征及其内部应
力分布状况的不同,均会导致煤储层和封盖层的产状、结构、物性、裂
隙发育状况及地下水径流条件等出现差异并进而影响到煤储层的含气特 性。
煤层气有关的构造可归纳为向斜构造、背斜构造、褶皱—逆冲推覆
构造和伸展构造四个大类。
四、影响煤储层含气性的地质因素
发份含量和含水量减少,发热量和固定碳含量增加,同时也
生成了以甲烷为主的气体。 煤化作用要经历两个过程,即生物成因过程和热成因过 程。
二、煤储层及煤层气的物质组成 2.2 煤层气的化学组成
煤层气的化学组分有烃类气体(甲烷及其同系物)、非烃类气体 (二氧化碳、氮气、氢气、一氧化碳、硫化氢以及稀有气体氦、氩等)。 其中,甲烷、二氧化碳、氮气是煤层气的主要成分,尤以甲烷含量最高, 二氧化碳和氮气含量较低,一氧化碳和稀有气体含量甚微。
一般较为发育,渗透率为1.5~2.5×10-3μm2,普遍含水,对煤层气
的保存十分不利。一方面煤层气通过煤储层顶底板灰岩中的孔隙和裂 隙发生运移,另一方面它又被灰岩中地下水径流带走。
砂岩类型
砂岩顶底板,总体上不利于煤层气的保存,但因其成分、结构 的不同及成岩后生作用的差异,对于煤储层的封盖能力变化极大。
二、煤储层及煤层气的物质组成
2.4煤储层的物质组成
煤储层系由煤基质块(被裂隙切割的最小基质单元)、 气、水(油)三相物质组成的三维地质体。
煤基 质块
煤 储 层
煤岩 和矿物质 游离气(气态) 吸附气(准液态) 吸收气(固溶体) 水溶态(溶解气)
裂隙、大孔隙中的自由水, 显微裂隙、微孔隙和芳香层缺陷内的束缚水 与煤中矿物质结合的化学水
4.3构造类型

浅谈我国煤层气的基本储层特点与开发对策

浅谈我国煤层气的基本储层特点与开发对策

浅谈我国煤层气的基本储层特点与开发对策摘要:全球埋深浅于2000米的煤层气资源约为240万亿立方米,是常规天然气探明储量的两倍多,世界主要产煤国都十分重视开发煤层气。

美国、英国、德国、俄罗斯等国煤层气的开发利用起步较早。

中国煤层气资源丰富,可采资源量约10万亿立方米,累计探明煤层气地质储量1023亿立方米,可采储量约470亿立方米。

全国95%的煤层气资源分布在晋陕内蒙古、新疆、冀豫皖和云贵川渝等四个含气区。

了解我国煤层气的基本储层特点,有助于对煤层气的开发利用。

关键词:煤层气储层特点开发对策煤层气俗称瓦斯,是指与煤炭共伴生、赋存于煤层及围岩中、以甲烷为主要成分的混合气体,是一种新型的清洁能源和优质的化工原料。

煤层气的化学组成有烃类气体,例如甲烷及其同系物、非烃类气体,例如二氧化碳、氮气、氢气、一氧化碳、硫化氢以及稀有气体。

其中,甲烷、二氧化碳、氮气是煤层气的主要化学成分,尤其是甲烷的含量最高。

煤层气的热值是普通煤的2-5倍,与天然气的热值相当,1立方米的纯煤层气的热值相当于1.13千克的汽油,1.21千克标准煤。

可以与天然气混输混用,而且燃烧后很清洁,几乎不产生任何的废气,是上好的工业、化工、发电、居民生活燃料。

煤层气也可用作民用燃料、工业燃料、发电燃料、汽车燃料和重要的化工原料。

用途很广泛。

没标准立方煤层气大约相当于9.5度电、3立方米水煤气、1升的柴油、接近0.8千克的液化石油气,1.2升的汽油。

中国煤层气资源丰富,居世界第三。

每年在采煤的同时排放的煤层气在130亿立方米以上,合理抽放的量应可达到35亿立方米左右,除去现已利用部分,每年仍有30亿立方米左右的剩余量,加上地面钻井开采的煤层气50亿立方米,可利用的总量达80亿立方米,约折合标煤1000万吨。

