黑龙江省哈尔滨市宾县2019-2020学年八年级(上)期末数学试卷

合集下载

《试卷3份集锦》哈尔滨市2019-2020年八年级上学期期末考前验收数学试题

《试卷3份集锦》哈尔滨市2019-2020年八年级上学期期末考前验收数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.不等式组1{1x x >-≤的解集在数轴上可表示为( )A .B .C .D .【答案】D 【分析】先解不等式组11x x >-⎧⎨≤⎩可求得不等式组的解集是11x -<≤,再根据在数轴上表示不等式解集的方法进行表示.【详解】解不等式组11x x >-⎧⎨≤⎩可求得: 不等式组的解集是11x -<≤,故选D.【点睛】本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.2.如果31x y =-⎧⎨=⎩是方程ax +(a -2)y =0的一组解,则a 的值是( ) A .1B .-1C .2D .-2【答案】B 【解析】将31x y =-⎧⎨=⎩代入方程ax+(a −2)y=0得:−3a+a −2=0. 解得:a=−1.故选B.3.如图,已知AB AC =,AE AF =,BE 与CF 交于点D ,则对于下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的是( )A .①和②B .②和③C .①和③D .①、②和③【答案】D 【分析】按照已知图形,证明ABE ACF ≅,得到B C ∠=∠;证明△△CDE BDF ≅,证明△△ADC ADB ≅,得到CAD BAD ∠=∠,即可解决问题;【详解】如图所示,在△ABE 和△ACF 中,AB AC EAB FAC AE AF ⎧=⎪∠=∠⎨⎪=⎩,∴()△△ABE ACFSAS ≅,∴B C ∠=∠,∵AB AC =,AE AF =,∴BF CE =,在△CDE 和△BDF 中, B C BDF CDE BF CE ⎧∠=∠⎪∠=∠⎨⎪=⎩,∴()△△CDE BDFAAS ≅,∴DC=DB ,在△ADC 和△ADB 中, AC AB C B DC DB ⎧=⎪∠=∠⎨⎪=⎩,∴()△△ADC ADB SAS ≅,∴CAD BAD ∠=∠.综上所述:①②③正确;故选D .【点睛】本题主要考查了全等三角形的性质与判定,准确判断是解题的关键.4.下列各组数中,以它们为边的三角形不是直角三角形的是( )A .3,4,5B .5,12,13C .7,24,25D .5,7,9【答案】D【分析】欲判断是否为直角三角形,需验证两小边的平方和是否等于最长边的平方.【详解】A 、222345+=,能构成直角三角形,不符合题意;B 、22251213+=,能构成直角三角形,不符合题意;C 、22272425+=,能构成直角三角形,不符合题意;D 、222579+≠,不能构成直角三角形,符合题意.故选:D .【点睛】本题主要考查了勾股定理的逆定理:已知△ABC 的三边满足222a b c +=,则△ABC 是直角三角形. 5.如图所示,AB ∥CD ,O 为∠BAC 、∠ACD 的平分线交点,OE ⊥AC 于E ,若OE =2,则AB 与CD 之间的距离是( )A .2B .4C .6D .8【答案】B 【分析】过点O 作MN ,MN ⊥AB 于M ,求出MN ⊥CD ,则MN 的长度是AB 和CD 之间的距离;然后根据角平分线的性质,分别求出OM 、ON 的长度是多少,再把它们求和即可.【详解】如图,过点O 作MN ,MN ⊥AB 于M ,交CD 于N ,∵AB ∥CD ,∴MN ⊥CD ,∵AO 是∠BAC 的平分线,OM ⊥AB ,OE ⊥AC ,OE=2,∴OM=OE=2,∵CO 是∠ACD 的平分线,OE ⊥AC ,ON ⊥CD ,∴ON=OE=2,∴MN=OM+ON=1,即AB 与CD 之间的距离是1.故选B .【点睛】此题主要考查了角平分线的性质和平行线之间的距离;熟练掌握角平分线的性质定理是解决问题的关键. 6.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .9,40,41B .5,12,13C .0.3,0.4,0.5D .8,24,25【答案】D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A、92+402=412,∴此三角形是直角三角形,不合题意;B、∵52+122=132,∴此三角形是直角三角形,不合题意;C、∵0.32+0.42=0.52,∴此三角形是直角三角形,不合题意;D、82+242≠252,∴此三角形不是直角三角形,符合题意;故选:D.【点睛】此题考查勾股定理的逆定理,解题关键在于在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.如图,点P是∠BAC的平分线AD上一点,且∠BAC=30°,PE∥AB交AC于点E,已知AE=2,则点P到AB的距离是()A.1.5 B.3C.1 D.2【答案】C【分析】过P作PF⊥AC于F,PM⊥AB于M,根据角平分线性质求出PF=PM,根据平行线性质和等腰三角形的判定推出AE=PE=2,根据含30度角的直角三角形性质求出PF即可.【详解】解:过点P作PF⊥AC于F,PM⊥AB于M,即PM是点P到AB的距离,∵AD是∠BAC的平分线,PF⊥AC,PM⊥AB,∴PF=PM,∠EAP=∠PAM,∵PE∥AB,∴∠EPA=∠PAM,∴∠EAP=∠EPA,∵AE =2,∴PE =AE =2,∵∠BAC =30°,PE ∥AB ,∴∠FEP =∠BAC =30°,∵∠EFP =90°,∴PF =12PE =1, ∴PM =PF =1,故选:C .【点睛】本题考查了等腰三角形的判定和性质,含30度角的直角三角形性质,平行线性质,角平分线性质等知识点的综合运用.8.下列多项式能分解因式的是( )A .21x +B .22x y y ++C .2x y -D .243x x -+【答案】D【解析】由题意根据分解因式时,有公因式的,先提公因式,再考虑运用何种公式法来分解进行分析判断即可.【详解】解:A. 21x +,不能分解因式,故A 错误;B. 22x y y ++,不能分解因式,故B 错误;C. 2x y -,不能分解因式,故C 错误;D. 243x x -+=(x-3)(x-1),故D 正确;故选:D.【点睛】本题考查因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式.9.如图,AD 是△ABC 的边BC 上的中线,BE 是△ABD 的边AD 上的中线,若△ABC 的面积是16,则△ABE 的面积是( )A .16B .8C .4D .2【答案】C 【分析】根据根据三角形的中线把三角形分成面积相等的两部分解答即可.【详解】解:∵AD 是BC 上的中线,∴S △ABD =S △ACD =12S △ABC , ∵BE 是△ABD 中AD 边上的中线, ∴S △ABE =S △BED =12S △ABD , ∴S △ABE =14S △ABC , ∵△ABC 的面积是16, ∴S △ABE =14×16=1. 故选C .【点睛】本题主要考查了三角形面积的求法和三角形的中线有关知识,熟练掌握三角形的中线把三角形分成面积相等的两部分是解答本题的关键.10.如果从某个多边形的一个顶点出发,可以作2条对角线,则这个多边形的内角和是( ) A .360°B .540°C .720°D .900°【答案】B【分析】根据从多边形的一个顶点可以作对角线的条数公式()3n -求出边数,然后根据多边形的内角和公式()2180n -︒列式进行计算即可得解.【详解】∵多边形从一个顶点出发可引出2条对角线,∴32n -=,解得:5n =,∴内角和()52180540=-︒=︒.故选:B .【点睛】本题考查了多边形的内角和公式,多边形的对角线的公式,求出多边形的边数是解题的关键.二、填空题11. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC=CD=DE,点D 、E 可在槽中滑动.若∠BDE=75°,则∠CDE 的度数是__________【答案】80°【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC 据三角形的外角性质即可求出∠ODC 数,进而求出∠CDE 的度数.【详解】∵OC CD DE ==,∴O ODC ∠=∠,DCE DEC ∠=∠,设O ODC x ∠=∠=,∴2DCE DEC x ∠=∠=,∴180CDE DCE DEC ∠=︒-∠-∠1804x =︒-,∵75BDE ∠=︒,∴180ODC CDE BDE ∠+∠+∠=︒,即180475180x x +-+=︒︒︒,解得:25x =︒,180480CDE x ︒∠=-=︒.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键. 12.若实数5x <,则x 可取的最大整数是_______. 【答案】2【分析】根据24593=<<= ,得出x 可取的最大整数是2 【详解】∵24593=<<=∴x 可取的最大整数是2【点睛】本题考查了无理数的大小比较,通过比较无理数之间的大小可得出x 的最大整数值13.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是 .【答案】1【分析】根据勾股定理求出AB ,分别求出△AEB 和正方形ABCD 的面积,即可求出答案.【详解】解:∵在Rt △AEB 中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:22AE BE +,∴正方形的面积是10×10=100,∵△AEB 的面积是12AE×BE=12×6×8=24, ∴阴影部分的面积是100﹣24=1,故答案是:1.考点:勾股定理;正方形的性质.14.当________x 时,分式524x x --有意义. 【答案】 2.≠【分析】由分式有意义的条件:分母不为0,可得答案. 【详解】解:由524x x --有意义得: 240,x -≠2.x ∴≠故答案为: 2.≠【点睛】本题考查的是分式有意义的条件,分母不为0,掌握知识点是解题的关键.15.把多项式2122214x x --进行分解因式,结果为________________.【答案】2(2x+1)(3x-7)【分析】先提取公因式2,再利用十字相乘法进行因式分解.【详解】12x 2-22x-14=2(6x 2-11x-7)=2(2x+1)(3x-7).故答案为:2(2x+1)(3x-7).【点睛】考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行两次因式分解,分解因式一定要彻底.16.请先观察下列算式,再填空:32﹣12=8×1,52﹣32=8×2,72﹣52=8×3,92﹣72=8×4…通过观察归纳,写出第2020个算式是:_____.【答案】40412﹣40392=8×2020【分析】观察所给的算式,左边是两个数的平方差的形式,右边是8与一个数的乘积,归纳类推出一般规律:第n 个算式的左边是22(21)21()n n -+-,右边是8n ,据此写出第2020个算式是多少即可.【详解】通过观察已知式子得:第1个算式223181-=⨯,即22(211)(211)81⨯-⨯=+-⨯第2个算式225382-=⨯,即22(221)(221)82⨯-⨯=+-⨯第3个算式227583-=⨯,即22(231)(231)83⨯-⨯=+-⨯第4个算式229784-=⨯,即22(241)(241)84⨯-⨯=+-⨯归纳类推得:第n 个算式是22(21)21)(8n n n --+=则第2020个算式是22(220201)220201)(82020-=⨯⨯+⨯-整理得224041403982020-=⨯故答案为:224041403982020-=⨯.【点睛】本题考查了实数运算的规律类推题,依据已知算式,归纳类推出一般规律是解题关键.17.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合.已知AC =5 cm ,△ADC 的周长为17 cm ,则BC 的长为________.【答案】12 cm【分析】利用翻折变换的性质得出AD =BD ,进而利用AD+CD =BC 得出即可.【详解】∵将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,∴AD =BD .∵AC =5cm ,△ADC 的周长为17cm ,∴AD+CD =BC =17﹣5=12(cm ).故答案为12cm .【点睛】本题考查了翻折变换的性质,根据题意得出AD =BD 是解题的关键.三、解答题18.(1)解方程:2236111x x x +=+-- (2)计算:3a(2a 2-9a+3)-4a(2a-1)(3)计算:(3)×(6-2-1|+(5-2π)0(4)先化简,再求值:(xy 2+x 2y )222222x x y x xy y x y ⋅÷++-,其中22. 【答案】(1)分式方程无解;(2)326a 35?a 13a +﹣;(3)2(42 【分析】(1)去分母化为整式方程求解即可,求出未知数的值要验根;(2)先算单项式与多项式的乘法,再合并同类项即可;(3)第一项按二次根式的乘法计算,第二项按化简绝对值的意义化简,第三项按零指数幂的意义化简,然后进一步合并化简即可;(4)先根据分式的运算法则把所给代数式化简,再把x=2,y=22代入计算. 【详解】(1)去分母得:2x-2+3x+3=6,解得:x=1,经检验x=1是增根,分式方程无解;(2)原式322326a 27a 9a 8a 4a 6a 35?a 13a =++=+﹣﹣﹣; (3)原式=3221142+-+=(4)原式=xy (x+y )()()()22x y x y xx y x y +-⋅⋅+=x ﹣y ,代入得当x=2,y=22时,原式=22222-= 【点睛】 本题考查了解分式方程,实数的混合运算,整式的混合运算,分式的化简求值,熟练掌握各知识点是解答本题的关键.19.如图,在△ABC 中,AD 是BC 边上的高,AE 平分∠BAC ,∠B=42︒,∠C=70︒,求:∠DAE 的度数.【答案】∠DAE=14°【分析】由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC=12∠BAC ,故∠EAD=∠EAC-∠DAC . 【详解】解:∵在△ABC 中,AE 是∠BAC 的平分线,且∠B=42°,∠C=70°, ∴∠BAE=∠EAC=12(180°-∠B-∠C )=12(180°-42°-70°)=34°. 在△ACD 中,∠ADC=90°,∠C=70°,∴∠DAC=90°-70°=20°,∠EAD=∠EAC-∠DAC=34°-20°=14°.【点睛】本题考查了三角形内角和定理、三角形的角平分线、中线和高.求角的度数时,经常用到隐含在题中的“三角形内角和是180°”这一条件.20.如示例图将4×4的棋盘沿格线划分成两个全等的图形,请再用另外3种方法将4×4的棋盘沿格线划分成两个全等图形(约定某两种划分法可经过旋转、轴对称得到的划分法为相同划分法).【答案】见解析【分析】直接利用旋转图形是全等图形的性质来构造图形.【详解】解:如图所示:.【点睛】此题主要考查了中心对称图形图形的性质,找出全等图形的对称中心是解题关键.21.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地的路程y (千米)与所用时间x (小时)之间的函数关系,折线BCD 表示轿车离甲地的路程y (千米)与x (小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD 对应的函数关系式;(2)在轿车追上货车后到到达乙地前,何时轿车在货车前30千米.【答案】(1)y =120x ﹣140(2≤x ≤4.5);(2)当x =174时,轿车在货车前30千米. 【分析】(1)设线段CD 对应的函数解析式为y =kx+b ,由待定系数法求出其解即可;(2)由货车和轿车相距30千米列出方程解答即可.【详解】(1)设线段CD 对应的函数表达式为y =kx+b .将C (2,100)、D (4.5,400)代入y =kx+b 中,得21004.5400k b k b +=⎧⎨+=⎩解方程组得k 120=⎧所以线段CD 所对应的函数表达式为y =120x ﹣140(2≤x≤4.5).(2)根据题意得,120x ﹣140﹣80x =30,解得174x =. 答:当x =174时,轿车在货车前30千米. 【点睛】 本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.22.计算:(﹣4)×(﹣12)+2﹣1﹣(π﹣1)0 【答案】17.2【解析】分析:按照实数的运算顺序进行运算即可. 详解:原式11416,22=⨯+-+ 1216,2=+-+ 17.2= 点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.23.端午节是我国的传统节日,人们素有吃粽子的习俗,某商场在端午节来临之际用3000元购进A 、B 两种粽子1100个,购买A 种粽子与购买B 种粽子的费用相同,已知A 粽子的单价是B 种粽子单价的1.2倍.(1)求A 、B 两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购买A 、B 两种粽子共2600个,已知A 、B 两种粽子的进价不变,求A 中粽子最多能购进多少个?