离子注入技术(Implant)
离子注入工艺原理
![离子注入工艺原理](https://img.taocdn.com/s3/m/1af3db996e1aff00bed5b9f3f90f76c660374c72.png)
离子注入工艺原理离子注入(Ion Implantation)是一种常用的半导体加工技术,通过将选择性的离子注入到半导体材料中,来改变其电学性质,实现各种功能。
离子注入工艺原理可以分为三个主要步骤:离子产生,离子加速以及离子注入。
首先,离子产生是离子注入过程的第一步。
离子源是离子加速的关键,通常使用离子源来产生所需的离子种类。
离子源有许多类型,包括离子脱附(sputtering)源、电离源(ionization)或者离子化(ionized)源等。
其中较为常见的是离子脱附源,通过将砷、硼等半导体材料投放在高能量粒子(如氩离子)中,来脱离砷或硼原子产生相应离子。
这些离子会进一步被加速,并被注入到半导体材料中。
接下来,是离子加速的过程。
离子会通过一种电场来加速,通常是一个加速器。
这个电场可以是一个电势差,通过与离子之间形成的电场将离子加速到高能量。
在离子注入中,通常使用的是加速电势差。
离子源中的离子在电场的作用下,获得足够的能量,从而达到所需的注入深度。
最后,是离子注入的过程。
一旦离子获得足够的能量,它们会进入到半导体材料中,并通过对材料进行注入来改变其电学性质。
离子注入的深度可以通过加速电压和荷质比等参数来控制,通过调整参数可以实现不同深度的注入。
离子注入技术的原理在于将特定的离子种类注入到半导体材料中,从而改变其性质。
原子尺寸的改变可以影响材料的电学、磁学和光学性质。
例如,将掺杂硼离子注入到硅材料中可以将其掺杂变成P类型半导体,而将掺杂磷离子注入到硅材料中可以将其掺杂变成N类型半导体。
这种通过离子注入调整材料性质的能力,使得离子注入成为了半导体工业中不可或缺的一部分。
离子注入工艺有许多应用,包括集成电路制造和半导体器件制造。
通过离子注入,可以改变材料的导电性、控制晶体中的通道形成、增加或改变半导体材料中的杂质等。
这对于集成电路芯片和其他电子元件的设计和制造至关重要,使其具有所需的电学性质和性能。
总之,离子注入工艺通过离子源的产生、离子加速和离子注入等步骤,将特定的离子注入到半导体材料中,从而改变其性质。
离子注入技术ppt课件
![离子注入技术ppt课件](https://img.taocdn.com/s3/m/267e43279ec3d5bbfc0a7458.png)
Z 1 Z 2
M 1 e V c m 2
Z 1 23 Z 2 23M 1 M 2
忽略外围电子屏蔽作用,注入
离子与靶内原子之间势函数:
M——原子序数
下标1——离子 下标2——靶
整理版课件
10
核碰撞
考虑电子屏蔽时离子
与靶核之间相互作用势 函数
最简屏蔽函数
f
r
表面非晶层对于沟道效应的作用
Boron implant into SiO2
Boron implant into Si
整理版课件
27
减少沟道效应的措施
❖ 对大的离子,沿沟道轴向(110)偏离7-10o
❖ 用Si,Ge,F,Ar等离子注入使表面预非晶化, 形成非晶层(Pre-amorphization)
1
R bM
2
M1
b ——E 和R 的缓慢变化函数
RP
2 M1M2 3整M理1版课件M2
RP
M1>M2; b=1/3
19
纵向分布
离子注入的实际浓度分布用高斯函数表示
n(x) 2QT Rpexp12xRRpp2
高斯分布只在峰值附近 与实际分布符合较好
n(Rp)Nmax
QT
2Rp
单位面积注入的离子总数 QT 2NmaxRp
离子注入的基本过程
❖ 将某种元素的原子或携 带该元素的分子经离化 变成带电的离子
❖ 在强电场中加速,获得 较高的动能
❖ 注入材料表层(靶)以
改变这种材料表层的物
理或化学性质
整理版课件
3
离子注入特点
➢ 各种杂质浓度分布与注入浓度可通过精确控制掺杂剂量(1011-1017 cm-2)和能量(5-500 keV)来达到
离子注入培训教程
![离子注入培训教程](https://img.taocdn.com/s3/m/1f0db2d4b9f3f90f76c61b0b.png)
离子注入培训教程上帝在调情发表于: 2010-5-28 10:45 来源: 半导体技术天地1.什么是离子注入?离子注入(Ion Implant)是一种把高能量的掺杂元素的离子注入半导体晶片中,以得到所需要的掺杂浓度和结深的方法。
2.离子注入安全操作应注意什么?1)本工艺所接触的固源、气源的安全操作固体磷、固体砷、三氟化硼气体均为有毒有害化学品,进行一切与之发生接触的操作维护时,都必须戴好防毒面具、乳胶手套、袖套、围裙等安全防护用品,在通风柜中进行。
2)设备安全操作①离子注入机在高电压下工作,维护维修时必须关闭电源,拔下操作面板钥匙,防止有人误操作,打开设备门,用放电棒对离子源气柜、离子源头部件、高压电缆、灯丝电极等部位放掉高压静电,并将放电棒挂在源法兰上,才可进行维护维修操作。
②离子注入机工作时有少量放射线产生,注片过程中严禁打开门,或过分接近设备后部,更不能进入注入机下面的格栅。
③离子注入机离子源工作时产生高温,必须等离子源部件降温后才可进行维护维修操作。
3.请写出离子注入常用源材料、常用离子种类及其AMU(原子质量单位)数值。