如用于发电,每年可发电近300亿千瓦时。

在国际能源局势趋紧的情况下,作为一种优质高效清洁能源,煤层气的大规模开发利用前景诱人。

煤层气的开发利用还具有一举多得的功效:提高瓦斯事故防范水平,具有安全效应;有效减排温室气体,产生良好的环保效应;作为一种高效、洁净能源,产生巨大的经济效益。

煤层气储层特征共113页文档

煤层气储层特征共113页文档
煤层气储层特征
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民的幸福是至高无个的法。— —西塞 罗
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左

煤储层及其基本物理性质

煤储层及其基本物理性质

第二章煤储层及其基本物理性质煤储层是指在地层条件下储集煤层气的煤层。

煤储层具有双重孔隙介质、渗透性较低、孔隙比表面积较大、吸附能力极强、储气能力大等特点。

第一节主要内容:煤储层是由固态、气态、液态三相物质所构成。

固态物质:是煤基质液态物质:一般是煤层中的水(有时也含有液态烃类物质)气态物质:即煤层气一、煤储层固态物质组成:1、宏观煤岩组成煤是一种有机岩类,包括三种成因类型:①主要来源于高等植物的腐植煤②主要有低等生物形成的腐泥煤③介于前两者之间的腐植腐泥煤(自然界中以腐植煤为主,也是煤层气赋集的主要煤储层类型)2、显微煤岩组成显微煤岩组成包括显微组分和矿物质。

显微组分是在光学显微镜下能够识别的煤的基本有机成分,其鉴别标志包括:颜色,突起,反射力,光学各向异性,结构,形态等。

矿物质是煤及煤储层中含有数量不等的无机成分,主要为黏土类和硫化类矿物,其次为碳酸盐类、氧化硅类矿物以颗粒状。

团块状散布于煤中,常见显微条带状产出的黏土矿物。

3、煤的大分子结构煤中有机质大分子结构基本结构单元(BSU)的骨架结构由缩合芳香体系组成,其基本化学结构为芳香环。

煤中有机质大分子结构基本结构单元的缩聚过程主要起源于三种反应机制:芳构化作用、环缩合作用和拼叠作用。

芳构化作用是指:非芳香化合物经由脱氢生成芳香化合物的作用,可通过碳数不低于六个的链烃的闭环、五圆或六圆脂环和杂环的脱氢等方式实现,是煤中有机质生气的主要机理。

环缩合作用通过单个芳香环间联结、稠环芳香分子间或分子内联结、自由基分子间重新结合等方式得以实现,是中~高级无烟煤阶段芳香体系缩聚的主要机理。

拼叠作用是指基本结构单元之间相互联结而使煤中有机质化学结构短程有序化范围(有序畴)增大的作用,与自由基反应密切相关,是高级无烟煤阶段基本结构单元增大和秩理化程度增高的主要机理。

二、煤储层液态物质组成煤储层中液态物质包括裂隙、大孔隙中的自由水(油)及煤基质中的束缚水。

在煤化学中,将煤中水划分为三类,即外在水分、内在水分和化合水。

煤层气地球物理

煤层气地球物理
煤田地震勘探的需求 • 精细构造:3米左右的小断层、裂缝、褶曲、 冲刷带、陷落柱、构造煤 • 岩性:顶底板 • 煤质:水分、灰分、炭 • 孔渗与含水饱和度 • 瓦斯含量 • 地应力
(三)煤与煤层气勘探的特殊性
煤与煤层气勘探的特殊性
• 薄层的波场反射特征与AVO/A反演 • 非流体相的瓦斯检测 • 煤岩易碎性所导致的孔渗预测误差 – 岩电实验:孔渗的计算误差 – 岩石物理实验:瓦斯含量与波场特征的关系 • 强各向异性的影响及裂缝隙的预测:割理、裂缝隙发育 • 地下水、瓦斯与构造煤的探测
(一)需要基础实验支撑的问题
• 岩石/物理实验
– 煤层气吸附与解吸过程的弹性波响应或其它地 球物理场响应 – 非砂泥岩洞缝型储层的孔隙度、渗透率重新观 测、试验与经验公式
• 数值模拟实验
– 裂缝型各向异性介质的弹性波传播 – 单薄层的AVO及波场特征 – 薄互层(VTI)的AVO及波场特征
(二)需要应用基础支撑的问题
煤田物探研究的对象
• 固体相地质体
– 煤层 – 顶底板 – 构造,包括裂缝隙
• 流体相
–水 – 瓦斯/煤层气?