【答案】(l )A 种粽子的单价是3元,B 种粽子的单价是2.5元;(2)A 种粽子最多能购进1000个.【分析】(1)根据题意列出分式方程计算即可,注意根的验证.(2)根据题意列出不等式即可,根据不等式的性质求解.【详解】(l )设B 种粽子的单价为x 元,则A 种粽子的单价为1.2x 元根据题意,得1500150011001.2x x+= 解得: 2.5x =经检验, 2.5x =是原方程的根1.2 1.22.53x =⨯=(2)设A 种粽子购进m 个,则购进B 种粽子(2600)m -个根据题意,得3 2.5(2600)7000m m +-解得1000m ≤所以,A 种粽子最多能购进1000个【点睛】本题主要考查分式方程的应用,关键在于分式方程的解需要验证.24.如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE.求证:BD =CE.【答案】见解析.【分析】先求出∠CAE =∠BAD 再利用ASA 证明△ABD ≌△ACE ,即可解答【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE+∠CAE =90°,∠BAE+∠BAD =90°,∴∠CAE =∠BAD.又AB =AC ,∠ABD =∠ACE ,∴△ABD ≌△ACE(ASA).∴BD =CE.【点睛】此题考查全等三角形的判定与性质,解题关键在于判定三角形全等25.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,在ABC 中,90,10,3ACB AC AB BC ∠=︒+==,求AC 的长.【答案】AC=4.55【详解】∵AC+AB=10∴AB=10-AC在Rt △ABC 中,AC 2+BC 2=AB 2即()222AC 3=10AC +-解得AC=4.55【点睛】本题考查勾股定理的应用,利用勾股定理建立方程是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若23y x =,则x y x + 的值为( ) A .53 B .52 C .35 D .23【答案】A 【解析】试题解析:2,3y x = 设3,2.x k y k == 325.33x y k k x k ++== 故选A.2.下面计算正确的是( )A.BCD2-【答案】B【分析】根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A选项错误;B. ===3,故B选项正确;C.==C 选项错误; D.2(2)2-==,故D 选项错误;故选B .【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待. 3.如图,已知ABC 为等腰三角形, , 90AB AC BAC =∠<︒,将ABC 沿AC 翻折至,ADC E 为BC 的中点,F 为AD 的中点,线段EF 交AC 于点G ,若()1FCD GEC S m m S =≠,则AG GC=( )A .mB.11m m +- C .1m + D .1m -【答案】D 【分析】连接AE ,由三角形的中线将三角形面积分成相等的两部分,用m 表示出△AEG 的面积,再由等高三角形面积比等于底边之比求解即可.【详解】解:如图,连接AE ,设1CEG S =,则FCD S m =,∵F 为AD 的中点,2ACD ACB S S m ∴==,1AEG Sm ∴=- ∴1AEGCEG S AG m CG S ==-故选:D.【点睛】本题主要考查了与三角形中线有关的面积问题,掌握三角形的中线将三角形面积分成相等的两部分是解题的关键.4.下列图形中,已知12∠=∠,则可得到//AB CD 的是( )A .B .C .D .【分析】先确定两角之间的位置关系,再根据平行线的判定来确定是否平行,以及哪两条直线平行.【详解】解:A .1∠和2∠的是对顶角,不能判断//AB CD ,此选项不正确;B .1∠和2∠的对顶角是同位角,且相等,所以//AB CD ,此选项正确;C .1∠和2∠的是内错角,且相等,故//AC BD ,不是//AB CD ,此选项错误;D .1∠和2∠互为同旁内角,同旁内角相等,两直线不一定平行,此选项错误.故选B .【点睛】本题考查平行线的判定,熟练掌握平行线的判定定理是解题关键.5.如图,已知△ABC 是等腰直角三角形,∠A =90°,BD 是∠ABC 的平分线,DE ⊥BC 于E ,若BC =10cm ,则△DEC 的周长为( )A .8cmB .10cmC .12cmD .14cm【答案】B 【解析】根据“AAS ”证明 ΔABD ≌ΔEBD .得到AD =DE ,AB =BE ,根据等腰直角三角形的边的关系,求其周长.【详解】∵ BD 是∠ABC 的平分线,∴ ∠ABD =∠EBD.又∵ ∠A =∠DEB =90°,BD 是公共边,∴ △ABD ≌△EBD (AAS),∴ AD =ED ,AB =BE ,∴ △DEC 的周长是DE +EC +DC=AD +DC +EC=AC +EC =AB +EC=BE +EC =BC=10 cm.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.6.如图,在ABC 中,AB=8,BC=6,AB 、BC 边上的高CE 、AD 交于点H ,则AD 与CE 的比值是( )A .43B .34C .12D .2【答案】A【分析】根据三角形的面积公式即可得. 【详解】由题意得:1122ABC S AB CE BC AD =⋅=⋅ 8,6AB BC ==118622CE AD ∴⨯=⨯ 解得43AD CE = 故选:A .【点睛】本题考查了三角形的高,利用三角形的面积公式列出等式是解题关键.7.下列选项中最简分式是( )A .211x + B .224x C .211x x +- D .23x x x+ 【答案】A 【解析】一个分式的分子与分母没有非零次的公因式时(即分子与分母互素)叫最简分式.【详解】A.211x + ,是最简分式; B. 222142x x= ,不是最简分式;C. 211x x +- =1x 1-, 不是最简分式; D. 23x x x+=3x+1, 不是最简分式. 故选:A【点睛】本题考核知识点:最简分式. 解题关键点:理解最简分式的意义.8.如图,圆柱的底面周长为24厘米,高AB 为5厘米,BC 是底面直径,一只蚂蚁从点A 出发沿着圆柱体的侧面爬行到点C 的最短路程是( )A .6厘米B .12厘米C .13厘米D .16厘米【答案】C 【分析】根据题意,可以将圆柱体沿BC 切开,然后展开,易得到矩形ABCD ,根据两点之间线段最短,再根据勾股定理即可求得答案.【详解】解:∵圆柱体的周长为24cm∴展开AD 的长为周长的一半:AD=12(cm )∵两点之间线段最短,AC 即为所求∴根据勾股定理AC=22AD CD +=22125+=13(cm )故选C .【点睛】本题主要考查了几何体的展开图以及勾股定理,能够空间想象出展开图是矩形,结合勾股定理准确的运算是解决本题的关键.92233a -的结果是( )A .()21a x -B .31a -.C .11a -D .31a + 【答案】B【解析】根据分式的运算法则即可求出答案.【详解】解:原式=()23-31a a -=()23-11a a -() =31a - 故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.10.如图,已知AC 平分∠DAB ,CE ⊥AB 于E ,AB=AD+2BE ,则下列结论:①AB+AD=2AE ;②∠DAB+∠DCB=180°;③CD=CB ;④S △ACE ﹣2S △BCE =S △ADC ;其中正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【分析】①在AE 取点F ,使EF=BE .利用已知条件AB=AD+2BE ,可得AD=AF ,进而证出2AE=AB+AD ; ②在AB 上取点F ,使BE=EF ,连接CF .先由SAS 证明△ACD ≌△ACF ,得出∠ADC=∠AFC ;再根据线段垂直平分线、等腰三角形的性质得出∠CFB=∠B ;然后由邻补角定义及四边形的内角和定理得出∠DAB+∠DCB=180°;③根据全等三角形的对应边相等得出CD=CF ,根据线段垂直平分线的性质得出CF=CB ,从而CD=CB ; ④由于△CEF ≌△CEB ,△ACD ≌△ACF ,根据全等三角形的面积相等易证S △ACE -S △BCE =S △ADC .【详解】解:①在AE 取点F ,使EF=BE ,∵AB=AD+2BE=AF+EF+BE ,EF=BE ,∴AB=AD+2BE=AF+2BE ,∴AD=AF ,∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF )=2AE ,∴AE=12(AB+AD ),故①正确; ②在AB 上取点F ,使BE=EF ,连接CF .在△ACD 与△ACF 中,∵AD=AF ,∠DAC=∠FAC ,AC=AC ,∴△ACD ≌△ACF ,∴∠ADC=∠AFC .∵CE 垂直平分BF ,∴CF=CB ,∴∠CFB=∠B .又∵∠AFC+∠CFB=180°,∴∠ADC+∠B=180°,∴∠DAB+∠DCB=360-(∠ADC+∠B )=180°,故②正确;③由②知,△ACD ≌△ACF ,∴CD=CF ,又∵CF=CB ,∴CD=CB ,故③正确;④易证△CEF ≌△CEB ,所以S △ACE -S △BCE =S △ACE -S △FCE =S △ACF ,又∵△ACD ≌△ACF ,∴S △ACF =S △ADC ,∴S △ACE -S △BCE =S △ADC ,故④错误;即正确的有3个,故选C .【点睛】本题考查了角平分线性质,全等三角形的性质和判定,等腰三角形的性质,四边形的内角和定理,邻补角定义等知识点的应用,正确作辅助线是解此题的关键,综合性比较强,难度适中.二、填空题11.如图,一次函数1y x b =+与一次函数21y kx =-的图像相交于点P ,则关于x 的不等式1x b kx +>-的解集为__________.【答案】x >-1.【分析】根据一次函数的图象和两函数的交点横坐标即可得出答案.【详解】∵一次函数1y x b =+与一次函数21y kx =-的图像相交于点P ,交点横坐标为:x=-1, ∴不等式1x b kx +>-的解集是x >-1.故答案为:x >-1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了观察函数图象的能力.12.如图,在ABC 中A 120AB AC BC 6cm AB ∠=︒==,,,的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长____________cm .【答案】2【分析】连接AM 和AN ,先说明△AMN 是等边三角形,从而说明BM=MN=CN ,得出MN=2cm.【详解】解:∵∠BAC=120︒,AB=AC ,∴∠B=∠C=1801202︒-︒=30︒, ∵NF 、ME 分别是AC 、AB 的垂直平分线,∴BM=AM ,CN=AN ,∴∠B=∠MAB=∠C=∠NAC=30°,∴∠AMN=∠ANM=60°,∴△AMN 是等边三角形,∴AM=AN=MN ,∴BM=MN=CN ,∵BM+MN+CN=BC=6cm ,∴MN=2cm ,故答案为2.【点睛】本题考查了线段垂直平分线的性质、等边三角形的判定.13.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C=______.【答案】35°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【详解】∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°.【点睛】本题主要考查等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.14.如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米.一只小虫在长方体表面从A爬到B的最短路程是__________【答案】25【解析】分析:求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.详解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10cm ,高为20cm ,点B 离点C 的距离是5,∴BD=CD+BC=10+5=15cm ,AD=20cm ,在直角三角形ABD 中,根据勾股定理得:∴AB=2222=1520AD BD ++=25cm ;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10cm ,高为20cm ,点B 离点C 的距离是5,∴BD=CD+BC=20+5=25cm ,AD=10cm ,在直角三角形ABD 中,根据勾股定理得:∴AB=2222=1025=529AD BD ++cm ;只要把长方体的右侧表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10cm ,高为20cm ,点B 离点C 的距离是5cm ,∴AC=CD+AD=20+10=30cm ,在直角三角形ABC 中,根据勾股定理得:∴2222=305=537AC BC ++cm ;∵25<29<37,∴自A 至B 在长方体表面的连线距离最短是25cm .故答案为25厘米【点评】此题主要考查平面展开图的最短距离,注意长方体展开图的不同情况,正确利用勾股定理解决问题.15.使分式2341x x -+的值是负数x 的取值范围是______. 【答案】x >34 【分析】根据平方的非负性可得210x ,然后根据异号相除得负,即可列出不等式,解不等式即可得出结论.【详解】解:∵20x ≥∴210x ∵分式2341x x -+的值是负数 ∴340x -< 解得:34x > 故答案为:34x >. 【点睛】此题考查的是分式的值为负的条件,掌握平方的非负性和异号相除得负是解决此题的关键.16.已知1(1,5)P a -和2(2,1)P b -关于x 轴对称,则2020()a b +值为_____. 【答案】1【分析】根据平面直角坐标系中任意一点(,)P x y ,关于x 轴的对称点是(,)x y -.根据这一结论求得a ,b 的值,再进一步计算.【详解】解:关于x 轴对称的两个点的坐标特征为横坐标相等,纵坐标互为相反数,1(1,5)P a -和2(2,1)Pb -关于x 轴对称, 12a ∴-=,510b +-=,解得3a =,4b =-,20202020()[3(4)]a b ∴+=+-2020(1)=-1=,故答案是:1.【点睛】本题考查的是关于坐标轴对称的点的坐标的性质,熟悉相关性质是解题的关键.17.若分式242a a -+的值为0,则a 的值为____. 【答案】2【分析】先进行因式分解和约分,然后求值确定a【详解】原式=(2)(2)22a a a a =-++- ∵值为0∴a-2=0,解得:a=2故答案为:2【点睛】本题考查解分式方程,需要注意,此题a 不能为-2,-2为分式方程的增根,不成立三、解答题18.如图,在平面直角坐标系中,点 A ,B 的坐标分别为(0,3),(1,0),△ABC 是等腰直角三角形,∠ABC=90°.(1)图1中,点C的坐标为;(2)如图2,点D的坐标为(0,1),点E在射线CD上,过点B 作BF⊥BE交y轴于点F.①当点E为线段CD的中点时,求点F的坐标;②当点E在第二象限时,请直接写出F点纵坐标y的取值范围.y<-【答案】 (1 ) C(4,1);(2)①F( 0 , 1 ),②1【解析】试题分析:()1过点C向x轴作垂线,通过三角形全等,即可求出点C坐标.()2过点E作EM⊥x轴于点M,根据,C D的坐标求出点E的坐标,OM=2,得到1OB BM EM===,⊥,得到△OBF为等腰直角三角形,即可求出点F的坐标.BE BF()3直接写出F点纵坐标y的取值范围.试题解析:(1 ) C(4,1),(2)法一:过点E作EM⊥x轴于点M,∵C(4,1),D(0,1),E为CD中点,∴CD∥x轴,EM=OD=1,()21∴,,E∴OM=2,()10.B,∴===,1OB BM EM∴∠=︒,EBM45⊥,BE BF∴∠OBF=45°,∴△OBF为等腰直角三角形,∴OF=OB=1.()∴0,1.F法二:在OB的延长线上取一点M.∵∠ABC=∠AOB=90°.∴∠ABO+∠CBM=90° .∠ABO+∠BAO =90°.∴∠BAO=∠CBM .∵C(4,1).D(0,1).又∵CD∥OM ,CD=4. ∴∠DCB=∠CBM.∴∠BAO=∠ECB.∵∠ABC=∠FBE=90°. ∴∠ABF=∠CBE.∵AB=BC.∴△ABF≌△CBE(ASA).∴AF=CE=12CD=2,∵A(0,3),OA=3,∴OF=1.∴F(0,1) ,(3) 1y<-.19.阅读(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【答案】(1)2<AD<8;(2)证明见解析;(3)BE+DF=EF;理由见解析.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【详解】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:。

