计数式瞬时测频精度分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计数式瞬时测频精度分析
张金刚1 孟小芬2 唐志凯2 白 松3
(1. 海军装备部天津军事代表 局驻北京地区特种导弹代表室) (2. 海军航空工 程学院研究生队) (3. 海装航空技 术保障部航材处)
摘 要 :本文针对计数式瞬时测频精度进行分析 , 提出了通过级数展开来估计测频误差的方法 , 其 中应用了莱布尼兹定理对交错级数进行了取舍 , 推导出计数式瞬时测频中测频误差与观测时间 、基 准时钟频率及被测信号频率之间的关系 。 关键词 :级数展开法 时钟频率 瞬时测频 测频精度
+Δm tc , 如果观测时间 T 与雷达信号不是整数倍关
系 ,(1)式应为
(m
+Δm)tc
=(n
+Δn)
1
f
′ x
(3)
f′x
=(mn++ΔΔmn)tc
=n mt c
+Δn +Δm
tc
=Tn++ΔΔmntc
(4)
令 c =n +Δn 、 d =T 、 x =Δm tc
根据 f (x)=d
c d3
Δm2
=-
T 2 Δm
,
零根
x
=0
,
x
=-
T Δm
定性地看 , 时钟周期 tc 越大 ,|w ±1 (x)|越大 。
图 3 测频误差曲线
图 2 时间窗口波形图
这时由(6)式为 :
Δf
=w ±1 (x)=dc2 x
-
c d3
x2
+dc4 x3
-
c d5
x
4
+

+(
-
1)n +1 d
c
5 结束语
本文讨论了采用相位拟合的方法来估计非平稳 信号瞬时频率 , 阐述了估计原理和计算方法 , 并就多 种情况进行了充分的仿真 。该方法具有明确的物理 意义 , 易于实现 , 其中间进行的大量的数据运算可采 用 DSP 实现 ,运算速度也会随着 DSP 的发展而提高 , 该方法可以做到实时性 , 并会有广阔的应用空间 。
[ 3] Ristic B, Boashash B. Instantaneo us frequency estima-
tio n o f quadratic and cubic F M sig nals using the c ross polynomial Wing-V ille distributio n. IEEE T rans. on Sig na l P rocessing , 1996, SP-44(6):1549 - 1553. [ 4 ] Emresoy M K , EI-Jaro udi. A-I terativ e instantaneous frequency estimation a nd adaptive matched spect rog ram. Sig nal P rocessing , 1998 , 64(2):157 - 165. [ 5] 徐春光 , 谢维信. 一种基于互 局部化 Wing-Ville 分布 的 瞬时频率估计[ J] . 电子科学学刊 2000 年第 5 期. [ 6] Huang N E, Shen Z , Lo ng S R , e t al. T he Empirical M o de Decomposition and the Hilbert Spectum for N o nlinear and N on-Statio na ry Time Se ries Analy sis [ J] . pro c. Roy . So c. , London , A , 1998, 454 :903 - 995. [ 7 ] Yu B, M a X J. A . N ew M ethod fo r the A na ly sis o f N on-Statio na ry No nlinear V ibr ation Sig nal and Its U se in M achine Fault Diagno sis [ C] . P roc. of Internatio nal Conference o n Vibratio n Engineering , 1998:668 - 671. [ 8] 冯松力 , 陈高平. 瞬时频率估计 的相位建 模法及 ma tlab 的实现 [ J] . 中国测试技术 2003 年第 3 期. [ 9] 张海勇. 瞬时频率的一种 估计方 法 [ J] . 系统 工程与 电 子技术 2002 V ol. 24, N o. 9.
作者简介 :
杜文超(1978 - ) , 男 , 助 理 工程 师 , 主 要
从事雷达信号处理研 究 。
**********************************************
(上接第 11 页) 与观察时间 、基准时钟频率成反比 , 与被测频率
间 , 由(11)可以计算出信号频率的测量精度 。
参考文献
[ 1 ] Boa shash B. Interpre ting and estima ting the instantane ous frequency of signal:Pa rt I , Fundamenta ls. Pr oc. of IEEE , 1992, 80(4):520 - 538.
[ 2] Boasha sh B. Inte rpreting and estimating the instantaneous frequency of sig nal :Par t II , Algo rithm s. P roc. o f IEEE , 1992 , 80(4) :540 - 568.
Precision Analysis of Counting Instantaneous Frequency Measurement
Z hang Jingang 1 M eng Xiaof en2 T ang Z hi kai 2 Bai So ng3
(1. S pecial Mi ssi les Representatives O f f i ce i n Bei j ing o f Mi litar y Rep resent at ives Bureau o f N ava l Equip ment Department in Tian-j in) 2. Grad uate S t udents’ Br ig ade o f N aval Aeronau ti cal E ngi neer ing Inst it ut e)
成正比 。
综上所述 , 可以得出 :
|Δf ma x |=|w
±1 |≤|w
| ±1 ma x
=Δmm f x
=T1
fx fc
3 结论
(1 1)
参考文献
[ 1] 胡来招. 瞬时测频技术[ M] . 北京 :国 防工业 出版社 , 2002. 152 - 153.
[ 2] 李尚生. 非相参雷达捷变频雷 达导引 头测试 方法研 究 [ J] . 海 军 航 空 工 程 学 院 学 报 , 2000, 15(1):149 -
3. Aeronaut ical Ma ter ia l Branch o f N aval Aeronaut ical Techni ca l S u pp or t Depar tment )
Abstract :The article analysed the precision of counter instantaneous f requency measurement , and presented a method to estimate the error of f requency measurement by series expanding , w hich uses Leibnitz theorem to round alternating series. The relations among the error of f requency measurement , measure time , reference clock frequency and the measured signal frequency , are also deduced. Keywords :Series ex panded met ho d , clo ck f requency , IF M , precision o f frequency m easurement.
n +1
xn
+…
(7)
|w ±max |=dc2 Δmtc +dc3 Δm2 t2c
=Δm
×c
×(m m3 tc
+Δm)
=
Δm
(m
+Δm)t tx
c(m
+Δm)
m3 tc
≈ Δm f x ≤ f x =1 f x
m
T
T fc
(10)
tc
(下转第 16 页)
11
图 10 拟合得到的相位 、瞬时频率和信号 原相位 、瞬时频率对比图
1 引 言
瞬时测频的方法有很多种 , 直接计数式瞬时测 频因为测频方法简单 、运算量小 、速度快 、工程实现 的体积小 、重量轻 , 而得到人们的广泛关注 。 随着器 件的发展以及等效时钟技术的采用 , 使测频精度得 到提高 。
2 计数式测频原理
直接计数法是一种最简单的测频算法 , 它是通 过计量一定数量的信号周期总共占有多长时间来推 算信号频率[ 1] 。 在确定的闸门时间内 , 以较高的频 率作为时钟 , 去测量较低的频率 , 如图 1 所示 。通过 计数器记录待测信号和时钟频率周期个数 , 并根据 频率的定义计算待测信号的频率 。 在观测时间 T 时 , 待测信号 f x 和基准时钟 f c 同时计数 , 计数器 1 和计数器 2 的值分别为 n 、m , 则 有下式
如图 2 所示 。
式中 , w ±1(x)是一个交错级数 , 并且一般向单 调递减并趋向于 0 。 根据莱布尼兹定理可得(7)式 收敛 , 且
c d2
x
>dc2
x
-
c d3
x2
+dc4
x3
-
c d5
x4
+…+
(
-
1)n +1 d
c
n +1
xn
+…
(8)
若 w ±1 (x)=dc2 x , 余项的绝对值|r|≤dc3 x2 。
c +x
=dc
-
c d2
x
+dc3
x2
-