双相耦合



比表面积 孔隙度 渗透率
转入煤岩岩石物理部分
煤层气地震勘探需要找的主要目标
• • • • 断层(大小)及破碎带、裂缝隙发育带 压力异常区 地温异常区 构造煤
面临的挑战
科学问题汇总 二、科学问题汇总
• 煤层的厚度、 煤层中精细断 层与裂缝、顶 底板的岩性、 孔渗、流体含 量的精确预测 • 煤层中瓦斯含 量与渗流、解 吸规律的精确 预测
– 薄阻抗差层的AVO特征及其 反演(软、互、缝)
– 吸附与解吸平衡态薄层的 AVO特征及其反演 – 非砂泥岩的孔渗规律及反 演 – 裂缝有关的各向异性弹性 波传播规律及其反问题 – 应力场的地震预测

煤的地质特征及煤层气赋存规律分析

煤的地质特征及煤层气赋存规律分析

煤的地质特征及煤层气赋存规律分析煤是一种重要的化石能源,广泛应用于工业、农业和生活领域。

了解煤的地质特征以及煤层气的赋存规律对于煤炭资源的开发利用具有重要意义。

本文将从煤的成因、组成和特征入手,探讨煤层气的赋存规律。

煤的成因主要有植物残体的堆积和变质两个过程。

植物残体的堆积是煤形成的基础,而变质过程则使植物残体发生物理化学变化,形成煤的主要成分。

煤主要由有机质和无机质组成,其中有机质是煤的主要组成部分,占煤的大部分质量。

有机质的主要成分是碳、氢、氧、氮和硫等元素,其中碳含量最高,通常超过50%。

无机质则主要由矿物质组成,如粘土矿物、石英等。

煤的地质特征主要包括煤的种类、煤的颜色和煤的结构。

根据煤的形成过程和煤的成分特点,可以将煤分为无烟煤、烟煤、褐煤和泥炭等不同种类。

无烟煤含碳高、灰分低,是高品质的煤种,适用于发电和冶金等行业。

烟煤含碳较高、灰分较高,适用于炼焦和化工等行业。

褐煤含碳较低、水分较高,常用于发电和供热。

泥炭是最原始的煤种,含水分较高,燃烧性能较差。

煤的颜色可以反映煤的热演化程度,一般可分为黑色、褐色和灰色等。

煤的结构则指的是煤的组织结构,可分为块煤、层状煤和纤维煤等。

煤层气是煤中储存的天然气,是煤的重要伴生矿产资源。

煤层气的赋存规律与煤的地质特征密切相关。

首先,煤层气的赋存与煤的类型有关。

煤层气主要赋存于无烟煤和烟煤中,这是因为无烟煤和烟煤的孔隙度较高,有利于气体的储存和运移。

其次,煤层气的赋存与煤的热演化程度有关。

随着煤的热演化程度的增加,煤中的孔隙度逐渐减小,煤层气的赋存量也会减少。

此外,煤层气的赋存与煤的构造特征和构造应力有关。

在构造复杂的地区,煤层气的赋存量较高;而在构造简单的地区,煤层气的赋存量较低。

最后,煤层气的赋存与地下水的存在有关。

地下水的存在会对煤层气的赋存和运移产生影响,一方面可以促进煤层气的释放,另一方面也可能导致煤层气的丧失。

综上所述,煤的地质特征及煤层气的赋存规律是煤炭资源开发利用的重要依据。

煤层气地质

煤层气地质

煤层气吸附量
• 华北石炭-二叠纪煤的
– 平均临界解吸压力为 1.98MPa , – 平均理论采收率为 34.2%, – 吸附时间变化大,变化于 1h到20d之间。
• 我国各煤级的平均解 吸率为34.1%。
– 西北、东北中新生代平 均为21.5%、 – 华北石炭纪一二叠系煤 层甲烷解吸率平均为 32.6%, – 华南中二叠统平均为 40.8%。