(汇总3份试卷)2019年哈尔滨市八年级上学期期末综合测试数学试题

(汇总3份试卷)2019年哈尔滨市八年级上学期期末综合测试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法正确的是( )A.等腰直角三角形的高线、中线、角平分线互相重合 B.有两条边相等的两个直角三角形全等C.四边形具有稳定性D.角平分线上的点到角两边的距离相等【答案】D【分析】根据等腰三角形的性质、全等三角形的判定、四边形的性质、角平分线的性质判断即可.【详解】解:等腰三角形底边上的中线、高线和所对角的角平分线互相重合,A选项错误;有两条边相等的两个直角三角形全等,必须是对应直角边或对应斜边,B选项错误;四边形不具有稳定性,C选项错误;角平分线上的点到角两边的距离相等,符合角平分线的性质,D选项正确.故选D.【点睛】本题比较简单,考查的是等腰三角形的性质、全等三角形的判定、四边形的性质、角平分线的性质,需要准确掌握定理内容进行判断.2.等腰三角形的一边长等于4,一边长等于9,则它的周长是()A.17 B.22 C.17或22 D.13【答案】B【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为4时,4+4<9,不能构成三角形;当腰为9时,4+9>9,所以能构成三角形,周长是:9+9+4=1.故选B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.3.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-【答案】A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:1806x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.4.2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布. 以下是参选的会徽设计的一部分图形,其中是轴对称图形的是( )A.B.C.D.【答案】B【分析】根据轴对称图形的概念求解即可.【详解】A.不是轴对称图形,本选项错误;B.是轴对称图形,本选项正确;C.不是轴对称图形,本选项错误;D.不是轴对称图形,本选项错误.故选B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于()A.4.1米B.4.0米C.3.9米D.3.8米【答案】A【分析】根据题意欲通过如图的隧道,只要比较距厂门中线1.2米处的高度比车高即可,根据勾股定理得出CD的长,进而得出CH的长,即可得出答案.【详解】车宽2.4米,∴欲通过如图的隧道,只要比较距厂门中线1.2米处的高度与车高,在Rt OCD△中,由勾股定理可得:22222 1.2 1.6CD OC OD=-=-=(m),1.62.5 4.1CH CD DH=+=+=米,∴卡车的外形高必须低于4.1米.故选:A .【点睛】此题主要考查了垂径定理和勾股定理的应用,根据题意得出CD 的长是解题关键.6.一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为( )A .55.210⨯B .55.210-⨯C .45.210-⨯D .65210-⨯ 【答案】B【分析】科学记数法表示较小的数,一般形式为:10n a -⨯,其中110a ≤<, n 等于原数由左边起第一个不为零的数字前面的0的个数.【详解】10n a -⨯,其中110a ≤<, n 等于原数由左边起第一个不为零的数字前面的0的个数. 50.000052 5.210-=⨯,故选B .【点睛】本题主要考查用科学记数法表示较小的数,难度较低,熟练掌握科学记数法是解题关键.7.下列各组数中,以它们为边长的线段不能构成直角三角形的是( )A .6,8,10B .8,15,16C .4,3D .7,24,25 【答案】B【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A 、∵62+82=100=102,∴能构成直角三角形,故本选项不符合题意;B 、∵82+152=289=172≠162,∴不能构成直角三角形,故本选项符合题意;C 、∵2+32=16=42,∴能构成直角三角形,故本选项不符合题意; D 、∵72+242=625=252,∴能构成直角三角形,故本选项不符合题意;故选B .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.8.如图,在平面直角坐标系中,30MON ∠=︒,点1A 、2A 、3A 、4A 在x 轴上,点1B 、2B 、3B … 在射线OM 上,112A B A △、223A B A △、334A B A △……均为等边三角形,若1A 点坐标是(1,0) ,那么6A 点坐标是( )A .(6,0)B .(12,0)C .(16,0)D .(32,0)【答案】D【分析】根据等边三角形的性质得出160n n n B A A +∠=︒,然后利用三角形外角的性质得出n n OB A MON ∠=∠,从而有n n n A B OA =,然后进行计算即可.【详解】∵112A B A △,223A B A △,…,1n n n A B A +△均为等边三角形,160n n n B A A +∴∠=︒.30MON ∠=︒,30n n OB A ∴∠=︒,n n OB A MON ∴∠=∠,n n n A B OA ∴= .∵1A 点坐标是(1,0),1111A B OA ∴== ,2112112OA OA A A ∴=+=+= ,同理,34564,8,16,32OA OA OA OA ====,∴6A 点坐标是(32,0).故选:D .【点睛】本题主要考查点的坐标的规律,掌握等边三角形的性质和三角形外角的性质是解题的关键.9.如图,在数轴上数表示2,5的对应点分别是B 、C ,B 是AC 的中点,则点A 表示的数()A .5-B .25-C .45D 52【答案】C【分析】先求出线段BC 的长,然后利用中点的性质即可解答;【详解】∵C 点表示5,B 点表示2,∴=5-2BC ,又∵B 是AC 的中点,∴()2252254AC BC ==-=-, 点A 表示的数为()5-25-4=4-5.故选:C .【点睛】本题主要考查了实数与数轴的知识点,准确计算是解题的关键.10.一个多边形的每个内角都是108°,那么这个多边形是( )A .五边形B .六边形C .七边形D .八边形 【答案】A【分析】根据题意,计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:A .【点睛】本题考查了多边形外角和是360°这一知识点,根据题意求出,每个外角的度数是解决本题的关键。

