激光烧蚀法合成一维纳米线
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、VLS生长
VLS生长纳米线(管)中存在着两个过程: 一是气态原子在气液界面不断解离溶入液态催化剂中; 二是过饱和溶质在液固界面以界面能最低的方式不断析出 该过程中气、液和固三相共存,故被称为VLS生长。
液相催化剂最小半 径为0.2μm数量级 (平衡热力学的限制) 激光烧蚀的作用可 使液相催化剂团簇 尺寸达到纳米级 激光烧蚀法与晶体生 长的VLS法相结合
(B)Image of an isolated Ge nanowire. The nanowire diameter is 5.0 ± 0.6 nm. Scale bar, 5 nm. (C)High-resolution TEM image of the Ge nanowire region indicated by the open black box in (B). A twin boundary oriented along the vertical direction is located at the center of this image; (111) lattice planes are visible to the left and right of the boundary. Scale bar, 1 nm. The Ge nanowires were produced by ablation (Spectra Physics GCR-16s, 532 nm, 10 Hz, 2-W average power) of a Ge0.9Fe0.1 target. The growth conditions were 820°C and 300torr Ar flowing at 50 SCCM.
演讲者:10122800 刘旭明
摘要:
一种合成半导体纳米线的方法,它利用激光烧蚀团簇状构造 和气—液—固(VLS)模式的生长,制备纳米直径催化剂团簇。 在这个过程中,激光烧蚀被用来制备纳米级直径的催化剂团 簇通过VLS增长定义所产生的导线的大小。这种方法可用来制 备均匀的6〜20纳米的单晶硅和3至9纳米的锗纳米线,长度范 围从1到30微米。根据不同的条件和催化剂材料进行的研究证 实了生长机理的主要细节,并提出确定的相图可以用来预测 制备纳米线索需的合理的催化剂材料和生长条件。
REFERENCES AND NOTES
1. A. P. Alivisatos, Science 271, 933 (1996); B. I. Yakobson and R. E. Smalley, Am. Sci. 85, 324 (1997). 2. L. E. Brus, J. Phys. Chem. 98, 3575 (1994); L. E. Brus et al., J. Am. Chem. Soc. 117, 2915 (1995); A. J. Read et al., Phys. Rev. Lett. 69, 1232 (1992); F. Buda, J. Kohanoff, M. Parrinello, ibid., p. 1272; G. D. Saunders and Y.-C. Chang, Phys. Rev. B 45, 9202 (1992). 3. D. T. Colbert et al., Science 266, 1218 (1994); J.-C.Charlier, A. De Vita, X. Blase, R. Car, ibid., 275, 647 (1997); A. Thess et al., ibid. 273, 483 (1996); S. Iijima and T. Ichihashi, Nature 363, 603 (1993); D. Bethune et al., ibid., p. 605. 4. C. R. Martin, Science 266, 1961 (1994); T. M. Whitney, J. S. Jiang, P. C. Searson, C. L. Chien, ibid. 261, 1316 (1993); C.-G. Wu and T. Bein, ibid. 266, 1013 (1994); H. Dai, E. W. Wong, Y. Z. Lu, S. Fan, C. M. Lieber, Nature 375, 769 (1995); E. W. Wong, B. W. Maynor, L. D. Burns, C. M. Lieber, Chem. Mater. 8,2041 (1996); C. M. Lieber, A. M. Morales, P. E. Sheehan, E. W. Wong, P. Yang, in The Robert A. Welch 40th Conference on Chemical Research: Chemistry on the Nanometer Scale, R. A. Welch Foundation, Houston, TX, 21 to 22 October 1996 (R. A. WelchFoundation, Houston, TX, 1996), pp. 165–187. 5. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
A M Morales, and C M Lieber Science 1998;279:208-211
(B) Diffraction contrast TEM image of a Si nanowire; crystalline material (the Si core) appears darker than amorphous material (SiOx sheath) in this imaging mode. Scale bar, 10 nm. (Inset) Convergent beam ED pattern recorded along the [211] zone axis perpendicular to the nanowire growth axis. (C) High-resolution TEM image [Topcon (Topcon Technology, Tokyo, Japan) EM-002B, 200-kV operating voltage] of the crystalline Si core and amorphous SiOx sheath. The (111) planes (black arrows) (spacing, 0.31 nm) are oriented perpendicular to the growth direction (white arrow).