• 中国主要成煤期在晚古生代和新生代,有五大 主要成煤期:石炭纪一二叠纪、晚二叠世、晚 三叠世、早中侏罗世、早白垩世。 • 按地理位置划分:华北地区主要为石炭纪一二 叠纪成煤期,东北地区主要为早白垩世和第三 纪成煤期,华南地区主要为晚二叠世,晚三叠 世成煤期,西北地区主要为早中侏罗世成煤期。 • 其中90%多的煤层气资源储存于石炭纪一二叠 纪和早中侏罗世形成的煤层中(即华北与西 北)。
• 山西沁水盆地煤层结构 完整,其吸附时间较长; • 安徽淮南煤田因煤层构 造形变,其吸附时间很 短。
第二章煤层气地质
1. 2. 3. 4. 5. 6. 7. 成煤年代 煤田沉积环境与沉积相 区域构造 煤岩分析:煤变质与煤级、煤阶、构造煤 煤层气水文地质 储层评价与成藏规律 总结
2.1 成煤年代

直接盖层厚,煤层气保 存条件好,含气量高。
河间湾沼泽相灰分低、煤层厚,盖层好, 含气量高;湖洼相灰分高、低含气;河边 高地相煤层薄、灰分高、盖层差,含气量 更低。
3、潮间沼泽相煤层厚,滞留泻湖湖洼相煤层薄
鄂尔多斯盆地东缘太原组主煤层也是 北厚南薄:主要受沉积相和时空控制, 由于海水向南退出,北部聚煤时间长 于南部,使潮汐三角洲平原(潮间) 沼泽相形成的煤层厚,而南部滞留泻 湖相多为草本湖洼相煤层薄。
2.4 煤岩分析

晋中煤层气储层工程地质特征分析

晋中煤层气储层工程地质特征分析

86一、储层物性参数分析基础物性是评价储层微观特征的基本参数,也是储层损害分析和钻完井、压裂等的重要内容。

实验严格按S Y /T-5336的行业规定测定氮气渗透率、酒精饱和法测定孔隙度。

实验结果如图1、2所示,岩心孔、渗物性较差,孔隙度平均值为9.90%,渗透率平均值为0.3211×10-3μm 2。

二、储层敏感性评价1.速敏评价实验储层速敏评价方法依据行业标准SY/T5358-2010执行。

由实验结果可知,实验煤样的速敏程度为中等偏强,1号岩心临界流速为0.8082m/d,2号岩心临界流速为0.3965m/d。

速敏的实质是流体的流速超过占优势的粘土矿物微结构的稳定场,导致粘土矿物及其它煤粉从颗粒表面和裂缝壁面脱落,微粒分散运移并在裂缝宽度狭窄处沉积,最终使煤层渗透率降低。

煤岩储层主要的速敏性矿物是蠕虫状的高岭石,这种粘土矿物在流速增大时很容易发生折断或剥离形成粘土微粒,分散、运移到岩石喉道或裂缝狭窄处发生堵塞,使储层渗透率降低,发生速敏损害。

2.应力敏感评价实验实验评价方法为:(1)选择有效应力实验点σi分别为2MPa、4MPa、6M P a 、8M P a 、10 M P a 、15M P a 和20MPa,依次按所选有效应力实验点数值缓慢增加围压;选择有效应力实验点晋中煤层气储层工程地质特征分析游佳春 成都理工大学能源学院【摘 要】晋中区块是沁水盆地最有利的地区,煤层气发育条件良好,为进一步完善晋中区块煤层储层工程地质特征参数,开展了一系列室内实验。

结果表明,晋中煤层气储层属低孔低渗致密储层,速敏程度为中偏强,呈强应力敏感特征,煤岩与去离子水、滑溜水破胶液和活性水的润湿接触角平均为93.73°、78.81°和47.19°。