离子注入常用源材料:固体磷、固体砷、三氟化硼气体、氩气常用离子种类:B+—11,BF2+—49,P+—31,As+—75,Ar+—404.哪些工艺在大束流注入机上进行生产? 哪些工艺在中束流注入机上进行生产? 试举例说明。
注入剂量大于5e14cm-2的注入工艺在大束流注入机上进行生产,如MOS电路的源漏注入、电容注入、多晶互连注入等。
注入剂量小于1e14cm-2的注入工艺在中束流注入机上进行生产,如MOS电路的阱注入、场注入、PT注入、LDD注入、VT注入等等。
5.产品流程单规定的注入工艺参数有哪些?产品流程单规定的注入工艺参数有注入离子种类(AMU)、能量(Energy)、剂量(Dose)、倾斜角(TiltAngle)等。
6.注入前的来片检查应注意什么?注入前的来片检查应确认产品批号、片数与流程单一致,上道工序已完成,圆片无破损,如有异常应向带班人员报告。
第五章离子注入_572605374
![第五章离子注入_572605374](https://img.taocdn.com/s3/m/2095716eb84ae45c3b358c81.png)
x j = Rp + ΔRp
2 ln⎜⎜⎝⎛
1
φ ⎟⎞
2π ΔRp N B ⎟⎠
(假设0 ≤ x ≤ Rp时,均有N(x) > NB)
23
实际的入射离子分布问题
沟道效应 横向分布 复合靶注入
24
沟道效应:在单晶靶中,当离子速度方向平行于主晶轴时,有 部分离子可能会行进很长距离,造成较深的杂质分布。
深度为Rp时的离子浓度为最大值: Cp =
Q
2π ΔRp
离子浓度沿硅片深度的积分就是注入剂量:
∫∞
Q = N (x)dx = 0
2π ΔRpCp
16
200KeV implants
17
一个任意的杂质分布可用一系列的矩来描述:归一化的一次矩是投影射 程,二次矩是标准偏差,三次矩是偏斜度;四次矩是峭度。
静电光栅扫描:适于中低束流机 机械扫描:适于强束流机
剂量控制
法拉第杯:捕获进入的电荷,测
量离子流
注入剂量:
Dose =
1 A
∫
I q
dt
当一个离子的荷电态为m时,
∫ 注入剂量为 Dose =
1
I dt
mA q
两种注入机扫描系统
9
离子注入工艺控制参数
杂质离子种类:P+,As+,B+,BF2+,P++,B++,… 注入能量(单位:Kev)—— 决定杂质分布深度和形状 注入剂量(单位:原子数/cm2)—— 决定杂质浓度 束流(单位:mA或μA)—— 决定扫描时间
注入损伤阈值剂量:
超过某一剂量注入后,形成完全 损伤,晶体的长程有序被破坏。
离子注入技术(Implant)
![离子注入技术(Implant)](https://img.taocdn.com/s3/m/63e5f2fb26fff705cc170af4.png)
4、离子注入系统复杂昂贵。
3
离子注入的应用
半导体掺杂工艺: 大规模集成电路 固体材料表面改性: 抗腐蚀、硬度、耐磨、润滑 光波导: 光纤传感器 太阳能电池
离子注入机设备与发展
中束流 μA 350D
NV6200A
NV10-80
大束流 mA NV10-160 NV10-160SD NV10-180
离子注入过程:入射离子与半导体(靶)的原子核和 电子不断发生碰撞,其方向改变,能量减少,经过一 段曲折路径的运动后,因动能耗尽而停止在某处。 离子浓度呈高斯分布。
x
y
0
z
注入离子分布(高斯型)
RP:投影射程,射 程的平均值
2.3 退火工艺
• 注入离子会引起晶格损伤ห้องสมุดไป่ตู้一个高能离子可以 引起数千个晶格原子位移)。 • 离子注入后需要将注入离子激活。
基本结构:离子注入系统(传统)
离子源:用于离化杂质的容器。常用的杂质 源气体有 BF3、 AsH3 和 PH3 等。 质量分析器:不同离子具有不同的电荷质量 比,因而在分析器磁场中偏转的角度不同,由 此可分离出所需的杂质离子,且离子束很纯。 加速器:为高压静电场,用来对离子束加速。 该加速能量是决定离子注入深度的一个重要参 量(离子能量为100keV量级)。 中性束偏移器:利用偏移电极和偏移角度分 离中性原子。
4 总结
未来电子技术发展水平的瓶颈;
未来高精工艺的发展方向;
未来尖端技术如航空航天、军事等领域 所必须的基础。
Thank you!
各向同性
可以独立控制结深和浓 不能独立控制结深和 离子注入与扩散的比较 3 度 浓度
一 言 以 蔽 之 : 可 控 性 好
离子注入的缺点
硅集成电路工艺——离子注入IonImplantation
![硅集成电路工艺——离子注入IonImplantation](https://img.taocdn.com/s3/m/ed8c668c960590c69ec376d6.png)
天津工业大学
一个离子的级联碰撞引起的晶格损伤:
天津工业大学
注入损伤的形式
产生孤立的点缺陷或缺陷群(E=Ed) 形成非晶区域(移位原子数接近原子密度,低剂量重离子) 大剂量的注入区甚至会形成非晶层
天津工业大学
§4.5 热退火 Thermal Annealing
晶格损伤的危害:
增加散射中心,使载流子迁移率下降
天津工业大学
离子注入系统: 离子源(离子发生器,分析器) 加速及聚焦系统 (先分析后加速,先加速后分析,前后加速, 中间分析) 终端台(扫描器,偏束板,靶室)
天津工业大学
天津工业大学
磁分析器原理
BF3 B, B+, BF2+, F- ….
