图论 第六章 图的矩阵表示

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构成的 (2 p1 1) q 矩阵为图G的完全割集
矩阵,记作 Qe 。
v1
e1
v2
e1 e2 e3
v1 1 0 1
e2
e2
v2 1 1 0
V3 0 1 1
v3
Hale Waihona Puke Baidu
6.5 图的邻接矩阵
定义6.5.1设图G的顶点集V (G) v1, v2, , vp ,令
aij
1,
若v 与v i
j
邻接
0,
若v 与v i
第六章图的矩阵表示
计算机科学领域有许多算法涉及图。计算机存储图 的一种最简单有效的方法就是矩阵。矩阵是由数字 组成的矩阵表格,一般用大写字母表示。(元素、 行、列)。图论有效地利用了矩阵,将其作为表达 图及其性质的有效工具和手段。
6.1关联矩阵
定义6.1.1设图G为(p,q)图.令
1, 若边j与顶点i关联
构成的 (2q p1 1) q 矩阵为图G的完全圈
矩阵,记作 Be 。
v1
e1
v2
e1 e2 e3
v1 1 0 1
e2
e2
v2 1 1 0
V3 0 1 1
v3
6.3 割 集 矩 阵
定义6.3.1设G是连通 (p,q)图,令
1, 若边j在断集i中
qij
0, 否则
则由元素 qij (i 1, 2, , 2p1 1, j 1, 2, , q)
mij
0,否则
则由元素 mij 构成的pq 矩阵为图G的完全关联
矩阵,记作M e 。
v1
e1
v2
e1 e2 e3
v1 1 0 1
e2
e2
v2 1 1 0
V3 0 1 1
v3
6.2 圈 矩 阵
定义6.1.2设连通 (p,q)图G,令
1, 若边j在环路i中
bij
0, 否则
则由元素 bij (i 1, 2, , 2qp1 1, j 1, 2, , q)
不接或i=j
j
则称由元素构成的 aij (i, j 1, 2, , p) 构成的p阶
矩阵为图G的邻接矩阵,记作A(G)或简记作A。
相关文档
最新文档