【关键词】工程地质特征;储层物性;敏感性;润湿性图1 岩心渗透率分布直方图图2 岩心孔隙度分布直方图图3 1号岩心速敏实验曲线图4 2号岩心速敏实验曲线S S <0.300.30≤SS ≤0.700.70<SS ≤1.0>1.0敏感程度弱中等强极强图5 岩心应力敏感实验曲线σi分别为2MPa、4MPa、6MPa、8MPa、10 MPa、15MPa和20MPa,依次按所选有效应力实验点数值缓慢增加围压;(2)增压过程中,每一个压力点实验持续30min后,按规定间隔测量压力、流量、时间及温度,待流动状态趋于稳定后,记录检测数据,计算渗透率;(3)重复步骤1)-2),直到所有有效应力点做完;(4)缓慢减小围压,按1)中的所选取的压力间隔依次减小,卸压过程中,每一个压力点实验持续1h后,待每一压力点流量稳定后测定其渗透率;(5)利用公式(1),计算应力敏感系数Ss,评价应力敏感程度,标准见表1。

关于煤层气储层地质特征及勘探开发探讨

关于煤层气储层地质特征及勘探开发探讨

关于煤层气储层地质特征及勘探开发探讨发布时间:2022-08-11T01:26:22.652Z 来源:《城镇建设》2022年5卷6期作者:努尔夏提·艾比布拉[导读] 随着经济和工业的快速发展努尔夏提·艾比布拉新疆维吾尔自治区煤田地质局一五六煤田地质勘探队,新疆乌鲁木齐 830009摘要:随着经济和工业的快速发展,我国的煤层气储层由于早期成煤和板块结构挤压等因素,导致含量差,穿透率低,再加上深部热蚀、区域驱动蚀变和岩浆暴露的累积效应,使煤层的含气量增加。

通过勘探和开发实践,我们开发了一系列适合煤层气储层地质特征的技术,重点是丛式钻探技术、大规模水力压裂技术、智能排放控制技术、低成本陆上采集技术等。

然而,煤层气储层的开发仍然面临着生产能力低、油井性能低、稳定能力低和产业发展低的问题,主要是由于地质条件差与勘探开发技术不成熟,基于动态大数据数据库的分析和评估,有望为煤层气储层的勘探和开发铺平道路。

关键词:煤层气储层地质特征;勘探开发;发展趋势引言在社会经济快速发展的背景下,温室效应明显,而在经济水平提高的同时,个人自身也加强了环境保护的观念,加强了对绿色能源发展的研究。

目前,我国地理面积大,地域广阔,资源丰富。

总的来说,世界上的煤炭和天然气储量非常大,特别是在中国西北和华北地区。

本文重点介绍了煤层气储层地质特征,并详细介绍了煤层气储层勘探和开发的主要领域。

[1]1 煤层气储层地质特征简述在20世纪80年代中期和90年代中期天然气出现后,经过20年的漫长发展期,既有成功也有失败,这些失败的主要因素是所使用的勘探技术不够合理,油井较浅,大多数油井与气藏的具体深度完全不匹配,这影响了天然气的具体数量,油井产量下降,天然气勘探效果呈下降趋势。

当煤炭形成时,往往受到各种因素的影响,其中最明显的是火山岩活动的影响,它加剧了二次演化的速度,饱和度高,气体含量高。

同时,当地的热能对煤气有相当大的影响,与之接触的岩石形成高热区,热量不能有效释放,环境被封闭,它被吸收到煤层颗粒中,然后扩散到岩石储层中,那里的煤的存在减少,饱和度低。