带电离子在磁场中运动: 洛伦兹力=向心力
目的: 减少或消除硅片中的晶格损伤,恢复其少子寿 命和迁移率; 使掺入的杂质进入晶格位置,实现一定比例的 电激活
天津工业大学
热退火过程(固相外延)
天津工业大学
天津工业大学
天津工业大学
天津工业大学
天津工业大学
快速退火 Rapid Thermal Annealing (RTA)
普通热退火需要经过长时间的高温过程,会导致明显的杂质 再分布,还可能造成硅片翘曲变形 快速退火的目的:降低退火温度或缩短退火时间 快速退火手段:脉冲激光;脉冲电子束;扫描电子束等
Sn(E)=(dE/dx)n
天津工业大学
天津工业大学
核阻止本领和电子阻止本领曲线
能量较低,质量较大的离子,主要是通过核阻止损失能量 能量较高,质量较小的离子,主要是通过电子阻止损失能量
天津工业大学
§4.2 注入离子在无定形靶中的分布
硅集成电路工艺——离子注入IonImplantation
![硅集成电路工艺——离子注入IonImplantation](https://img.taocdn.com/s3/m/9dbd2e5df61fb7360a4c6527.png)
§4.4 注入损伤
❖ 级联碰撞: 不同能量的注入离子与靶原子发生碰撞的情况:
❖ E<Ed,不会产生移位原子,表现形式为宏观热能; ❖ Ed<E<2Ed,产生一个移位原子和一个空位; ❖ E>2Ed,被撞原子本身移位之后,还有足够高的能量于
其他原子发生碰撞使其移位,这种不断碰撞的现象称 为“级联碰撞”。
小结
❖ 离子注入相比于扩散的优缺点 ❖ 两种碰撞(阻止)模型及其适用情况 ❖ 注入离子的分布;射程和投影射程的概念;沟道效应的
原因及解决方法 ❖ 离子注入系统的主要构件及其基本原理 ❖ 注入损伤的形成及影响,级联碰撞 ❖ 热退火的定义及作用,热退火进入晶格位置,实现一定比例的电
激活
热退火过程(固相外延)
快速退火 Rapid Thermal Annealing (RTA)
❖ 普通热退火需要经过长时间的高温过程,会导致明显的杂质 再分布,还可能造成硅片翘曲变形
❖ 快速退火的目的:降低退火温度或缩短退火时间 ❖ 快速退火手段:脉冲激光;脉冲电子束;扫描电子束等
Self-alignment(自对准掺杂)
离子注入的缺点:
❖ 入射离子对衬底有损伤; ❖ 很浅和很深的结难于制得; ❖ 高剂量注入产率受限制; ❖ 设备昂贵。
§4.1 离子注入机理
LSS理论:S=Sn+Se
核碰撞(核阻止) ❖ 和晶格原子的原子核发
生碰撞 ❖ 发生明显的散射 ❖ 造成大量晶格损伤
pn结漏电流增大 ❖ 注入离子大多处于间隙位置,起不到施主或者受主
的作用,晶格损伤造成的破坏使之更难处于替位位 置,非晶区的形成更使得注入的杂质根本起不到作 用。
热退火的定义和目的
定义: ❖ 将注入离子的硅片在一定温度和氛围下,进行适
离子注入技术(Implant)
![离子注入技术(Implant)](https://img.taocdn.com/s3/m/02f2774310a6f524ccbf8576.png)
离子注入技术摘要离子注入技术是当今半导体行业对半导体进行掺杂的最主要方法。
本文从对该技术的基本原理、基本仪器结构以及一些具体工艺等角度做了较为详细的介绍,同时介绍了该技术的一些新的应用领域。
关键字离子注入技术半导体掺杂1绪论离子注入技术提出于上世纪五十年代,刚提出时是应用在原子物理和核物理究领域。
后来,随着工艺的成熟,在1970年左右,这种技术被引进半导体制造行业。
离子注入技术有很多传统工艺所不具备的优点,比如:是加工温度低,易做浅结,大面积注入杂质仍能保证均匀,掺杂种类广泛,并且易于自动化。
离子注入技术的应用,大大地推动了半导体器件和集成电路工业的发展,从而使集成电路的生产进入了大规模及超大规模时代(ULSI)。
由此看来,这种技术的重要性不言而喻。
因此,了解这种技术进行在半导体制造行业以及其他新兴领域的应用是十分必要的。
2 基本原理和基本结构2.1 基本原理离子注入是对半导体进行掺杂的一种方法。
它是将杂质电离成离子并聚焦成离子束,在电场中加速而获得极高的动能后,注入到硅中而实现掺杂。
离子具体的注入过程是:入射离子与半导体(靶)的原子核和电子不断发生碰撞,其方向改变,能量减少,经过一段曲折路径的运动后,因动能耗尽而停止在某处。
在这一过程中,涉及到“离子射程”、“”等几个问题,下面来具体分析。
2.1.1离子射程图2.1.1(a ) 离子射程模型图图2.1.1(a )是离子射入硅中路线的模型图。
其中,把离子从入射点到静止点所通过的总路程称为射程;射程的平均值,记为R ,简称平均射程 ;射程在入射方向上的投影长度,记为p x ,简称投影射程;投影射程的平均值,记为p R ,简称平均投影射程。
入射离子能量损失是由于离子受到核阻挡与电子阻挡。
定义在位移x 处这两种能量损失率分别为n S 和e S :nn xdE S d =(1)ee e dE S k E dx==(2)则在dx 内总的能量损失为:()n e n e dE dE dE S S dx =+=+(3)P0000P 0nd d d d d R E E E ER x E x S S ===+⎰⎰⎰(4)n S 的计算比较复杂,而yxpx py pz d Ed E且无法得到解析形式的结果。
离子注入技术Implant共27页