黑龙江省2019-2020学年八年级上学期期末数学试题A卷

黑龙江省2019-2020学年八年级上学期期末数学试题A卷

黑龙江省 2019-2020 学年八年级上学期期末数学试题 A 卷姓名:________班级:________成绩:________一、单选题1 . 下列各点中,在 x 轴上的是( ).A.(3,-3)B.(0,3)C.(-3,0)D.(3,-4)2 . 等腰三角形两边长为 ,则第三边的长是( )A.B.C.D. 或3 . 若一个长方形的周长为,其中一边长是,则它的另一边长是( )A.B.C.D.4 . 在平面直角坐标系中,把直线 y=x 向左平移一个单位长度后,所得直线的解析式为( )A.y=x+1B.y=x-1C.y=xD.y=x-25 . 通过如下尺规作图,能确定点 是 边中点的是( )A.B.C.D.6 . 若关于 x 的不等式组无解,则 a 的取值范围是A.B.C.D.7 . 已知 a>b,则下列不等式一定成立的是( )第1页共6页A.a+4<b+4 C.-2a<-2bB.2a<2b D.a-b<08 . 下列交通标志中,是轴对称图形的是( ).A.B.C.D.9 . 将矩形 ABCD 沿 AE 折叠,得到如图所示的图形,已知∠CED′=50°,则∠AED 的大小是( )A.65°B.50°C.75°D.55°10 . 下列选项中,可以用来证明命题“若 a2>b2,则 a>b“是假命题的反例是( )A.a=﹣2,b=1B.a=3,b=﹣2C.a=0,b=1D.a=2,b=1二、填空题11 . 三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉_____根木条.12 . 如图,点 A、B 的坐标分别为(0,2),(3,4),点 P 为 x 轴上的一点,若点 B 关于直线 AP 的对称点 B′恰好落在 x 轴上,则点 P 的坐标为_______; 13 . 已知点 P 在直线 y=-x+2 上,且点 P 到 x 轴的距离为 3,则点 P 的坐标为_______ 14 . 用不等式表示:a 与 3 的差不小于 b 与 4 的和____________.15 . 要使式子在实数范围内有意义,则实数 a 的取值范围是_____.第2页共6页16 . 如图,正方形 ABCD 中,AB=6,点 E 在边 CD 上,且 CD=3DE,将△ADE 沿 AE 对折至△AEF,延长 EF 交边 BC 于点 G,连接 AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC= ,其中正确的结论有__________.三、解答题17 . 阅读下列一段文字,然后回答下列问题.已知在平面内有两点 P1 x1,y1 ,P1 x2,y2 其两点间的距离 P1P2 =,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可化简为|x2 − x1|或|y2 −y1|.(1)已知 A (1,4)、B (-3,5),试求 A.、B 两点间的距离;(2)已知 A、B 在平行于 y 轴的直线上,点 A 的纵坐标为-8,点 B 的纵坐标为-1,试求 A、B 两点的距离;(3)已知一个三角形各顶点坐标为 D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形状吗?说明理由:(4)在(3)的条件下,平面直角坐标系中,在 x 轴上找一点 P,使 PD+PF 的长度最短,求出点 P 的坐标以及 PD+PF 的最短长度.18 . 问题:探究函数 y=|x|﹣2 的图象与性质.小华根据学习函数的经验,对函数 y=|x|﹣2 的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)在函数 y=|x|﹣2 中,自变量 x 可以是任意实数;(2)如表是 y 与 x 的几组对应值.x…﹣3 ﹣2 ﹣10123…第3页共6页y…10﹣1﹣2﹣10m…①m=;②若 A(n,8),B(10,8)为该函数图象上不同的两点,则 n=;(3)如图,在平面直角坐标系 xOy 中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数 的图象;根据函数图象可得:①该函数的最小值为;②已知直线与 函 数 y=|x| ﹣ 2 的 图 象 交 于 C 、 D 两 点 , 当 y1≥y 时 x 的 取 值 范 围是.19 . “六一”期间,小张购述 100 只两种型号的文具进行销售,其中 A 种型号的文具进价为 10 元/只,售价 为 12 元,B 种型号的文具进价为 15 元 1 只,售价为 23 元/只.(1)小张如何进货,使进货款恰好为 1300 元?(2)如果购进 A 型文具的数量不少于 B 型文具数量的 倍,且要使销售文具所获利润不低于 500 元,则小张 共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?20 . 如图,在△ABC 中,AB=AC,点 D、E 分别在 BC、AC 的延长线上,AD=AE,∠CDE=30º.第4页共6页求:∠BAD 的度数.21 . 解不等式组:,并判断 是否为该不等式组的解.22 . 甲、乙两人在笔直的道路 AB 上相向而行,甲骑自行车从 A 地到 B 地,乙驾车从 B 地到 A 地,假设他们分 别以不同的速度匀速行驶,甲先出发 6 分钟后,乙才出发,在整个过程中,甲、乙两人之间的距离 y(千米)与甲 出发的时间 x(分)之间的函数图象如图.(1)A 地与 B 地相距______km,甲的速度为______km/分;(2)求甲、乙两人相遇时,乙行驶的路程;(3)当乙到达终点 A 时,甲还需多少分钟到达终点 B? 23 . △ABC 在平面直角坐标系中的位置如图所示,其中 A(0,4),B(-2,2),C((-1,1),先将△ABC 向右平 移 3 个单位,再向下平移 1 个单位到△A1B1C1,△A1B1C1 和△A2B2C2 关于 x 轴对称. (1)画出△A1B1C1 和△A2B2C2,并写出 A2,B2,C2 的坐标; (2)在 x 轴上确定一点 P,使 BP+A1P 的值最小,请在图中画出点 P; ( 3 ) 点 Q 在 y 轴 上 且 满 足 △ACQ 为 等 腰 三 角 形 , 则 这 样 的 Q 点第5页共6页有个.24 . 已知, 是内的一点.(1)如图, 平分交 于点 ,点 在线段 上(点 不与点 、 重合),且,求证:.(2)如图,若是等边三角形,是等腰三角形时,试求出 的度数.,,以 为边作等边,连 .当第6页共6页。

哈尔滨市2019-2020学年八年级上学期数学期末考试试卷(II)卷(模拟)

哈尔滨市2019-2020学年八年级上学期数学期末考试试卷(II)卷(模拟)

哈尔滨市2019-2020学年八年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分) (2018七上·渭滨期末) 如图,需要添一个面折叠后,才能围成一个正方体,下图中黑色小正方形分别补画正确的是()A .B .C .D .2. (1分) (2016八上·柳江期中) 如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A . 40°B . 50°C . 45°D . 60°3. (1分)已知两圆的半径分别为3cm和5cm,如果它们的圆心距是4cm,那么这两个圆的位置关系是()A . 内切B . 相交C . 外切D . 外离4. (1分)如图,已知矩形ABCD中,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点.当点P在BC上从点B 向点C移动而点R不动时,那么下列结论成立的是().A . 线段EF的长逐渐增大B . 线段EF的长逐渐减少C . 线段EF的长不变D . 线段EF的长不能确定5. (1分)(2020·绍兴模拟) 如图,直线PA、PB、MN分别与 O相切于点A,B,D,PA=PB=8cm,则△PMN 的周长为()A . 8cmB . cmC . 16cmD . cm6. (1分)菱形的对角线相交于O,以O为圆心,以点O到菱形一边的距离为半径的⊙O与菱形其它三边的位置关系是()A . 相交B . 相离C . 相切D . 无法确定7. (1分)由几块大小相同的正方体搭成如图所示的几何体,它的左视图是()A .B .C .D .8. (1分)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm2 ,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,;③直线NH的解析式为;④若△ABE与△QBP相似,则t=秒。

