自动控制原理课后习题答案第四章
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 四 章
4-4 设单位反馈控制系统开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标d): (1))15.0)(12.0()(++=
s s s K s G (2))12()1()(++=s s s K s G 解:(1))5)(2()15.0)(12.0()(*
++=++=s s s K s s s K s G ,K K 10*= ① n =3,根轨迹有3条分支;
② 起点:p1=0,p2=-2,p3=-5;没有零点,终点:3条根轨迹趋向于无穷远处。
③ 实轴上的根轨迹:[-2,0],(5,-∞-];
④ 渐进线:
373520-=--=
a σ,πππϕ,33)12(±=+=K a ; ⑤ 分离点:051211=++++d d d
求解得:79.31-=d (舍去),88.02-=d ; 作出根轨迹如图所示:
(2)
*(1)(1)()(21)(0.5)K s K s G s s s s s ++=
=++,*0.5K K =
① n =2,根轨迹有2条分支; ② 起点:p1=0,p2=-0.5,;终点:
11z =-,1n m -=条根轨迹趋向于无穷远处。
③ 实轴上的根轨迹:[-0.5,0],(,1-∞-];
④ 分离点:1110.51d d d +=++
求解得:1
0.29d =-,2 1.707d =-; 作出根轨迹如图所示:
4-6 设单位反馈控制系统的开环传递函数如下,要求:
确定 )20)(10()()(2+++=*s s s z s K s G 产生纯虚根为±j1的z值和*K 值。
解:
020030)()20)(10()(**234*2=++++=++++=z K s K s s s z s K s s s s D 令j s =代入0)(=s D ,并令其实部、虚部分别为零,即:
02001)]1(Re[*=+-=z K j D ,030)]1(Im[*=+-=K j D
解得:63.6,30*==z K
画出根轨迹如图所示:
4-10 设单位反馈控制系统的开环传递函数
)102.0)(101.0()(++=
s s s K s G
要求:
(1) 画出准确根轨迹(至少校验三点);
(2) 确定系统的临界稳定开环增益K c;
(3) 确定与系统临界阻尼比相应的开环增益K 。
分析:利用解析法,采用逐个描点的方法画出系统闭环根轨迹。
然后将s j ω=代入特征方程中,求解纯虚根的开环增益,或是利用劳斯判据求解临界稳定的开环增益。
对于临界阻尼比相应的开环增益即为实轴上的分离点对应的开环增益。
解:(1)5000()(50)(100)K G s s s s =++
① n =3,根轨迹有3条分支,且均趋于无穷远处;
② 实轴上的根轨迹:[-50,0],(,1-∞-00]; ③ 渐进线:50100503a σ--=
=-,
(21),33a k ππϕπ+==±; ④ 分离点:11150100d d d +=++
求解得:121.3d =-,278.8d =-(舍去); 作出根轨迹如图所示:
(2)临界开环增益c K 为根轨迹与虚轴交点对应的开环增益。
32()150********D s s s s K =+++
令s j ω=,代入()0D s =,并令其实部、虚部分别为零,即
2Re[()]15050000D j K ωω=-+=,3Im[()]50000D j ωωω=-+=
解得:1,23500070.71,0ωω=±=±=(舍去) 150c K =
(3)系统处于临界阻尼比1ζ=,相应闭环根位于分离点处,即要求分离点d 对应的K 值。
将s =d =-21.3代入幅值条件:
0.0110.0219.622K s s s =++=
4-14 设系统开环传递函数如下,试画出b 从零变到无穷时的根轨迹图。
(1)
))(4(20
)(b s s s G ++= (2)
)10()(30)(++=s s b s s G 解:(1)
22()4420420(4)0D s s s bs b s s b s =++++=++++= 做等效开环传递函数
*2(4)(4)()420(24)(24)b s b s G s s s s j s j ++=
=+++++-
① n=2,有2条根轨迹分支,n-m=1条趋于无穷远处;
② 实轴上的根轨迹:(,4-∞-];
③ 分离点11124244d j d j d +=
+++-+
整理得212840
8.47
0.47()d d d d +-==-=舍去
出射角:1
000180arctan 290135p θ=+-= 根轨迹如图所示:
(2)2
()(10)30()40300D s s s s b s s b =+++=++= 做等效开环传递函数 *23030()40(40)b b G s s s s s =
=++
① n=2,有2条根轨迹分支,且均趋于无穷远处; ② 实轴上的根轨迹:[40,0-]; ③ 分离点11040d d +=+
整理得20d =-
根轨迹如图所示:。