![离子注入技术Implant共27页](https://img.taocdn.com/s3/m/510400e6b84ae45c3b358c98.png)
E < 10 KeV ,刻蚀、镀膜 E = 10 ~ 50 KeV,曝光 E > 50 KeV,注入掺杂
离子束加工方式可分为 1、掩模方式(投影方式) 2、聚焦方式(FIB,Focus Ion Beam)
掩模方式需要大面积平行离子束源,故一般采用等离 子体型离子源,其典型的有效源尺寸为100 m,亮度 为10 ~ 100 A/cm2.sr。 聚焦方式则需要高亮度小束斑离子源,当液态金属离 子源(LMIS , Liquid Metal Ion Source )出现后才得 以顺利发展。LMIS 的典型有效源尺寸为 5 ~ 500 nm, 亮度为 106 ~ 107 A/cm2.sr 。
可
1 室温或低于400℃
900-1200 ℃
控
2
各向异性
各向同性
性
3 离可子以独注立控入度制结与深扩和浓散不能的独立比浓控度较制结深和
好
离子注入的缺点
1、离子注入将在靶中产生大量晶格缺陷; 2、离子注入难以获得很深的结(一般在 1um以 内,例如对于100keV离子的平均射程的典型值约为0.1um ); 3、离子注入的生产效率比扩散工艺低; 4、离子注入系统复杂昂贵。
3 离子注入的应用
半导体掺杂工艺: 大规模集成电路
固体材料表面改性: 抗腐蚀、硬度、耐磨、润滑
光波导: 光纤传感器
太阳能电池
离子注入机设备与发展
中束流 μA
大束流 mA
350D NV6200A NV10-80 NV10-160 NV10-160SD NV10-180
GSD/200E2离子注入机技术指标 1.离子束能量 80KeV 形式:2 - 80KeV(也可选90KeV) 160KeV形式:5 – 160KeV(也可选180KeV) 2.80KeV注入机的最大束流
半导体离子注入的概念
![半导体离子注入的概念](https://img.taocdn.com/s3/m/4ca4d264bdd126fff705cc1755270722192e5920.png)
半导体离子注入是半导体制程中关键的工艺技术,主要涉及将杂质元素以离子形态注入到硅晶圆中,以改变晶圆衬底材料的化学性质。
具体来说,这一过程通过将气体形态的掺杂化合物原材料导入反应腔,加入电场和磁场交作用形成电浆等离子体,然后离子束从反应腔萃取出来后,受到电场牵引而加速前进,并在通过磁场后进行二次加速,提高离子束射程。
在加速过程中,高能量离子束与材料中的原子或分子发生物理和化学相互作用,最终导致注入的离子停留在材料中,并引起材料表面成分、结构和性能的变化。
离子注入技术具有许多优点,例如能够精确控制注入剂量、注入角度、注入深度和横向扩散等,使得其在半导体制造中被广泛应用。
与传统的热扩散工艺相比,离子注入技术具有更高的精度和灵活性。
在集成电路制造工艺中,离子注入通常应用于深埋层、倒掺杂阱、阈值电压调节、源漏注入、多晶硅栅掺杂等。
这一技术的应用提高了材料表面的载流子浓度和导电类型,为现代电子设备的微型化和高性能化奠定了基础。
如需更多关于“半导体离子注入”的信息,建议咨询半导体相关专家或查阅相关专业文献。
离子注入技术(Implant)
![离子注入技术(Implant)](https://img.taocdn.com/s3/m/2a527340eef9aef8941ea76e58fafab069dc44fa.png)
能源等领域。
新能源
离子注入技术在太阳能电池、燃 料电池等新能源领域中也有广泛 应用,通过优化材料表面的性能, 提高新能源器件的效率和稳定性。
离子注入技术的发展历程
起源
离子注入技术最早起源于20世纪 50年代的美国贝尔实验室,最初 是为了解决半导体材料的掺杂问 题而发明的。
注入机的结构
注入机通常由离子束控制 装置、注入室、注入了材 料夹具等组成,以实现精 确控制和高效注入。
检测与控制系统
检测与控制系统的作用
检测与控制系统用于实时监测离子注入的过程和结果,同时对设备进行精确控制,确保 工艺参数的一致性和稳定性。
检测与控制系统的组成
检测与控制系统通常包括传感器、信号处理电路、控制电路和显示面板等组成,以实现 实时监测和控制。
离子注入技术(Implant)
• 离子注入技术概述 • 离子注入技术的基本原理 • 离子注入技术的主要设备 • 离子注入技术在半导体制造中的应
用 • 离子注入技术的挑战与未来发展
01
离子注入技术概述
定义与特点
定义
离子注入技术是一种将离子化的物质注入到固体材料表面的工艺,通过改变材 料表面的成分和结构,实现材料改性或制造出新材料的表面工程技术。
真空系统的组成
真空系统通常包括真空 室、机械泵、扩散泵、 分子泵等组成,以实现 高真空的获得和维持。
注入机
01
02
03
注入机的作用
注入机是离子注入技术的 关键设备之一,它能够将 离子束按照预设的参数注 入到材料表面。
注入方式
注入机通常采用定点注入、 扫描注入和均匀注入等方 式,以满足不同材料和工 艺的需求。
离子注入原理
![离子注入原理](https://img.taocdn.com/s3/m/52c3e19f185f312b3169a45177232f60dccce779.png)
离子注入原理离子注入是一种常用的半导体加工技术,它通过将离子注入半导体材料中,改变其电学性质和化学性质,从而实现对半导体材料的加工和改性。