{3套试卷汇总}2019年哈尔滨市八年级上学期期末达标检测数学试题

{3套试卷汇总}2019年哈尔滨市八年级上学期期末达标检测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确) 1.下列各命题的逆命题是真命题的是( ) A .对顶角相等 B .若1x =,则21x = C .相等的角是同位角 D .若0x =,则20x =【答案】D【分析】先交换原命题的题设和结论部分,得到四个命题的逆命题,然后再分别判断它们是真命题还是假命题.【详解】解: A. “对顶角相等”的逆命题是“相等的角是对顶角”, 因为相等的角有很多种, 不一定是对顶角, 所以逆命题错误, 故逆命题是假命题;B. “若1x =,则21x =”的逆命题是“若21x =,则1x =”错误, 因为由21x =可得1x =±, 故逆命题是假命题;C. “相等的角是同位角”的逆命题是“同位角是相等的角”.因为缺少了两直线平行的条件, 所以逆命题错误, 故逆命题是假命题;D. “若0x =,则20x =”的逆命题是“若20x =,则0x =”正确, 故逆命题是真命题; 故选:D. 【点睛】本题主要考查了逆命题和真假命题的定义,对事物做出判断的语句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题.2.下列多项式能用平方差公式分解因式的是( ) A .﹣x 2+y 2 B .﹣x 2﹣y 2C .x 2﹣2xy+y 2D .x 2+y 2【答案】A【解析】试题分析:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.根据平方差公式的特点可得到只有A 可以运用平方差公式分解, 故选A .考点:因式分解-运用公式法. 3.下列分式中,最简分式是( )A .2211x x -+B .211x x +-C .2222x xy y x xy-+-D .236212x x -+【答案】A【解析】试题分析:选项A 为最简分式;选项B 化简可得原式==;选项C 化简可得原式==;选项D 化简可得原式==,故答案选A.考点:最简分式.4.在△ABC 中, ∠C=∠B ,与△ABC 全等的三角形有一个角是100°,那么△ABC 中与这个角对应的角是 ( ) A .∠B B .∠AC .∠CD .∠B 或∠C【答案】B【分析】根据三角形的内角和等于180°可知,∠C 与∠B 不可能为100°,根据全等三角形的性质可得∠A 为所求角.【详解】解:假设=100C B ∠=∠,=200C B ∠+∠,与=180C B A ∠+∠+∠矛盾,∴假设不成立,则100A ∠=,故答案为B. 【点睛】本题考查了全等三角形的基本性质和三角形内角和定理,满足内角和定理的前提下找到对应角是解题关键.5.已知α,β是方程2201910x x ++=的两个根,则代数式()()221202112021ααββ++++的值是( )A .4B .3C .2D .1【答案】A【分析】根据题意得到2201910αα++=,2201910ββ++=,1caαβ==,把它们代入代数式去求解.【详解】解:∵α、β是方程2201910x x ++=的根,∴2201910αα++=,2201910ββ++=,1caαβ==, ()()221202112021ααββ++++()()22120192120192αααβββ=++++++()()0202αβ=++4αβ= 4=.故选:A . 【点睛】本题考查一元二次方程根与系数的关系,解题的关键是抓住一元二次方程根的意义和根与系数的关系. 6.若分式31a +有意义,则a 的取值范围是( ) A .0a = B .1a =C .1a ≠-D .0a ≠【答案】C【分析】根据分式有意义时,即分式的分母不等于零解答即可. 【详解】由题意得10a +≠, ∴1a ≠-, 故选:C . 【点睛】此题考查了分式有意义的条件:分式的分母不等于0,正确掌握分式有意义的条件是解题的关键. 7.在t R ABC ∆中,3,5a b ==,则c 的长为( ) A .2 B .34C .4D .4或34【答案】D【分析】分b 是斜边、b 是直角边两种情况,根据勾股定理计算即可. 【详解】解:当b 是斜边时,c =224b a -=, 当b 是直角边时,c =2234b a +=, 则c =4或34, 故选:D . 【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 1+b 1=c 1. 8.如图,四边形 ABCD 中,AD //BC ,DC BC ⊥,将四边形沿对角线BD 折叠,点A 恰好落在DC 边上的点A'处,A'BC 20︒∠=,则A D 'B ∠的度数是 ( )A .15°B .25°C .30°D .40°【答案】B【分析】由题意利用互余的定义和平行线的性质以及轴对称的性质,进行综合分析求解. 【详解】解:∵∠A ′BC=20°,DC BC ⊥,∴∠BA ′C=70°, ∴∠DA ′B=110°, ∴∠DAB=110°, ∵AD //BC , ∴∠ABC=70°,∴∠ABA ′=∠ABC-∠A ′BC=70°-20°=50°, ∵∠A ′BD=∠ABD , ∴∠A ′BD=12∠ABA ′=25°. 故选:B. 【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变进行分析.9.小意是一位密码翻译爱好者,在她的密码手册中,有这样一条信息:-a b ,22x y -,x y -,x y +,22a b -,+a b 分别对应下列六个字:泗、我、大、美、爱、水,现将()()222222x y a x y b ---因式分解,结果呈现的密码信息可能是( ) A .我爱美 B .我爱水 C .我爱泗水 D .大美泗水【答案】D【分析】先提取公因式,再利用平方差公式:22()()a b a b a b -=+-进行因式分解,然后根据密码手册即可得. 【详解】()()222222x ya xy b ---2222)()(x y a b =--)(()))((a x y x a b b y =+--+由密码手册得,可能的四个字分别为:美、大、水、泗 观察四个选项,只有D 选项符合 故选:D . 【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,因式分解的方法主要包括:提取公因式法、公式法、十字相乘法、换元法等,熟记各方法是解题关键.10.在1x ,12,212x +,3xyπ,3x y +中,分式的个数是( )A .2B .3C .4D .5【答案】A【解析】根据分式的定义即可得出答案.【详解】根据分式的定义可知是分式的为:1x、3x y共2个,故答案选择A.【点睛】本题考查的主要是分式的定义:①形如AB的式子,A、B都是整式,且B中含有字母.二、填空题11.已知等腰三角形的底角为15°,腰长为30cm,则此等腰三角形的面积为_____.【答案】115cm1.【解析】根据题意作出图形,求出腰上的高,再代入面积公式即可求解.【详解】解:如图所示,作等腰三角形腰上的高CD,∵∠B=∠ACB=15°,∴∠CAD=30°,∴CD=12AC=12×30=15cm,∴此等腰三角形的面积=12×30×15=115cm1,故答案为:115cm1.【点睛】本题考查的是含30度角的直角三角形的性质、等腰三角形的性质以及三角形外角的性质,熟练运用相关性质定理是解题的关键.12.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为.【答案】(2,-3)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),据此即可求得点(2,3)关于x轴对称的点的坐标.【详解】∵点(2,3)关于x轴对称;∴对称的点的坐标是(2,-3).故答案为(2,-3).13.若n边形的内角和是它的外角和的2倍,则n= .【答案】6【解析】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2), 外角和=360º所以,由题意可得180(n-2)=2×360º 解得:n=614.如图,△ABC 申,BC 的垂直平分线DP 与∠BAC 的角平分线相交于点D ,垂足为点P ,若∠BAC=82︒,则∠BDC=____.【答案】98【解析】首先过点D 作DF ⊥AB 于E ,DF ⊥AC 于F ,易证得△DEB ≌△DFC (HL ),即可得∠BDC=∠EDF ,又由∠EAF+∠EDF=180°,即可求得答案;【详解】解:过点D 作DE ⊥AB ,交AB 延长线于点E ,DF ⊥AC 于F ,∵AD 是∠BOC 的平分线, ∴DE=DF ,∵DP 是BC 的垂直平分线, ∴BD=CD ,在Rt △DEB 和Rt △DFC 中,DB DCDE DF ⎧⎨⎩==, ∴Rt △DEB ≌Rt △DFC . ∴∠BDE=∠CDF , ∴∠BDC=∠EDF , ∵∠DEB=∠DFC=90°, ∴∠EAF+∠EDF=180゜, ∵∠BAC=82°, ∴∠BDC=∠EDF=98°, 故答案为98°.此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与转化思想的应用.15在实数范围内有意义,则 x 的取值范围是_______ . 【答案】x≥1【分析】直接利用二次根式的有意义的条件得到关于x 的不等式,解不等式即可得答案. 【详解】由题意可得:x ﹣1≥0, 解得:x≥1, 故答案为x≥1. 【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键. 16.在Rt △ABC 中,90︒∠=C ,13AB =,12AC =,则BC =_____. 【答案】1【分析】在Rt △ABC 中,∠C=90°,则AB 2=AC 2+BC 2,根据题目给出的AB ,AC 的长,则根据勾股定理可以求BC 的长.【详解】∵AB=13,AC=12,∠C=90°,∴==1.故答案为:1. 【点睛】本题考查了勾股定理在直角三角形中的运用,本题中正确的根据勾股定理求值是解题的关键.17______6(填“”<或“”>号)【答案】>【分析】首先将两个二次根式转换形式,然后比较大小即可. 【详解】由题意,得==∴56>故答案为:>.此题主要考查二次根式的大小比较,熟练掌握,即可解题.三、解答题18.如图,有六个正六边形,在每个正六边形里有六个顶点,要求用两个顶点连线(即正六边形的对角线)将正六方形分成若干块,相邻的两块用黑白两色分开.最后形成轴对称图形,图中已画出三个,请你继续画出三个不同的轴对称图形(至少用两条对角线)【答案】见解析;【解析】根据轴对称的定义和六边形的性质求解可得.【详解】解:如图所示.【点睛】考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质及正六边形的性质.19.为了方便广大游客到昆明参观游览,铁道部门临时增开了一列南宁——昆明的直达快车,已知南宁、昆明两站的路程为828千米,一列普通快车与一列直达快车都由南宁开往昆明,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车后出发2小时,而先于普通快车4小时到达昆明,分别求出两车的速度.【答案】慢车46千米/时,快车1千米/时.【解析】设普通快车的平均速度为x千米/时,则直达快车的平均速度为1.5x千米/时,根据“快车用的时间=普通快车用的时间+2+4”,列出分式方程,求解即可得出答案.【详解】解:设普通快车的平均速度为x千米/时,则直达快车的平均速度为1.5x千米/时,根据题意得:82882824=++,1.5x x解得:x=46,经检验,x=46是分式方程的解,1.5x=1.5×46=1.答:普通快车的平均速度为46千米/时,则直达快车的平均速度为1千米/时. 【点睛】此题考查了分式方程的应用,由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系,根据等量关系列出方程,解方程时要注意检验.20.先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b)(2a -b),其中a =2,b =1. 【答案】242a ab -,1.【分析】根据整式的除法法则和乘法公式把式子进行化简,再把a 、b 的值代入即可求出结果. 【详解】原式=b 2-2ab+4a 2-b 2=242a ab -, 当a=2,b=1时,原式=4×22-2×2×1=1. 考点:整式的运算.21.我们学过的分解因式的方法有提取公因式法、公式法及十字相乘法,但有很多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为: ()()()()()224242222222x y x y x y x y x y x y x y --+=+---=-+-;这种分解因式的方法叫分组分解法.利用这种方法解决下列问题: (1)分解因式:22216x xy y -+-(2)ABC ∆三边a ,b ,c 满足20a ab ac bc --+=,判断ABC ∆的形状. 【答案】(1)()()44x y x y -+--;(2)ABC ∆是等腰三角形,理由见解析【分析】(1)首先将前三项组合,利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可; (2)首先将前两项以及后两项组合,进而提取公因式法分解因式,即可得出a , b ,c 的关系,判断三角形形状即可.【详解】解:(1)22216x xy y -+-()224x y =--=()()44x y x y -+-- (2)∵20a ab ac bc --+= ∴()()0a a b c a b ---= ∴()()0a b a c --= ∴a b =或a c =, ∴ABC ∆是等腰三角形.【点睛】此题主要考查了分组分解法分解因式以及等腰三角形的判定,正确分组分解得出是解题关键.22.勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:(1)你能找出它们的规律吗?(填在上面的横线上) (2)你能发现a ,b ,c 之间的关系吗?(3)对于偶数,这个关系 (填“成立”或“不成立”)吗? (4)你能用以上结论解决下题吗?2222201920201009202010091+⨯-⨯+()【答案】(1)21n ,222n n +,2221n n ++;(2)222+=a b c ;(3)成立;(4)0 【分析】(1)根据表中的规律即可得出; (2)由前几组数可得出a ,b ,c 之间的关系; (3)另n=2k 代入a ,b ,c 计算即可得出;(4)根据(2)中的关系式,将2222201920201009202010091+⨯-⨯+()进行合理的拆分,使之符合(2)中的规律即可计算得出.【详解】解:(1)由表中信息可得(1)21a n n n =++=+,22(1)22b n n n n =+=+,22(1)1221c n n n n =++=++,故答案为21n ,222n n +,2221n n ++. (2)由于22(21)441n n n +=++,22432(22)484n n n n n +=++, 22432(221)48841n n n n n n ++=++++∵243243244148448841n n n n n n n n n +++++=++++即222+=a b c .(3)令n=2k ,则2(21)41a k k k =++=+,222(21)84b k k k k =⨯+=+,222(21)1841c k k k k =⨯++=++∵222(41)1681a k k k =+=++ 222432(84)646416b k k k k k =+=++222243(841)64643281c k k k k k k =++=++++,由于2243243168164641664643281k k k k k k k k k +++++=++++即222+=a b c ,∴对于偶数,这个关系成立(4)∵2222201920201009202010091+⨯-⨯+() 222(10101009)(210101009)2101010091=++⨯⨯-⨯⨯+()由(2)中结论可知222(10101009)(210101009)2101010091++⨯⨯=⨯⨯+() ∴22222019202010092020100910+⨯-⨯+=() 【点睛】本题考查了勾股定理中的规律探究问题,解题的关键是通过表格找出规律,并应用规律.23.如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D .(1)求证:CD 为⊙O 的切线;(2)若DC +DA=6,⊙O 的直径为10,求AB 的长度.【答案】(1)证明见解析(2)6【分析】(1)连接OC ,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD 为 O 的切线;(2)过O 作OF ⊥AB ,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF 为矩形,设AD=x ,在Rt △AOF 中,由勾股定理得(5-x )2 +(6-x )2 =25,从而求得x 的值,由勾股定理得出AB 的长.【详解】(1)证明:连接OC ,∵OA=OC,∴∠OCA=∠OAC,∵AC 平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA ,∴CD⊥OC,CO 为O 半径,∴CD 为O 的切线;(2)过O 作OF⊥AB,垂足为F ,∴∠OCD=∠CDA=∠OFD=90∘,∴四边形DCOF 为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x ,则OF=CD=6−x ,∵O 的直径为10,∴DF=OC=5,∴AF=5−x ,在Rt△AOF 中,由勾股定理得AF 2 +OF 2=OA 2.即(5−x) 2+(6−x) 2=25,化简得x 2−11x+18=0,解得122,9x x == .∵CD=6−x 大于0,故x=9舍去,∴x=2,从而AD=2,AF=5−2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.24.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.【答案】证明见解析【详解】解:∵AD平分∠EDC∴∠ADE=∠ADC又DE=DC,AD=AD∴△ADE≌△ADC∴∠E=∠C又∠E=∠B,∴∠B=∠C∴AB=AC25.已知:如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.(1)求证:CD=CE;(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.【答案】(1)见解析;(2)△BEF为等腰三角形,证明见解析.【分析】(1)先由AD∥BE得出∠A=∠B,再利用SAS证明△ADC≌△BCE即得结论;(2)由(1)可得CD=CE,∠ACD=∠BEC,再利用等腰三角形的性质和三角形的外角性质可得∠BFE=∠BEF,进一步即得结论.【详解】(1)证明:∵AD∥BE,∴∠A=∠B,在△ADC和△BCE中AD BC A B AC BE =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△BCE (SAS ),∴CD =CE ;(2)解:△BEF 为等腰三角形,证明如下:由(1)知△ADC ≌△BCE ,∴CD =CE ,∠ACD =∠BEC ,∴∠CDE =∠CED ,∴∠CDE+∠ACD =∠CED+∠BEC ,即∠BFE =∠BEF ,∴BE =BF ,∴△BEF 是等腰三角形.【点睛】本题考查了全等三角形的判定和性质、平行线的性质、三角形的外角性质以及等腰三角形的判定和性质等知识,属于基础题型,难度不大,熟练掌握全等三角形和等腰三角形的判定和性质是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,ABC ∆≌DEF ∆,下列结论正确的是( )A .AB DF =B .BE CF =C .B F ∠=∠D .ACB DEF ∠=∠【答案】B 【分析】全等三角形的性质:对应边相等,对应角相等,据此逐一判断即可的答案.【详解】∵△ABC ≌△DEF ,∴AB=DE ,∠B=∠DEF ,∠ACB=∠F ,故A 、C 、D 选项错误,不符合题意,∵△ABC ≌△DEF ,∴BC=EF ,∴BC-CE=EF-CE ,∴BE=CF ,故B 选项正确,符合题意,故选:B .【点睛】本题考查全等三角形的性质,正确找出对应边与对应角是解题关键.2.函数3y x =-中自变量x 的取值范围是( ) A .3x <B .3x ≤C .3x >D .3x ≥【答案】B【解析】试题分析:根据二次根式的意义,被开方数是非负数.所以1﹣x ≥0,解得x≤1.故选B .考点:函数自变量的取值范围.3.如图,△ABC ≌△DCB ,若AC =7,BE =5,则DE 的长为()A .2B .3C .4D .5【答案】A 【解析】试题分析:根据三角形全等可以得出BD=AC=7,则DE=BD-BE=7-5=2.4.在△ABC 中和△DEF 中,已知BC=EF ,∠C=∠F ,增加下列条件后还不能判定△ABC ≌△DEF 的是( ) A .AC=DFB .∠B=∠EC .∠A=∠D D .AB=DE【答案】D【解析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可. 【详解】解:如图:A, 根据SAS 即可推出△ABC ≌△DEF,;B. 根据ASA 即可推出△ABC ≌△DEFC.根据AAS 即可推出△ABC ≌△DEF;D, 不能推出△ABC ≌△DEF;故选D.【点睛】本题考查了全等三角形的判定的应用, 注意: 全等三角形的判定定理有SAS,ASA,AAS,SSS.5.如图,ABC ∆的周长为26cm ,分别以A B 、为圆心,以大于12AB 的长为半径画圆弧,两弧交于点D E 、,直线DE 与AB 边交于点F ,与AC 边交于点G ,连接BG ,GBC ∆的周长为14cm ,则BF 的长为 ( )A .6cmB .7cmC .8cmD .12cm【答案】A 【分析】将△GBC 的周长转化为BC+AC ,再根据△ABC 的周长得出AB 的长,由作图过程可知DE 为AB 的垂直平分线,即可得出BF 的长.【详解】解:由作图过程可知:DE 垂直平分AB ,∴BF=12AB ,BG=AG , 又∵△GBC 的周长为14,则BC+BG+GC=BC+AC=14,∴AB=26- BC-AC=12,∴BF=12AB=6.故选A.【点睛】本题考查了作图-垂直平分线,垂直平分线的性质,三角形的周长,解题的关键是△GBC的周长转化为BC+AC 的长,突出了“转化思想”.6.如图,在等边△ABC中,AB=15,BD=6,BE=3,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是()A.8 B.10 C.43D.12【答案】D【分析】首先利用等边三角形的性质和含30°直角三角形的运用,判定△DPE≌△FDH,△DF2Q≌△ADE,然后利用全等三角形的性质,得出点F运动的路径长.【详解】∵△ABC为等边三角形,∴∠B=60°,过D点作DE′⊥AB,过点F作FH⊥BC于H,如图所示:则BE′=12BD=3,∴点E′与点E重合,∴∠BDE=30°,33∵△DPF为等边三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,在△DPE和△FDH中,90PED DHFEDP DFHDP FD︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△DPE≌△FDH(AAS),∴∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为,当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则四边形DF1F2Q是矩形,∵∠BDE=30°,∠ADF2=60°,∴∠ADE+∠F2DQ=180°﹣30°﹣60°=90°,∵∠ADE+∠DAE=90°,∴∠F2DQ=∠DAE,在△DF2Q和△ADE中,222F QD DEA90F DQ DAEDF AD︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△DF2Q≌△ADE(AAS),∴DQ=AE=AB﹣BE=15﹣3=12,∴F1F2=DQ=12,∴当点P从点E运动到点A时,点F运动的路径长为12,故选:D.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是作好辅助线.7.计算22222a b a b a ba b a b ab⎛⎫+---⨯⎪-+⎝⎭的结果是( )A.1a b-B.1a b+C.a-b D.a+b【答案】B【分析】先算小括号里的,再算乘法,约分化简即可.【详解】解:2222a b a b a ba b a b ab⎛⎫+---⨯⎪-+⎝⎭=()()()2222a b a b a ba b a b ab+---⨯+-=1a b+故选B.【点睛】本题考查分式的混合运算.8.下列交通标志是轴对称图形的是()A .B .C .D .【答案】C【分析】根据轴对称图形的概念求解.【详解】A 、不是轴对称图形,故错误;B 、不是轴对称图形,故错误;C 、是轴对称图形,故正确;D 、不是轴对称图形,故错误.故选:C .【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 9.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( )A .80.710-⨯B .9710-⨯C .8710-⨯D .10710-⨯ 【答案】B【分析】由题意根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.000000007用科学记数法表示为7×10-1.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.丽丽同学在参加演讲比赛时,七位评委的评分如下表:她得分的众数是( ) 评委代号A B C D E F G 评分85 90 95 90 90 85 90 A .95分B .90分C .85分D .10分 【答案】B【分析】一组数据中出现次数最多的数据叫做众数.【详解】这组数据出现次数最多的是1,故这组数据的众数是1.故选:B .【点睛】本题考查了众数的定义,解题时牢记定义是关键.二、填空题11.如图,AB=AC ,BD=BC,若∠A=40°,则∠ABD 的度数是_________.【答案】30°;【分析】利用三角形的内角和、外角性质与等腰三角形的“等边对等角”定理计算.【详解】由AB=AC 、BD=BC 得∠ABC=∠ACB 、∠C=∠BDC ,在△ABC 中,∠A=40°,∠C=∠ABC ,∴∠C=∠ABC=12 (180°−∠A)= 12(180°−40°)=70°; 在△ABD 中,由∠BDC=∠A+∠ABD 得∠ABD=∠BDC−∠A=70°−40°=30°故答案为30°【点睛】此题考查三角形内角和定理,等腰三角形的性质,三角形的外角性质,解题关键在于利用等边对等角 12.计算:2(23)-=___________.【答案】3.【分析】依据完全平方公式222()2a b a ab b -=-+进行计算. 【详解】2443(37233)=-=--【点睛】此题考查完全平方公式以及二次根式的混合运算,熟记公式即可正确解答.13.已知,在Rt ABC 中,90C ∠=︒,12AB =,D 为AB 中点,则CD =__________.【答案】1【分析】先画出图形,再根据直角三角形的性质求解即可.【详解】依题意,画出图形如图所示: 12AB =,点D 是斜边AB 的中点1112622CD AB ∴==⨯=(直角三角形中,斜边上的中线等于斜边的一半) 故答案为:1.【点睛】本题考查了直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,这是常考知识点,需重点掌握,做这类题时,依据题意正确图形往往是关键.14.在平面直角坐标系中,O为坐标原点,已知点A的坐标是(-2,0),点B在y轴上,若OA=2OB,则点B的坐标是______.【答案】(0,1)或(0,-1)【分析】先得出OA的长度,再结合OA=2OB且点B在y轴上,从而得出答案.【详解】∵点A的坐标是(-2,0),∴OA=2,又∵OA=2OB,∴OB=1,∵点B在y轴上,∴点B的坐标为(0,1)或(0,-1),故答案为:(0,1)或(0,-1).【点睛】本题主要考查了坐标与图形的性质,点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.15.三角形三个内角的度数之比是1:2:3,它的最大边长是6cm,则它最短边长为________.【答案】3cm【分析】先根据三角形三个内角之比为1:2:3求出各角的度数判断出三角形的形状,再根据含30度角的直角三角形的性质求解.【详解】解:∵三角形三个内角之比为1:2:3,∴设三角形最小的内角为x,则另外两个内角分别为2x,3x,∴x+2x+3x=180°,∴x=30°,3x=90°,∴此三角形是直角三角形.∴它的最小的边长,即30度角所对的直角边长为:12×6=3cm.故答案为:3cm.【点睛】本题考查的是含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半,解答此题的关键是根据三角形三个内角度数的比值判断出三角形的形状.16.如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米.一只小虫在长方体表面从A爬到B的最短路程是__________【答案】25【解析】分析:求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.详解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=10+5=15cm,AD=20cm,在直角三角形ABD中,根据勾股定理得:∴AB=2222AD BD++=25cm;=1520只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=20+5=25cm,AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB=2222=1025=529AD BD ++cm ;只要把长方体的右侧表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10cm ,高为20cm ,点B 离点C 的距离是5cm ,∴AC=CD+AD=20+10=30cm ,在直角三角形ABC 中,根据勾股定理得:∴2222=305=537AC BC ++cm ;∵25<29<37, ∴自A 至B 在长方体表面的连线距离最短是25cm .故答案为25厘米【点评】此题主要考查平面展开图的最短距离,注意长方体展开图的不同情况,正确利用勾股定理解决问题.1722(3)0a b -++=,则2()a b -=______.【答案】25【分析】先根据非负数的性质求出a 、b 的值,再代入代数式进行计算即可.22(3)0a b -++=,∴20a -=,30b +=,解得2a =,3b =-.∴2()a b -=2(23)25+=. 故答案为25.【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.三、解答题18.请你观察下列等式,再回答问题.2211111111121112+++-+==; 2211111111232216+++-+==; 2211111111.3433112++=+-=+(1)(2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式,并加以验证.【答案】(11120,验证见解析;(21111n n=+-+,验证见解析.【解析】(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.【详解】(11111144120+-+=,验证略.(21111n n=+-+.验证如下:1111111nn n n n==+==-=+-++【点睛】本题考查了算术平方根,解题的关键是掌握算是平方根的概念.19.请你先化简:2344111x xxx x⎛⎫-+⎛⎫-+÷ ⎪⎪++⎝⎭⎝⎭,然后从12x-≤≤中选一个合适的整数作为x的值代入求值.【答案】22xx+-,当0x=时,原式1=.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值(使分式的分母和除式不为0)代入进行计算即可(答案不唯一).【详解】2344111x xxx x⎛⎫-+⎛⎫-+÷ ⎪⎪++⎝⎭⎝⎭=()22231111xxx x x-⎛⎫--÷⎪+++⎝⎭=()()()222112x x xx x+-++-=22xx+-,当0x=时,原式1=.20.已知:如图,一次函数y=34x+3的图象分别与x轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D,点D的横坐标为4,直线CD与y轴相交于点E.(1)直线CD的函数表达式为______;(直接写出结果)(2)在x轴上求一点P使△PAD为等腰三角形,直接写出所有满足条件的点P的坐标.(3)若点Q为线段DE上的一个动点,连接BQ.点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的y轴上?若存在,求点Q的坐标;若不存在,请说明理由.【答案】(1)y=3x-6;(2)点P的坐标为(94,0)或(6,0)或(-14,0)或(12,0);(3)存在,点Q的坐标为(187,117)【分析】(1)求出D的坐标,即可求解;(2)分PA=PD、当PA=AD、DP=AD三种情况,分别求解即可;(3)利用BD=BD′,DQ=D′Q,即可求解.【详解】解:(1)将点D的横坐标为4代入一次函数y=34x+3表达式,解得:y=6,即点D的坐标为(4,6),将点C、D的坐标代入一次函数表达式y=kx+b得:64 02,k bk b=+⎧⎨=+⎩解得:36, kb=⎧⎨=-⎩故答案为y=3x-6;(2)①当PA=PD时,点B是AD的中点,故:过点B且垂直于AD的直线方程为:y=-43x+3,令y=0,则x=94,即点P的坐标为(94,0);②当PA=AD时,()22446--+=10,故点P的坐标为(6,0)或(-14,0);③当DP=AD 时,同理可得:点P 的坐标为(12,0);故点P 的坐标为(94,0)或(6,0)或(-14,0)或(12,0); (3)设翻转后点D 落在y 轴上的点为D′,设点Q 的坐标为(x ,3x-6),则:BD=BD′,DQ=D′Q ,BD′=BD=()22436+- =5,故点D′的坐标为(0,-2),DQ 2=D′Q 2,即:x 2+(3x-6+2)2=(x-4)2+(3x-6-6)2,解得:x=187, 故点Q 的坐标为(187,117). 【点睛】本题考查的是一次函数的综合运用,涉及到图象翻折、勾股定理运用等知识点,其中(2)要分类讨论,避免遗漏.21.甲仓库和乙仓库共存粮450吨,现从甲仓库运出存量的60%,从乙仓库运出存粮的40%,结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.求甲、乙仓库原来各存粮多少吨?【答案】甲仓库原来存粮240吨,乙仓库原来存粮210吨.【分析】设甲仓库原来存粮x 吨,乙仓库原来存粮y 吨,根据“甲仓库和乙仓库共存粮450吨,现从甲仓库运出存量的60%,从乙仓库运出存粮的40%,结果乙仓库所余的粮食比甲仓库所余的粮食多30吨”,即可得出关于x ,y 的二元一次方程组,解方程组即可得出结论.【详解】解:设甲仓库原来存粮x 吨,乙仓库原来存粮y 吨,根据题意得:,解得:. 答:甲仓库原来存粮240吨,乙仓库原来存粮210吨.【点睛】本题考查了二元一次方程组的应用,设出未知数,找准等量关系,正确列出二元一次方程组是解题的关键. 22.有一张边长为a 厘米的正方形桌面,因为实际需要,需将正方形边长增加b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a 2+2ab+b 2=(a+b )2,对于方案一,小明是这样验证的:。