8 煤储层的地球物理特征

8 煤储层的地球物理特征

Q 1.943d 1.921R 4.574 0.119t 1.219
Q 0.193d 1.050R 3.068 2.630t 2.610
Q 0.389d 0.305r 2.788rr 0.244
30000
地震波形分类预测煤层裂隙
如果兰色类型的波形与煤层气富集有关,那么可以圈定 其范围,作为煤层气勘探的选区依据,其他颜色也如此
顶板砂岩
顶板泥岩
13-1煤层
11-2煤层
8煤层
顶板岩性解释Inline 252
第二节 测井响应解释煤层气含量
一、理论基础
煤层含气量随镜质组、惰质组含量及煤厚的增加而增加, 随煤体结构破碎程度的加大而增大,随变质程度和埋深的加深而 增加。煤岩组成直接影响到煤层(视)电阻率的高低,煤层体积
第八章 煤储层的地球物理特征
第一节 煤层气测井方法 第二节 测井响应解释煤层气含量 第三节 测井响应评价煤体结构 第四节 煤储层渗透率预测
第一节 煤层气测井方法
一、测井属性
表 8-1 测井方法 ·纯煤的电阻率一般较高 电阻率测井 ·煤中粘土(灰成分*)常常引起电阻率读数低,因为与粘土经常伴生的结合水增加了导 电性 ·纯煤的自然伽玛值很低 自然伽玛测井 ·粘土矿物的存在引起较高的读数,因为粘土矿物吸附天然放射性元素 ·其它灰成分,如细砂,通常对煤的自然伽玛读数无影响 ·由于煤基质密度低,所以密度测井显示低密度值(高的视孔隙度) 密度测井(伽玛 伽玛测井) ·灰成分,如细粒石英,能引起密度值增高 ·与密度测井相关联的光电效应(Pe)曲线,在纯煤中为 0.17%-0.20%,灰成分会使其 极度增高(灰成分矿物的光电效应至少是煤的 10 倍) 煤在各种测井方法中的响应(Scholes,1993) 煤层的响应
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(CH 4 )daf
100 (M ar 100
Aar )
(CH 4 )ar
(CH 4 )d
100 M ar 100
(CH 4 ) ar
(CH 4 ) ad
100 M ar 100 M ad
CH4—煤层含气量,cm3/g;
A、M—煤样灰分含量(%)和水分含量(%);
ar、ad、d、daf—分别为原位基(收到基)、空气
北 芦岭井田模拟测井
Q 0.389d 0.305r 2.788rr 0.244
90~100 620~655
2260
自然伽玛 API
0
高岭石:7.85 蒙脱石:4.45 伊利石:86.68 绿泥石:94.86
0 纯水为0
0
4Hale Waihona Puke APIAPI二、数据预处理
1、深度校正
d
d 2
(d2
d)
h h
d1
h
d
d2
钻探
d/ 1 h/
d/ d/
2
测井
2、 煤层含气量基准换算
(CH 4 )ar
地震波形分类预测煤层裂隙
如果兰色类型的波形与煤层气富集有关,那么可以圈定 其范围,作为煤层气勘探的选区依据,其他颜色也如此
顶板砂岩
顶板泥岩
13-1煤层 11-2煤层
8煤层
顶板岩性解释Inline 252
第二节 测井响应解释煤层气含量
一、理论基础
煤层含气量随镜质组、惰质组含量及煤厚的增加而增加, 随煤体结构破碎程度的加大而增大,随变质程度和埋深的加深而 增加。煤岩组成直接影响到煤层(视)电阻率的高低,煤层体积 密度、力学性质与煤体结构相关,可直接从密度(伽玛伽玛)和 声波时差测井曲线上得到反映 。
干燥基、干燥基和干燥无灰基。
3、参数归一化处理 X X X min X max X min
X X Xb X max X min
X-煤层原始数据 Xmax、Xmin测井曲线剔除风化、氧化带后
物性响应的最大值、最小值 实测煤层含气量最大值、最小值 相应煤层埋深最大值、最小值;
Xb-标志层原始物性响应平均值;-预处理后的数据。
电性
·纯煤的自然伽玛值很低
自然伽玛测井
·粘土矿物的存在引起较高的读数,因为粘土矿物吸附天然放射性元素 ·其它灰成分,如细砂,通常对煤的自然伽玛读数无影响