离子注入技术在集成电路制造、光电子器件制造、材料改性等领域都有着广泛的应用。
本文将介绍离子注入的原理及其在半导体加工中的应用。
离子注入的原理主要包括离子源、加速器、束流控制系统和靶材等部分。
首先,离子源会产生所需的离子种类,比如常见的硼、砷、磷等离子。
然后,这些离子会被加速器加速,形成高能离子束。
束流控制系统会控制离子束的方向和强度,使其准确地注入到靶材中。
最后,靶材会接受离子的注入,从而改变其物理和化学性质。
离子注入技术的应用非常广泛。
在集成电路制造中,离子注入常用于形成P型和N型掺杂区,从而实现晶体管的制造。
在光电子器件制造中,离子注入可以用于改变半导体材料的光学性质,提高器件的性能。
此外,离子注入还可以用于材料的表面改性,提高材料的硬度、耐腐蚀性等。
离子注入技术具有许多优点。
首先,它可以实现对半导体材料的局部改性,精度高,控制方便。
其次,离子注入可以实现对半导体材料的多种性质改变,包括电学性质、光学性质、力学性质等。
最后,离子注入可以在常温下进行,不需要高温处理,从而避免了材料的退火和晶格损伤。
然而,离子注入技术也存在一些局限性。
首先,离子注入会在材料中引入大量的杂质,从而影响材料的电学性能。
其次,离子注入过程中会产生能量损失,导致材料局部加热,从而影响材料的结构和性能。
最后,离子注入需要复杂的设备和控制系统,成本较高。
总的来说,离子注入技术是一种重要的半导体加工技术,具有广泛的应用前景。
随着半导体工艺的不断发展,离子注入技术也将不断得到改进和完善,为半导体材料的加工和改性提供更加可靠的技术支持。
chap4离子注入工艺
![chap4离子注入工艺](https://img.taocdn.com/s3/m/93cdc308581b6bd97f19ea2c.png)
移位原子降低损伤区载流子的迁移率,少子寿 命缩短,产生缺陷的能级,从而影响器件的性能。
38
三、损伤区的分布
轻离子,电子碰撞为主, 靶原子位移小,晶格损伤少
39
重离子,原子碰撞为主, 靶原子位移大,晶格损伤大
40
四、非晶层的形成
41
. §4.4 热退火
退火:将注入离子的硅片在一定温度和真空或 氮、氩等高纯气体的保护下,经过适当时间的 热处理,部分或全部消除硅片中的损伤,少数 载流子的寿命及迁移率也会不同程度的得到恢 复。 电激活杂质:使不在晶格位置上的离子运动到 晶格位置,以便具有电活性,产生自由载流子, 起到杂质的作用。 分为普通热退火、硼的退火特性、磷的退火特 性、扩散效应、快速退火(包括脉冲激光法、 扫描电子束、连续波激光、非相干宽带频光源 (如卤光灯、电弧灯、石墨加热器、红外设备 等)。
15
§4.1核碰撞和电子碰撞
LSS理论:注入离子在靶内的能量损失分 为两个彼此独立的过程: (1)核碰撞 (2)电子碰撞 总能量损失为它们的和。
16
核碰撞和电子碰撞:
17
18
(一)、核阻止本领
能量为E的一个注入离子,在单位密 度靶内运动单位长度时,损失给靶原子 核的能量。
19
32
(四)浅结的形成
浅结工艺是目前集成电路发展中最为关心的工 艺之一。 预先非晶化是一种实现浅结的比较理想的方法。 1.选择利用硅上介质层作为扩散源,作为扩散 源的硅化物工艺 2.不用离子注入机,利用辉光放电作为离子源 形成超浅结。离子能量可以极低,离子束流很 大不会出现发散效应。
1-掺杂技术-离子注入
![1-掺杂技术-离子注入](https://img.taocdn.com/s3/m/e132d8c128ea81c758f578cf.png)
聚焦系统:用来将加速后的离子聚集成直径为数 毫米的离子束。 偏转扫描系统:用来实现离子束 x、y 方向的一 定面积内进行扫描。 工作室:放置样品的地方,其位置可调。
2.1、离子源
作用:产生所需种类的离子并将其引出形成离子束。 分类:等离子体型离子源、液态金属离子源(LMIS)。
离子注入系统示意图
1 2
Vf2 q qo 2 2 m 2d B Va
对于某种荷质比为 qo 的所需离子,可通过调节偏转电压 Vf 或偏转磁场 B ,使之满足下式,就可使这种离子不被偏转 而通过光阑。(电子电量e和电子静质量m的比值(e/m)是电 子的基本常数之一,又称电子比荷 ) 1
Vf dB (2qoVa ) 2 , B Vf d (2qoVa )
多功能离子注入机
M EVVA源离子注入机的突出优点
(1)对元素周期表上的固体金属元素(含碳)都能产生10毫
安量级的强束流; (2)离子纯度取决于阴极材料的纯度,因此可以达到很高
AsH3 和 PH3 等。一般情况下,离子源提供的是单电荷离子
质量分析器:不同离子具有不同的电荷质量比,因而在分 析器磁场中偏转的角度不同,由此可分离出所需的杂质离子, 且离子束很纯。 加速器:为高压静电场,用来对离子束加速。该加速能量
是决定离子注入深度的一个重要参量。
中性束偏移器:利用偏移电极和偏移角度分离中性原子。
2.2、质量分析系统
1)、 EB 质量分析器
由一套静电偏转器和一套磁偏转器组成,E 与 B 的方向
相互垂直。
y
Vf
光阑
d
v
B O E
j
Fe Fm
Ld
D
Db
z
5离子注入
![5离子注入](https://img.taocdn.com/s3/m/5e4ce53e3968011ca300918f.png)
20