(-
1)n
c d n +1
xn

(5)
由(1) 、(4) 、(5)式得
Δf
=f (x)-
f
x
=m
n tc
+Δn +Δmtc
-
n mt c
=n +Δn mt c
-
c d2
x
+dc3
x2
-
c d4
x3
+Λ+
(-
1)n
d
c
n +1
xn
+Λ-
n mt
c
=Δdn
10
图 1 计数式瞬时测频原理图
T =m tc , mtc =nt x f x =mn f c
(1)
Δf
=n
+Δn mt c
-
n mt c
=mΔtnc
≤m1tc
=1T
(2)
测频误差看似只与观察时间有关 , 而与时钟频
率没有关系 , 这与常规测频理论相悖 , 在计算被测信
号频率时 , 实际上的观察时间 T′=(m +Δm)tc =T
制 , 现在工程上常用的时钟为 fc =2GH z , 为了进一 步提高时钟频率 , 采用等效时钟的办法可使时钟频 率达到 fck =8GHz[ 3] 。根据所用场合信号的持续时
w ±1 (x)≤dc2 x +|r|=w ±1max =dc2 Δm tc +dc3 Δm2 t2c (9)
Δm 不变 , 观察时间 T′=(m +Δm)tc 不变 、tc
变 , 抛物线 w ±max =dc2 Δm x +dc3 Δm2 x2 见图 3 , 极小 值对应
x
=-
c d2
Δm
2
根据(11)式可看出 , 要使 Δf 小 , 一是加大 T , 二 是提高时钟频率 。 而在窗口一定的情况下 , 要减小 测频误差 , 只有提高时钟频率[ 2] , 但是又受器件的限
15 2. [ 3] 姜永华. 捷变频雷达综合测试 仪频率 跟踪精 度动态 测
量方法研究[ J] . 国外电子测量技术 , 2004, 第 5 期.
-
c d2
x
+dc3
x2
-
c d4
x3
+Λ+
(-
1)n
d
c
n +1
wk.baidu.com
xn

=q±1 - w ±1 (x)
(6)
其中 :q±1 =Δdn ;
w ±1(x)=dc2
x
-
c d3
x2
+dc4
x3
-
c d5
x4
+Λ+
(-
1)n
+1
d
c
n +1
xn

为了减小 Δf , 在工程上我们可以做到 q±1 =0 ,
相关文档
最新文档