宾县中学初二期末试卷数学

宾县中学初二期末试卷数学

一、选择题(每题3分,共30分)1. 已知方程2x - 3 = 5,则x的值为()A. 4B. 3C. 2D. 12. 在直角坐标系中,点A(2,3)关于x轴的对称点为()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)3. 若一个数的平方根是2,则这个数是()A. 4B. -4C. 8D. -84. 在三角形ABC中,∠A=45°,∠B=60°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°5. 若a、b是方程x^2 - 4x + 3 = 0的两个根,则a+b的值为()A. 1B. 3C. 4D. 76. 若一个等差数列的首项是3,公差是2,则第10项的值为()A. 15B. 17C. 19D. 217. 已知一次函数y = kx + b,若图象经过点(1,2),则k和b的关系为()A. k = 2,b = 1B. k = 1,b = 2C. k = 2,b = -1D. k = -1,b = 28. 若一个正方形的边长是2,则它的面积是()A. 2B. 4C. 8D. 169. 在平面直角坐标系中,点P(-3,2)关于原点的对称点为()A.(3,-2)B.(-3,-2)C.(-3,2)D.(3,2)10. 若一个等腰三角形的底边长是6,腰长是8,则这个三角形的面积是()A. 24B. 32C. 36D. 40二、填空题(每题3分,共30分)1. 若a^2 + b^2 = 5,则a^2 - b^2的值为______。