dE dE dE ( ) n ( ) e N(Sn (E) Se (E)) dx dx dx dE dx N(Sn (E) Se (E)) 1 E0 dE R dx 0 S (E) S (E) N n e 0
Scanning disk
Photograph courtesy of Varian Semiconductor, VIISion 80 Source/Terminal side
10
离子源(Nielsen 系统):
11
磁质量分析器:
Ion source Extraction assembly Analyzing magnet Ion beam Lighter ions
27
2、注入离子的横向分布
离子进入靶时的侧向扩展用侧向散布来表征。它对于决定离
子在掩膜边缘处的Байду номын сангаас透以及用离子注入制成的结的曲率都是
很重要的。当离中注入是通过一特别狭窄的掩膜窗口进行时,
侧向效应也是很重要的。
28
29
通过一个窄窗口注入的离子,在y轴正方向的空间分布情况可由 下式求出:
x R 2 Q0 1 1 y a p N ( x, y , z ) exp erfc 1/ 2 (2 ) DR p 2 DR p 2DY
实际的浓度曲线为纺锤形
30
z
离子浓度 (lg坐标)
△Rt
离子束 Rp x
y
31
由边界算起的距离 (+a或-a处)
专题-6:UnitProcess–Implantation(离子植入)(转)
![专题-6:UnitProcess–Implantation(离子植入)(转)](https://img.taocdn.com/s3/m/09ed57799a6648d7c1c708a1284ac850ad02040b.png)
专题-6:UnitProcess–Implantation(离子植入)(转)今天比较累,10点刚下班。
还是写吧,马上要周末了。
主题依然是单向工艺,离子植入(Ion Implantation)。
我们一直在讲P-Si和N-Si,里面掺了硼或者磷。
那么这些掺杂的东西怎么进去的?早期都是扩散进去的,把掺杂的东西涂在wafer表面,然后丢进管子。
这个很古老,而且剂量/深度什么的都不好控制。
后来才有了implant,才能够精准的把指定数量的掺杂原子利用所需要的能量在特定的角度打入到Si的晶格中,所以剂量和数量都是精确可控的。
可以说implant直接决定了半导体器件的电性特征,因为所有的掺杂都是它打进去的,这就是为什么每次device一跑掉第一个找implant了。
这就是宿命啊!Implant三要素:掺杂原子,能量/剂量,角度。
1) 掺杂原子当然就是第三族的B、BF2、In等P-type元素,还有第五族的P, As, Sb等N-type元素。
这些原子量要记住,因为他们决定了原子质量,将来做元素筛选用的。
2) 能量、剂量: 这个决定了打入Silicon衬底的深度(Project depth),一般根据在器件结构的作用分为三种,a. 高能(high energy) 200KeV~MeV,主要用于Well、DNW等等很深的注入。
b. 中束流(Median Current)一般能量从几KeV到200KeV之间,剂量E14 ion/cm2之内,主要用于Vt、LDD、APT、等注入。
c. 大束流(High Current):这个主要偏重剂量,一般都在E15以上,主要用于Source/Drain implant,但energy都不高,想想如果高的话会怎么样?3) 角度(Tilt):T00或者T07或者T45。
这个决定了后面拖尾或者doping profile。
但是大角度注入容易有阴影效应(shielding effect),在光阻角落打不到,所以需要旋转注入(rotation)。
离子注入表面处理
![离子注入表面处理](https://img.taocdn.com/s3/m/79b839cea58da0116c1749ae.png)
N+ 注入后金属表面硬度增加量
离子注入在金属表面改性中应用
提高抗磨损、抗氧化、抗腐蚀和抗疲劳性能
通常认为离子注入使基体相晶面间距 增大,产生晶格畸变和形成新的强化相, 是材料硬度和耐磨性提高的主要原因。 常采用N、Cr、Te、Mo等离子注入来提 高金属材料的耐磨性和铁合金的表面力 学性能。
选择原子半径大的注入离子 在合适温度下尽量吸附在位 错上
注入间隙原子,如N、O或C, 以有利于形成各种复杂的化 合物,从而形成弥散强化
离子注入在金属表面改性中应用
提高表面硬度与强度
大量的实验和研究表明:离子注入可以不同程度的提高金属材料表面的强度和硬度;金属表面的硬度和强度随 着注入剂量的增加而增加。当金属中注入碳、氮、氧和磷等非金属元素时,可在金属近表面中析出碳化物、氮 化物、磷化物等弥散相,表面洛氏硬度得到提高。
基于右图,能测定用离子注入方法在硅集体上 合成的Fe-Si薄膜的各类相的深度分布
1、离子注入后形成的无定型的a-FeSi2 经过退 火后结晶形成β-FeSi2
2、样品在高能离子注入后距表面14nm到 28nm处生成三种相
3、a- Fe3Si在经过500℃ 1h退火后结晶形成晶 体Fe3Si,经过800℃ 1h退火后转化成β-FeSi2 和 FeSi
改善物 理性能
改善化 学性能
价值
改善机 械性能
离子注入技术简介
如果晶格原子从碰撞中获得足够的能 量(大于移位阀功即克服断键能和克服 势垒作功之和),则被撞击原子将越过 势垒而离开晶格位置进入原子间隙成 为间隙原子