图1.纳米线的生长设备示意图
一定密度的蒸发 粒子和高温区域, 高温区域保留一 定的时间
1.激光脉冲输出 4.石英管
2.透镜 5冷头
3目标物体 6.载气(氩气)
A M Morales, and C M Lieber Science 1998;279:208-211
图2.透射电子显微镜图像
(A) A TEM image (Phillips EM420, 120-kV operating voltage) of the nanowires produced after ablation (Spectra Physics GCR-16s, 532 nm, 10 Hz, 2-W average power) of a Si0.9Fe0.1 target; the product was obtained from the cold finger.
这种制备技术具有一定的普适性,只要欲制备的材料能 与其他组分形成共晶合金,则可根据相图配制作为靶材 的合金,然后按相图中的共晶温度调整激光蒸发和凝聚 条件,就可获得欲制备材料的纳米线。
图3.Si纳米线生长模型
A.气化 B.液滴成核及长大 C.硅的固化析出 D.硅纳米线的生成
A M Morales, and C M Lieber Science 1998;279:208-211
A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires
激光烧蚀法合成结晶半导体纳米线
论文出处:Science 279:208(1998) 作者:Alfredo M. Morales Charles M. Lieber 作者单位:Department of Chemistry and Chemical Biology, Harvard University, Cambridge Department of Chemistry and Chemical Biology, and Division of Engineering and Applied Sciences, Harvard University, Cambridge
主要内容
1. 激光烧蚀 2. VLS生长 3. 是在碳纳米管的基础上发展起来的,各 种新颖的一维纳米材料相继被发现。一维纳米结构具有的许多 独特性能不仅为人们研究材料的电子、光学、输运性质、机械 等性能与量子尺度的关系提供了好的物质模型,而且也为纳米 结构的合成和组装提供了新的机遇。一维纳米材料的可控制备、 性能研究和应用对于促进纳米科技领域的发展有十分重要的作 用,有助于发现新的效应,发展新的器件,以至于形成新的产 业。 激光烧蚀法是用一束高能激光辐射靶材表面,使其表面迅速加热 融化蒸发,随后冷却结晶生长的一种制备材料的方法。
四、总结与展望
激光烧蚀法与VLS生长机制结合起来制备出了一维纳 米材料,一维纳米材料的半径、长度、形貌等受激光 烧蚀法的工艺参数的控制。在该法中, 激光烧蚀的作 用在于克服平衡状态下团簇的尺寸的限制,可形成比 平衡状态下团簇最小尺寸还要小的直径为纳米级的液 相催化剂团簇,而该液相催化剂团簇的尺寸大小限定 了后续按VLS机理生长的线状产物的直径。
Published by AAAS
图4.锗纳米线的透射电子显微镜图像
A M Morales, and C M Lieber Science 1998;279:208-211
(A)Image of the nanowire exhibiting a roughly spherical nanocluster at its end. The EDX measurements made at the white squares show that the nanocluster (upper square) has a Ge:Fe ratio of 2:1 and that the nanowire (lower square) contains only Ge. Scale bar, 9 nm.
进一步研究纳米线的生长机理以及激光工艺参数与制 备结果的关系,在此基础上找到能大量生产的制备工 艺,以便能用于工业化生产。
Lieber等分别以Si0.9Fe0.1, Si0.9Ni0.1和Si0.99Au0.01为靶材, 用该法制备了直径为3~9 nm﹑长度为1~30 µm的单晶Si 纳米线。同时也以Ge0.9Fe0.1 为靶材,用该法合成了直径 为3~9 nm﹑长度为1~30 µm的 单晶Ge 纳米线。 成本高 可预见性的选择 催化剂和制备条 有杂质 件(普适性) 现在利用该技术已成功的 制备出了GaAs,SiO2 等多 种物质的纳米线。
三、纳米线的影响因素
激光强度:激发的等离子体气焰的状态; 生长腔压力:决定内部气体的密度,影响热梯度及生长的速 率和方向; 气流流速:决定蒸发后等离子体的流动速度,影响纳米线在 核上进一步生长的方向和速率; 生长时间:影响纳米线的生长大小,过长也会使副产品增多 生长温度:一般高温可以减少生成纳米线时产生的缺陷。
从Ge-Au二元相图可看 出,当温度高于最低共熔 点(363℃)时,Ge和Au 将形成液相合金(Ⅰ)。 由于液相表面的吸附系 数大,来自气相的Ge将 优先在Ge-Au的液相合 金表面沉积,当Ge在GeAu的液相合金中过饱和 时,Ge纳米线将在固液 界面处析出(Ⅱ-Ⅲ)。 图5 Ge纳米线的气液固生长过程及Ge-Au二元相图