2. 在直角坐标系中,点A(-2,3)关于y轴的对称点为______。

3. 若一个数的平方根是3,则这个数是______。

4. 在三角形ABC中,∠A=30°,∠B=45°,则∠C的度数为______。

5. 若a、b是方程x^2 - 5x + 6 = 0的两个根,则a+b的值为______。

哈尔滨市2019-2020学年八年级上学期期末数学试题(I)卷

哈尔滨市2019-2020学年八年级上学期期末数学试题(I)卷

哈尔滨市2019-2020学年八年级上学期期末数学试题(I)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 已知多边形内角和与外角和的总和为,则这个多边形的对角线共有()A.54条B.65条C.60条D.55条2 . 下列计算中,正确的是()B.x4•x2=x8C.(a2)3•a3=a9D.(a﹣2)0=1 A.(﹣3)﹣2=﹣3 . 如图所示,将纸片△ABC沿着DE折叠压平,则()A.∠A=∠1+∠2B.∠A=(∠1+∠2)C.∠A=(∠1+∠2)D.∠A=(∠1+∠2)4 . 如图,已知AD∥BC,AB=CD,AC,BD 交于点 O,另加一个条件不能使△ABD≌△CDB 的是()A.AO=COB.AD=BCC.AC=BDD.OB=OD5 . 以下图形中,对称轴的数量少于3条的是()A.A B.B C.C D.D6 . 把分式中的a、b、c的值都扩大为原来的3倍,那么这个分式的值()A.不变B.变为原来的3倍C.变为原来的D.变为原来的7 . 分式有意义,则取值为()A.B.C.D.8 . 已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°9 . 在下列长度的各组线段中,能组成三角形的是()A.,,B.,,C.,,D.,,10 . 下列因式分解正确的是()A.x2+2x-1=(x-1)2B.a2-a=a(a+1)C.m2+(-n)2=(m+n)(m-n)D.-9+4y2=(3+2y)(2y-3)二、填空题11 . _____.12 . 如图,已知,点是射线上的一个动点.在点的运动过程中,恰好是直角三角形,则此时所有可能的度数为______.13 . 如图,在△ABC中,AD垂直平分BC,交BC于点E,CD⊥AC,若AB=,CD=1,则BE=____14 . 分解因式:=__________15 . 下图中的四边形均为矩形.根据图形,利用图中的字母,写出一个正确的等式:_____.16 . 如图,,点E在线段BC上,若,,则的度数是______.三、解答题17 . 观察、发现:====﹣1(1)试化简:;(2)直接写出:= ;(3)求值:+++…+.18 . 先化简,再求值:(2a+3)2﹣(2a+1)(2a﹣1),其中a=﹣319 . 某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?20 . 如图,BE平分∠ABC,∠ABC=2∠E,∠ADE+∠BCF=180°.(1)请说明AB∥EF的理由;(2)若AF平分∠BAD,判断AF与BE的位置关系,并说明理由.21 . 计算:(1)(2)(3)(4)22 . 如图,在△ABC中,AB=AC,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F,D是BC边上的中点,连结AD.(1)若∠BAD=55°,求∠C的度数;(2)猜想FB与FE的数量关系,并证明你的猜想.23 . 为了做好抗震抢险后勤保障工作,某工厂接到了4800顶帐篷的加工任务,在加工完1200顶后,采用新技术,使得工作效率比原计划提高了,结果共用了21天完成任务,那么原计划每天加工多少顶帐篷?24 . 如图,在△ABC 中,AD⊥BC 于点 D,点 E 为BD边上一点,过点 E 作EG∥AD,分别交 AB 和 CA 的延长线于点 F,G,∠AFG=∠A.(1)证明:△ABD≌△ACD(2)若∠B=40°,直接写出∠FAG=°25 . 已知:如图,AD 平分∠BAC,DE⊥AB,DF⊥AC,DB=DC,求证:BE=FC.26 . 在中,,,点在直线上(,除外),的垂线与的垂线交于点,研究和的数量关系.(1)在探究,的关系时,运用“从特殊到一般”的数学思想,发现当点是的中点时,只需要取边的中点(如图),通过推理证明就可以得到的数量关系,请你按照这种思路直接写出和的数量关系:_____________________(2)当点是线段上(,除外)任意一点(其它条件不变),上面得到的结论是否仍然成立呢?证明你的结论;(3)点在线段的延长线上,上面得到的结论是否仍然成立呢?在下图中画出图形,并证明你的结论.。

2019-2020学年黑龙江省哈尔滨市八年级(上)期末数学试卷(五四学制)

2019-2020学年黑龙江省哈尔滨市八年级(上)期末数学试卷(五四学制)