如果反冲原子获得的反冲 能量远远超过移位阀功,它 会继续与晶格原子碰撞,产 生新的反冲原子,发生“级 联碰撞”
离子注入
![离子注入](https://img.taocdn.com/s3/m/8f9a0900f011f18583d049649b6648d7c1c7080b.png)
原理
等离子体基离子注入PBⅡ装置示意图离子注入技术又是近30年来在国际上蓬勃发展和广泛应用的一种材料表 面改性技术。其基本原理是:用能量为100keV量级的离子束入射到材料中去,离子束与材料中的原子或分子将发 生一系列物理的和化学的相互作用,入射离子逐渐损失能量,最后停留在材料中,并引起材料表面成分、结构和 性能发生变化,从而优化材料表面性能,或获得某些新的优异性能。 此项技术由于其独特而突出的优点,已经 在半导体材料掺杂,金属、陶瓷、高分子聚合物等的表面改性上获得了极为广泛的应用,取得了巨大的经济效益 和社会效益。
集成电路前道制程中有许多光刻层之后的工艺是离子注入(ion implantation),这些光刻层被称为离子注 入光刻层(implant layers)。离子注入完成后,晶圆表面的光刻胶必须被清除掉,清除离子注入后的光刻胶是 光刻工艺中的一个难点。
优势
高能离子注入的优势 多样性:原则上任何元素都可以作为注入离子;形成的结构可不受热力学参数(扩散、溶解度等)限制; 不改变:不改变工件的原有尺寸和粗糙度等;适合于各类精密零件生产的最后一道工序; 牢固性:注入离子直接和材料表面原子或分子结合,形成改性层,改性层和基底材料没有清晰的界面,结合 牢靠,不存在脱落的现象; 不受限:注入过程在材料温度低于零下、高到几百上千度都可以进行;可对那些普通方法不能处理的材料进 行表面强化,如塑料、回火温度低的钢材等;
(2)热挤压和注塑模具,可使能耗降低20%左右,延长使用寿命10倍左右;
(3)精密运动耦合部件,如抽气泵定子和转子,陀螺仪的凸轮和卡板,活塞、轴承、齿轮、涡轮涡杆等,可 大幅度地降低摩擦系数,提高耐磨性和耐蚀性,延长使用寿命最多可以达到100倍以上;
(4)挤压合成纤维和光导纤维的精密喷嘴,可以大大提高其抗磨蚀性和使用寿命;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子注入技术摘要离子注入技术是当今半导体行业对半导体进行掺杂的最主要方法。
本文从对该技术的基本原理、基本仪器结构以及一些具体工艺等角度做了较为详细的介绍,同时介绍了该技术的一些新的应用领域。
关键字离子注入技术半导体掺杂1绪论离子注入技术提出于上世纪五十年代,刚提出时是应用在原子物理和核物理究领域。
后来,随着工艺的成熟,在1970年左右,这种技术被引进半导体制造行业。
离子注入技术有很多传统工艺所不具备的优点,比如:是加工温度低,易做浅结,大面积注入杂质仍能保证均匀,掺杂种类广泛,并且易于自动化。
离子注入技术的应用,大大地推动了半导体器件和集成电路工业的发展,从而使集成电路的生产进入了大规模及超大规模时代(ULSI)。
由此看来,这种技术的重要性不言而喻。
因此,了解这种技术进行在半导体制造行业以及其他新兴领域的应用是十分必要的。
2 基本原理和基本结构2.1 基本原理离子注入是对半导体进行掺杂的一种方法。
它是将杂质电离成离子并聚焦成离子束,在电场中加速而获得极高的动能后,注入到硅中而实现掺杂。
离子具体的注入过程是:入射离子与半导体(靶)的原子核和电子不断发生碰撞,其方向改变,能量减少,经过一段曲折路径的运动后,因动能耗尽而停止在某处。
在这一过程中,涉及到“离子射程”、“”等几个问题,下面来具体分析。
2.1.1离子射程图2.1.1(a ) 离子射程模型图图2.1.1(a )是离子射入硅中路线的模型图。
其中,把离子从入射点到静止点所通过的总路程称为射程;射程的平均值,记为R ,简称平均射程 ;射程在入射方向上的投影长度,记为p x ,简称投影射程;投影射程的平均值,记为p R ,简称平均投影射程。
入射离子能量损失是由于离子受到核阻挡与电子阻挡。
定义在位移x 处这两种能量损失率分别为n S 和e S :nn xdE S d =(1)ee e dE S k E dx==(2)则在dx 内总的能量损失为:()n e n e dE dE dE S S dx =+=+(3)P0000P 0nd d d d d R E E E ER x E x S S ===+⎰⎰⎰(4)n S 的计算比较复杂,而yxpx py pz d Ed E且无法得到解析形式的结果。
图2.1.1(b)是数值计算得到的曲线形式的结果。
e S 的计算较简单,离子受电子的阻力正比于离子的速度。
左图中,2EE =时,n e S S =图2.1.1(b )离子总能量损失率数值计算曲线图2.1.1(c )S n > S e 时离子路径图2.1.1(d )S n < S e 时离子路径讨论:(1)当入射离子的初始能量0E 小于2E 所对应的能量值时,ne S S >,以核阻挡为主,此时散射角较大,离子运动方向发生较大偏折,射程分布较为分散。
如图2.1.1(c )。
(2)当0E 远大于2E 所对应的能量值时,ne S S <,以电子阻挡为主,此时散射角较小,离子近似作直线运动,射程分布较集中。
随着离子能量的降低,逐渐过渡到以核阻挡为主,离子射程的末端部分又变成为折线。