密度测井(伽玛 伽玛测井)
·由于煤基质密度低,所以密度测井显示低密度值(高的视孔隙度) ·灰成分,如细粒石英,能引起密度值增高 ·与密度测井相关联的光电效应(Pe)曲线,在纯煤中为 0.17%-0.20%,灰成分会使其
潘三矿东四下山采区13煤层气含量平面分布图
32000
31500
31000
30500
30000 78000
78500
79000
79500
0.9 to 1.1 1.9 to 2.1 2.9 to 3.1 3.9 to 4.1 4.9 to 5.1 5.9 to 6.1 6.9 to 7.1
80000
子导电。 影响因素:煤级、水、矿物质、煤岩成分、层理方向、
风氧化程度
声波测井
中子测井 自然伽玛 能谱测井 中子伽玛 能谱测井
·在煤中显示高孔隙度(高传播时间) ·粘土矿物对煤的这些测井值无大影响,因为纯粘土与煤的孔隙度范围相同 ·其它灰成分,如细粒石英,可能降低煤的视孔隙度 ·在煤中常常显示高的视孔隙度,因为它常把煤中氢作为孔隙度的指示而显示 ·粘土矿物对煤的视孔隙度无大影响,因为粘土与煤的视孔隙度范围相同 ·其它灰成分,如细粒石英,可能降低煤的视孔隙度 ·在纯煤中显示低值 ·根据粘土中钾、钍、铀的贡献,粘土会增加仪器读数 ·其它灰成分,如细粒的砂,一般对应于低计数率 ·对煤的元素组成以高精度响应,通常足以识别煤中的碳和氢 ·灰成分(包括粘土矿物)具有指示更多元素的效应,增加的典型元素有硅、钙、铁、
第八章 煤储层的地球物理特征
第一节 煤层气测井方法 第二节 测井响应解释煤层气含量 第三节 测井响应评价煤体结构 第四节 煤储层渗透率预测
第一节 煤层气测井方法
一、测井属性
测井方法
表 8-1 煤在各种测井方法中的响应(Scholes,1993) 煤层的响应
电阻率测井
·纯煤的电阻率一般较高 ·煤中粘土(灰成分*)常常引起电阻率读数低,因为与粘土经常伴生的结合水增加了导
铝和钾
注:*灰成分指煤中能形成灰分的矿物成分
二、地震属性
地震属性分析技术
地震属性包括振幅、相位、速度、时间、AVO、 波阻抗、衰减系数和频率等.
地震反演煤体结构图
测井—地震 多属性定量 分析识别煤 层宏观结构
13-1煤层
构造煤
夹矸
C异常区
B异常区 A异常区
AVO技术探测煤层吸附气
AVO技术是利用CDP道集上地震反射波振幅随炮检距 的变化特征预测目的层段岩性和所含流体性质的技术
在成煤物质、沉积环境、煤变质程度、水分和矿物杂质含量相 似的煤层中,煤体结构愈破碎,煤层体积密度、杨氏模量愈低, 孔隙率愈大,甲烷含量愈高,煤层电阻率愈大,自然伽玛减弱, 而声波时差则相应增大。
纯煤、矿物质、水分和甲烷的物理性质
物质名称
有 褐煤的纯煤
机 质
烟煤的纯煤
无烟煤的纯煤







黄铁矿
4、逐步回归分析
表 4 数字测井与模拟测井拟合的煤层含气量回归方程


测井响应类型
回归方程
采 样自 变 相 关 总数 量 系 数
桃园 CQ-4 孔数字测井 Q 1.943d 1.921R 4.574 0.119t 1.219 6 4 0.9999
淮 芦岭 CQ-5 孔数字测井 Q 0.193d 1.050R 3.068 2.630t 2.610
极度增高(灰成分矿物的光电效应至少是煤的 10 倍)
煤传导电流的能力,通常以电阻率表示。 褐煤:电阻率10~100Ω·m,导电性好,属离子导电 低中煤级烟煤:电阻率4000-5000Ω·m,为不良导体 高煤级烟煤:电阻率为1000~10Ω·m 无烟煤:电阻率为10~0.0001Ω·m,导电性好,属电
水份
甲烷气体
电阻率 Ω•m
40~4000 100~5000 0.001~100
n×103
10-8~10-4 10-8~ n×102
104~109
物理性质
密度 g/cm3
1.10~1.25
声波时差 μm/s
1.25~1.35 400~560
1.35~1.50
2.00~2.60 180~250
5.05 1.00~1.22 0.0007168
相关文档
最新文档