数学概念的定义形式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学概念的定义方式
一.给概念下定义的意义和定义的结构
前面提到过,概念是反映客观事物思想,是客观事物在人的头脑中的抽象概括,是看不见摸不着的,要用词语表达出来,这就是给概念下定义。而明确概念就是要明确概念的内涵和外延。所以,概念定义就是揭示概念的内涵或外延的逻辑方法。揭示概念内涵的定义叫内涵定义,揭示概念外延的定义叫做外延定义。在中学里,大多数概念的定义是内涵定义。
任何定义都由被定义项、定义项和定义联项三部分组成。被定义项是需要明确的概念,定义项是用来明确被定义项的概念,定义联项则是用来联接被定义项和定义项的。例如,在定义“ xx 相等的三角形叫做等边三角形”中,“等边三角形”是被定义项,“ xx 相等的三角形”是定义项,“叫做”是定义联项。
二、常见定义方法。
1、原始概念。数学定义要求简明,不能含糊不清。如果定义含糊不清,也就不能明确概念,失去了定义的作用。例如,“点是没有部分的那种XX”就是含糊不清的定义。按这个要求,给某概念下定义时,定义项选用的必须是在此之前已明确定义过的概念,否则概念就会模糊不清。这样顺次上溯,终必出现不能用前面已被定义过的概念来下定义的概念,这样的概念称为原始概念。在中学数学中,对原
始概念的解释并非是下定义,这是要明确的。比如:代数中的集合、元素、对应
等,几何中的点、线、面等
2、属加种差定义法。这种定义法是中学数学中最常用的定义方法,该法即按公式:“邻近的属+种差=被定义概念”下定义,其中,种差是指被定义概念与同一属概念之下其他种概念之间的差别,即被定义概念具有而它的属概念的其他种概念不具有的属性。例如,平行四边形的概念邻近的属是四边形,平行四边形区别于四边形的其他种概念的属性即种差是“一组对边平行并且相等”,这样即可给平行四边形下定义为“一组对边平行并且相等的四边形叫做平行四边形”。
利用邻近的属加种差定义方法给概念下定义,一般情况下,应找出被定义概念
最邻近的属,这样可使种差简单一些。像下列两个定义:等边的矩形叫做正方形;
等边且等角的四边形叫做正方形。
前者的种差要比后者的种差简单。
邻近的属加种差的定义方法有两种特殊形式:
(1)发生式定义方法。它是以被定义概念所反映的对象产生或形成的过程作为种差来下定义的。例如,“在平面内,一个动点与一个定点等距离运动所成的轨迹叫做圆”即是发生式定义。在其中,种差是描述圆的发生过程。
(2)关系定义法。它是以被定义概念所反映的对象与另一对象之间关系或它与另一对象对第三者的关系作为种差的一种定义方式。例如,若ab=N则logaN 二b(a > 0, 1)。即是一个关系定义概念。
3、揭示外延的定义方法。数学中有些概念,不易揭示其内涵,可直接指出概念的外延作为它的概念的定义。常见的有以下种类:
(1)逆式定义法。这是一种给出概念外延的定义法,又叫归纳定义法.例如,整数和分数统称为有理数;正弦、xx、正切和余切函数叫做三角函数;椭圆、双曲线和抛物线叫做圆锥曲线;逻辑的和、非、积运算叫做逻辑运算等等,都是这种定义法.
(2)约定式定义法。揭示外延的定义方法还有一种特殊形式,即外延的揭示采用约定的方法,因而也称约定式定义方法。例如,a0=1(a工0), 0! =1,就是用约定式方法定义的概念。
三、概念的引入
(1)原始概念
一般采用描述法和抽象化法或用直观说明或指明对象的方法来明确。
“针尖刺木板”的痕迹引入“点”、用“拉紧的绳”或“小孔中射入的光线”来引入“直线”的方法是直观说明法,“ 1,2,3,・••叫做自然数”是指明对象法。
(2)对于用概念的形成来学习的概念
一般可通过阅读实例,启发学生抽象出本质属性,xx 共同进行讨论,最后再准确定义。
( 3)对于用概念的同化来学习的概念
(a)用属加种差定义的概念
新概念是已知概念的特例,新概念可以从认知结构xx 有的具有较高概括性的概念中繁衍出来。
(b)由概念的推广引入的概念
讲清三点:推广的目的和意义;推广的合理性;推广后更加广泛的含义。
(c)采用对比方法引入新概念
当新概念与认知结构中已有概念不能产生从属关系,但与已有的旧概念有相似之处时可采用此法。
关键是弄清不同之处,防止概念的负迁移。
(d)根据逆反关系引入新概念
多项式的乘法引入多项式的因式分解、由乘方引入开方、由指数引入对数等。
关键是弄清逆反关系。
(4)发生式定义
通过阅读实例或引导学生思考,进行讨论,自然得出构造过程,即揭示出定义的合理性。
四、概念的形成的方式
概念形成就是让学生阅读大量同类事物的不同例证中独立发现同类事物的本
质属性,从而形成概念。因此,数学概念的形成实质上是抽象出数学对象的共同本质特征的过程。可概括如下:
(1)通过阅读比较,辨别各种刺激模式,在知觉水平上进行分
析、辨认,根据事物的外部特征进行概括。
(2)分化出各种刺激模式的属性。
(3)抽象出各个刺激模式的共同属性。
(4)在特定的情境中检验假设,确认关键属性。
(5)概括,形成概念。
(6)把新概念的共同关键属性推广到同类事物中去。
7)用习惯的形式符号表示新概念
数学概念的定义
什么叫给概念下定义,就是用已知的概念来认识未知的概念,使未知的概念转化为已知的概念,叫做给概念下定义.概念的定义都是由已下定义的概念(已知概念)与被下定义的概念(未知概念)这两部分组成的.例如,有理数与无理数(下定义的概念),统称为实数(被下定义的概念);平行四边形(被下定义的概念)是两组对边分别平行的四边形(下定义的概念).其定义方法有下列几种.
1、直觉定义法
直觉定义亦称原始定义,凭直觉产生的原始概念,这些概念不能用其它概