如图2.1.1(d )2.2 基本结构离子注入机总体上分为七个主要的部分,分别是: ①离子源:用于离化杂质的容器。
常用的杂质源气体有 BF3、 AsH3 和 PH3 等。
pr px px pr EE②质量分析器:不同离子具有不同的电荷质量比,因而在分析器磁场中偏转的角度不同,由此可分离出所需的杂质离子,且离子束很纯。
③加速器:为高压静电场,用来对离子束加速。
该加速能量是决定离子注入深度的一个重要参量。
④中性束偏移器:利用偏移电极和偏移角度分离中性原子。
⑤聚焦系统:用来将加速后的离子聚集成直径为数毫米的离子束。
⑥偏转扫描系统:用来实现离子束x、y方向的一定面积内进行扫描。
⑦工作室:放置样品的地方,其位置可调。
图2.2离子注入系统示意图2.2.1离子源根据离子源的类型分类,可以将其分为两类:等离子体型离子源、液态金属离子源(LMIS)。
其中,掩模方式需要大面积平行离子束源,故一般采用等离子体型离子源,其典型的有效源尺寸为 100 μm ,亮度为 10 ~ 100 A/cm 2.sr 。
而聚焦方式则需要高亮度小束斑离子源,当液态金属离子源(LMIS )出现后才得以顺利发展。
LMIS 的典型有效源尺寸为 5 ~ 500 nm ,亮度为 106 ~ 107 A/cm 2.sr 。
液态金属离子源是近几年发展起来的一种高亮度小束斑的离子源,其离子束经离子光学系统聚焦后,可形成 纳米量级的小束斑离子束,从而使得聚焦离子束技术得以实现。
此技术可应用于离子注入、离子束曝光、刻蚀等。
工作原理:E 1 是主高压,即离子束的加速电压;E 2 是针尖与引出极之间的电压,用以调节针尖表面上液态金属的形状,并将离子引出;E 3 是加热器电源。
针尖的曲率半径为 r o = 1 ~ 5 μm ,改变 E 2 可以调节针尖与引出极之间的电场,使液态金属在针尖处形成一个圆锥,此圆锥顶的曲率半径 仅有 10 nm 的数量级,这就是 LMIS 能产生小束斑离子 图2.2.1液态金属离子源工作示意图 束的关键。
当E 2 增大到使电场超过液态金属的场蒸发值( Ga 的场蒸发值为 15.2V/nm )时,液态金属在圆锥顶处产生场蒸发与场电离,发射金属离子与电子。
其中电子被引出极排斥,而金属离子则被引出极拉出,形成离子束。
若改变E 2的极性 ,则可排斥离子而拉出电子,使这种源改变成电子束源。
2.2.2质量分析系统质量分析系统分为两种,E B ⨯质量分析器和磁质量分析器。
本文进分3E 2E 1E 引出极析E B ⨯质量分析器。
由一套静电偏转器和一套磁偏转器组成,E 与 B 的方向相互垂直。
它由一套静电偏转器和一套磁偏转器组成,E 与 B 的方向相互垂直。
图2.2.2 E B ⨯质量分析器原理图2a 12qV mv=得由12a 2qV v m ⎛⎫= ⎪⎝⎭,代入m F ,得:(5)(6)fe m (),()V F qE q j dF qv B qvB j ==-=⨯=(7)12m 2()()a qV F q B j m=当时e m F F =,即当12a f 2qV V qqB d m ⎛⎫= ⎪⎝⎭时,离子不被偏转。
由此可解得不被偏转的离子的荷质比q o 为对于某种荷质比为q o 的所需离子,可通过调节偏转电压V f 或偏转磁场 B ,使之满足下式,就可使这种离子不被偏转而通过光阑:当荷质比为q o 的离子不被偏转时,具有荷质比为 /q q m =s s 的其它离子的偏转量b D 为:将前面的B 的表达式:2f o 22a2V qq m d B V ==(8)(9)1f2f o a 12o a (2)(2)V V dB q V B d q V ==或 ()()()b f f d21d f f f 2s a a a 11242D y L y L L L L V L B q V d V V '=+⎛⎫⎡⎤=-⋅⋅+⋅ ⎪⎢⎥⎣⎦⎝⎭(10)f 12o a (2)V B d q V =代入b D ,得:讨论(1) 为屏蔽荷质比为s q 的离子,光阑半径D 必须满足:(2) 若 D 固定,则具有下列荷质比的离子可被屏蔽:而满足下列荷质比的离子均可通过光阑:f ff b d a 11122V L L D L G V d ⎛⎫⎫⎛⎫=⋅+⋅-=- ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎭(11)(12)1D G ⎫<-⎪⎪⎭(13)22s o s o 11D D q q q q G G ⎛⎫⎛⎫>+<- ⎪⎪⎝⎭⎝⎭或(14)22o s o 11D D q q q G G ⎛⎫⎛⎫-<<+ ⎪ ⎪⎝⎭⎝⎭(15)以上各式可用于评价E B 质量分析器的分辨本领。
4 离子注入技术的优缺点及其应用4.1 离子注入技术和扩散工艺比较图4.1离子注入和扩散工艺的比较关于离子注入和传统扩散工艺的比较,我们可以通过下表直观看出来:表4.1 离子注入和扩散工艺的比较扩散 离子注入 工作温度高温,硬掩膜 900-1200 ℃低温,光刻胶掩膜 室温或低于400℃ 各向同/异性 各向同性各向异性可控性不能独立控制结深和浓度可以独立控制结深和浓度4.2 优点和缺点4.2.1优点① 可控性好,离子注入能精确控制掺杂的浓度分布和掺杂深度,因而适于制作极低的浓度和很浅的结深; ② 可以获得任意的掺杂浓度分布;掺杂区结深度离子注入扩散。