2019-2020学年黑龙江省哈尔滨市八年级(上)期末数学试卷(五四学制)第I卷(选择题)一、选择题(本大题共10小题,共30.0分)1.如下字体的四个汉字中,是轴对称图形的是()A. B. C. D.2.下列式子:1x ,x2x,2x−y,a−1a,13,53x中,分式有().A. 6个B. 5个C. 4个D. 3个3.下列计算正确的是()A. m3+m3=m6B. m3⋅m2=m6C. (m3)2=m5D. m3÷m2=m4.若点A(1−a,2−b)与点B(−3,2)关于x轴对称,则a−b的值是()A. −5B. 1C. 0D. −15.计算:√9−|−5|+20190的结果为()A. −1B. −3C. 0D. 96.使式子√3x+2有意义的实数x的取值范围是()A. x≥0B. x>−23C. x≥−32D. x≥−237.下列从左到右的变形是因式分解的是()A. (x+1)(x−1)=x2−1B. (a−b)(m−n)=(b−a)(n−m)C. ax−ay=a(x−y)D. m2−2m−3=m(m−2−3m)8.计算(8a2b3−2a3b2+ab)÷ab的结果是()A. 8ab2−2a2b+1B. 8ab2−2a2bC. 8a2b2−2a2b+1D. 8ab−2a2b+19.关于分式方程x−22x−1= 1.51−2x−1的解,关于下列说法正确的是()A. 无解B. 解是x=−52C. 解是x=32D. 解是x=1210.已知正整数x,y,m,n满足10x=m,10y=n,则102x+3y=()第II卷(非选择题)二、填空题(本大题共10小题,共30.0分)11.人体红细胞的直径约为0.0000077m,用科学记数法表示为______.12.若分式a−2a+3值为0,则a的值为______.13.计算(√7+1)(√7−1)的结果等于______.14.若分式2a+1有意义,则a的取值范围是______.15.把多项式m2n+6mn+9n分解因式的结果是______.16.化简:2aa2−4−1a−2=________.17.如图,∠1=75°,AB=BC=CD=DE=EF,则∠A=_____度.18.计算:|√3−2|+(−12)−1=______ .19.16.若m+n=3,mn=54,则m−n=______.20.如图,在△ABC中,AB=CB,∠ABC=90°,AD⊥BD于点D,CE⊥BD于点E,若CE=5,AD=3,则DE的长是______.三、解答题(本大题共7小题,共60.0分)21.化简求值:[(x+2y)2−(x+y)(3x−y)−5y2]÷2x,其中x=−2,y=1.22.计算:(2)(√48+14√6)÷√2723. 先化简,再求值:(1−x x+1)÷x 2−2x+1x 2−1,其中x =3.24. 设2+√6的整数部分和小数部分分别是x ,y ,试求x ,y 的值与x −1的算术平方根.25. 某地发生了地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产26.如图1,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,∠ACE=45°.(1)求证:BE=EF;(2)如图2,G在BC的延长线上,连接GA,若GA=GB,求证:AC平分∠DAG;(3)如图3,在(2)的条件下,H为AG的中点,连接DH交AC于M,连接EM、ED,若S△EMC=4,∠BAD=15°,求AM的长.27.如图:在△ABC中,∠BAC=110°,AC=AB,射线AD、AE的夹角为55°,过点B作BF⊥AD于点F,直线BF交AE于点G,连结CG.(1)如图1,若射线AD、AE都在∠BAC的内部,且点B与点B′关于AD对称,求证:CG=B′G;(2)如图2,若射线AD在∠BAC的内部,射线AE在∠BAC的外部,其他条件不变,求证:CG=BG−2GF;答案和解析1.【答案】D【解析】【分析】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确.故选D.2.【答案】B【解析】【分析】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在1x ,x2x,2x−y,a−1a,13,53x中,1 x ,x2x,2x−y,a−1a,53x分母中含有字母,因此是分式.总共有5个.故选B.3.【答案】D【解析】解:A、m3+m3=2m3≠m6,故本选项错误;B、m3⋅m2=m5≠m6,故本选项错误;D、m3÷m2=m,故本选项正确.故选:D.分别根据同底数幂的乘法与除法法则、幂的乘方与积的乘方及合并同类项的法则对各选项进行逐一判断即可.本题考查的是同底数幂的乘法与除法、幂的乘方与积的乘方及合并同类项,熟知这些法则是解答此题的关键.4.【答案】C【解析】【分析】直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.此题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.【解答】解:∵点A(1−a,2−b)与点B(−3,2)关于x轴对称,∴1−a=−3,2−b=−2,解得:a=4,b=4,故a−b=0.故选:C.5.【答案】A【解析】解:原式=3−5+1=−1.故选:A.直接利用零指数幂的性质以及绝对值的性质和算术平方根的定义分别分析得出答案.此题主要考查了实数运算,正确化简各数是解题关键.6.【答案】D【解析】【分析】根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式有意义的条件,二次根式的被开方数是非负数.解:由题可得,3x+2≥0,x≥−23,故选D7.【答案】C【解析】【分析】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【解答】解:A.是整式的乘法,故A错误;B.原式是几个整式乘积的形式,不是多项式;故B错误;C.是因式分解,故C正确;D.没把一个多项式转化成几个整式乘积的形式,故D错误;故选C..8.【答案】A【解析】【分析】本题主要考查的是整式的混合运算,熟练掌握运算法则是解题的关键.原式先将除法转化为乘法,再依据乘法分配率进行求解即可.【解答】解:原式=(8a2b3−2a3b2+ab)×1ab=8a2b3×1ab−2a3b2×1ab+ab×1ab=8ab2−2a2b+1.9.【答案】A【解析】【分析】此题考查了分式方程的解,始终注意分母不为0这个条件.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x−2=−1.5−2x+1,解得:x=1,2是增根,分式方程无解.经检验x=12故选A.10.【答案】B【解析】【分析】本题考查幂的乘方和积的乘方以及同底数幂的乘法,先计算出102x和103y,在根据同底数幂的乘法来求解即可.【解答】解:因为10x=m,10y=n,所以102x+3y=(10x)2×(10y)3=m2n3.故选B.11.【答案】7.7×10−6m【解析】解:0.0000077=7.7×10−6.故答案为:7.7×10−6m.较小的数的科学记数法的一般形式为:a×10−n,在本题中a应为7.7,10的指数为−6.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数.12.【答案】2【解析】解:由题意得:a−2=0,且a+3≠0,解得:a=2,故答案为:2.根据分式值为零的条件可得a−2=0,且a+3≠0,再解可得答案.此题主要考查了分式值为零的条件,分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.13.【答案】6【解析】解:原式=(√7)2−12=7−1=6.故答案是:6.利用平方差公式解答.本题主要考查了二次根式的混合运算,平方差公式,应用平方差公式计算时,应注意:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.14.【答案】a≠−1【解析】【分析】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.先根据分式有意义的条件列出关于a的不等式,求出a的取值范围即可.【解答】解:∵分式2有意义,a+1∴a+1≠0,解得a≠−1.故答案为:a≠−1.15.【答案】n(m+3)2【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.直接提取公因式n,再利用完全平方公式分解因式得出答案.【解答】=n(m+3)2.故答案为:n(m+3)2.16.【答案】1a+2【解析】【分析】本题考查分式的加减运算.先通分,再按同分母分式减法法则计算即可.注意:结果一定要化成最简分式.【解答】解:2aa2−4−1a−2=2a(a+2)(a−2)−a+2(a+2)(a−2)=2a−a−2(a+2)(a−2)=a−2(a+2)(a−2)=1a+2.故答案为1a+2.17.【答案】15【解析】【分析】本题主要考查等腰三角形的性质,以及三角形外角性质的应用.已知AB=BC=CD=DE=EF,从而可推出∠EFD与∠A之间的关系,再根据三角形外角的性质即可求得∠A的度数.【解答】解:∵AB=BC=CD=DE=EF,∴∠A=∠ACB,∠CBD=∠CDB,∠DCE=∠DEC,∠EDF=∠EFD,∴∠EFD=4∠A,∵∠1=∠EFD+∠A=5∠A=75°,∴∠A=15°.故答案是:15.18.【答案】−√3【解析】解:原式=2−√3+1−1 2=2−√3−2=−√3.故答案为:−√3.直接利用绝对值的性质以及负整数指数幂的性质分别化简求出答案.此题主要考查了绝对值的性质以及负整数指数幂的性质等知识,正确化简各数是解题关键.19.【答案】±2【解析】【分析】本题考查了完全平方公式的应用,熟知完全平方和与完全平方差的关系是解决此题的关键.根据完全平方公式可得(m−n)2=(m+n)2−4mn,代入数值求得(m−n)2的值,然后再开平方即可得出答案.【解答】解:(m−n)2=(m+n)2−4mn=32−4×5 4=4,∴m−n=±2.故答案为:±2.20.【答案】2【解析】解:∵∠ABC=90°,AD⊥BD于点D,CE⊥BD于点E,∴∠D=∠CEB=∠ABC=90°,∴∠ABD+∠CBE=90°,∠ABD+∠BAD=90°,∴∠CBE=∠BAD,∵AB=BC,∴△ABD≌△BCE(AAS),∴BD=CE=5,AD=BE=3,∴DE=BD−BE=5−3=2,故答案为2先判断出证明△ABD≌△BCE(AAS),可得BD=CE=5,AD=BE=3解决问题;本题考查全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.21.【答案】解:原式=(x2+4xy+4y2−3x2−2xy+y2−5y2)÷2x=(−2x2+2xy)÷2x=−x+y,当x=−2,y=1时,原式=2+1=3.【解析】原式中括号中利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)原式=3−1+√2×8=2+4=6;(2)原式=(4√3+√64)÷3√3=43+√212.【解析】(1)根据平方差公式和二次根式的乘法法则运算;(2)先把二次根式化为最简二次根式,然后根据二次根式的除法法则运算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.【答案】解:原式=(x+1x+1−xx+1)×(x+1)(x−1)(x−1)2=1×x+1=1x−1.把x=3代入,得原式=1x−1=13−1=12.【解析】本题考查了分式的化简求值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.先计算括号内的分式减法,然后把除法转化为乘法进行化简,最后代入求值.24.【答案】解:因为4<6<9,所以2<√6<3,即√6的整数部分是2,所以2+√6的整数部分是4,小数部分是2+√6−4=√6−2,即x=4,y=√6−2,所以√x−1=√4−1=√3.【解析】此题主要考查了无理数的估算能力,解题关键是估算出整数部分后,然后即可得到小数部分.先找到√6介于哪两个整数之间,从而找到整数部分,小数部分让原数减去整数部分,然后代入求值即可.25.【答案】解:①设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据题意得:240 x −2401.5x=4,解得:x=20,经检验x=20是原方程的解,则甲工厂每天可加工生产1.5×20=30(顶),答:甲、乙两个工厂每天分别可加工生产30顶和20顶帐篷;②设甲工厂加工生产y天,根据题意得3y+2.4×550−30y20≤60解得:y≥10,则至少应安排甲工厂加工生产10天.答:至少应安排甲工厂加工生产10天.【解析】本题考查了分式方程的应用和一元一次不等式的应用有关知识.①先设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据加工生产240顶帐篷甲工厂比乙工厂少用4天列出方程,求出x的值,再进行检验即可求出答案;②设甲工厂加工生产y天,根据加工生产总成本不高于60万元,列出不等式,求出不等式的解集即可.26.【答案】解:(1)∵CE⊥AB,∴∠AEC=∠BEC=90°,∵∠ACE=45°,∴∠CAE=45°=∠ACE,∴AE=CE,∵AD⊥BC,∴∠ADC=90°,∴∠ECB+∠CFD=90°,∵∠CFD=∠AFE,∴∠ECB+∠AFE=90°,∵∠EAF+∠AFE=90°,∴∠EAF=∠ECB,∵∠AEF=∠CEB=90°,∴△AEF≌△CEB(ASA),∴BE=EF;(2)∵△AEF≌△CEB,∴∠AFE=∠B,∵∠AFE=∠ACE+∠CAD=45°+∠CAD,∴∠B=45°+∠CAD,∵AG=BG,∴∠B=∠BAG,∴∠BAG=45°+∠CAD,∵∠BAG=∠CAE+∠CAG=45°+∠CAG,∴∠CAD=∠CAG,∴AC平分∠DAG;(3)∵∠BAD=15°,∠CAE=45°,∴∠CAD=∠CAE−∠BAD=30°,∵∠CAD=∠CAG,∴∠DAG=2∠CAD=60°,在Rt△ADG中,点H是AG的中点,∴DH=AH,∴△ADH是等边三角形,∴∠ADH=60°,AD=AH,∵∠CAD=∠CAG,∴AC⊥DH,即:∠AMD=∠DMC=90°∵∠ADC=90°,∴∠CDM=30°,在Rt△DMC中,DM=√3CM,在Rt△AMD中,AM=√3DM=√3×√3CM=3CM,∴S△AEM=3S△CEM=3×4=12,∴S△ACE=S△CEM+S△AEM=16,∵∠AEC=90°,AE=CE,AE2=16,∴S△ACE=12∴AE=4√2,∴AC=√2AE=8,∴AM+CM=8,∵AM=3CM,∴3CM+CM=8,∴CM=2,∴AM=3CM=6.【解析】此题是三角形综合题,主要考查了全等三角形的判定和性质,等角的余角相等,等边三角形的判定和性质,三角形外角的性质,含30度角的直角三角形的性质,求出AE是解本题的关键.(1)先判断出AE=CE,再利用等角的余角相等判断出∠EAF=∠ECB,进而判断出△AEF≌△CEB,即可得出结论;(2)先利用三角形外角的性质得出∠AEF=45°+∠CAD,进而得出∠B=45°+∠CAD,而∠B=∠BAG,得出∠BAG=45°+∠CAD,而∠BAG=45°+∠CAG,即可得出结论;(3)先判断出△ADH是等边三角形,进而利用含30度角的直角三角形的性质判断出AM= 3CM,进而求出△ACM的面积,即可求出AE,进而求出AC,即可得出结论.27.【答案】(1)证明:如图1,连接AB′,∵B,B′关于AD对称,∴BB′被AD垂直平分,∴AB′=AB,∵AC=AB,∴AC=AB′,∵AF⊥BG,∴∠BAF=∠B′AF,∵∠GAF=55°,∴∠B′AF+GAB′=55°,∵∠CAB=110°,∴∠CAG+∠FAB=55°,∴∠B′AF+∠GAB′=∠CAG+∠FAB,∵∠BAF=∠B′AF,∴∠GAB′=∠CAG,∵AG=AG,∴△CGA≌△B′GA,∴CG=B′G,(2)证明:如图2,在FB上截取FG′=GF,连接AG′,∵BF⊥AD,∴AG=AG′,∴∠GAF=∠G′AF,∴∠GAG′=2∠GAF=110°,∵∠CAB=110°,∴∠GAG′=∠CAB,∴∠GAG′−∠CAG′=∠CAB−∠CAG′,∴∠GAC=∠G′AB,∵AC=AB,∴△GAC≌△G′AB,∴CG=G′B,∵FG′=GF,∴CG′=2GF,∵GB=GG′+G′B,∴GB=2GF+CG,∴CG=GB−2GF.【解析】此题是几何变换综合题,主要考查了全等三角形的判定和性质,对称的性质,垂直平分线的性质,判断出CG=GB′是解本题的关键.(1)先判断出AC=AB′,再用等式的性质判断出∠BAF=∠B′AF,进而判断出△CGA≌△B′GA,即可得出结论;(2)先判断出∠GAF=∠G′AF,再判断出∠GAC=∠G′AB,进而得出△GAC≌△G′AB,即CG=G′B,即可得出结论.。

哈尔滨市2019-2020学年八年级上学期期末数学试题(II)卷

哈尔滨市2019-2020学年八年级上学期期末数学试题(II)卷

哈尔滨市2019-2020学年八年级上学期期末数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列运算正确的是()A.B.C.D.2 . 在实数: 0,,,中,最小的数是()A.0B.D.C.3 . 若,则m+n的值为()A.-1B.1C.4D.74 . 如图所示,“数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是”,这种说明问题的方式体现的数学思想方法叫做()A.代入法B.换元法C.数形结合D.分类讨论5 . 下列三角形:①三个角都等于60°;②有一个外角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形,其中是等边三角形的是()A.①②③B.①②④C.①③④D.①②③④6 . 如图,AB=AC,AE=AD,要使△ACD≌△ABE,需要补充的一个条件是()A.∠B=∠C B.∠D=∠E C.∠BAC=∠EAD D.∠B=∠E7 . 若代数式4y2+6y+5的值是7,则代数式2y2+3y+7的值是()A.9B.13C.6D.88 . 的平方根是()A.2B.±2C.D.±9 . 做抛掷两枚硬币的实验,事件“一正一反”的“频率”的值正确的是()A.0D.约为1B.约为C.约为二、填空题10 . 如图,在Rt△ABC中,∠C=90°,斜边AB=8cm,AC=4cm.以点C为圆心作圆,半径为______cm时,AB与⊙C相切.11 . (16m3﹣24m2)÷(﹣8m2)=______.12 . 已知等腰三角形的一个内角等于80°,则它的另外两个角是____________.13 . 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:_____________▲ ________________14 . 分解因式:.15 . 用反证法证明“三角形中必有一个内角不小于60°”,应当先假设这个三角形中_________.三、解答题16 . 如图,在中,,为上一点,,于点,于点,相交于点.(1)求证:;(2)若,求的长.17 . 如图,AB=4,动点P从A出发,在直线AB上以每秒3个单位的速度向右运动,到达B后立即返回,回到A后停止运动,动点Q与P同时从A出发,在直线AB上以每秒1个单位的速度向左运动,当P停止运动时,点Q 也停止运动,设点P的运动时间为t秒.(1)若t=1,则BP的长是PQ的长是.(2)当点P回到点A时,求BQ的长.(3)在直线AB上取点C,使B是线段PC的中点,在点P的整个运动过程中,是否存在AC=AQ+3,若存在,求出此时t的值;若不存在,请说明理由.18 . 因式分解:(1);(2).19 . 如图已知直线与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c 交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.20 . 已知:如图,点C、D、B、F在一条直线上,且AB⊥BD,DE⊥BD,AB=CD,CE=AF.求证:(1)△ABF≌△CDE;(2)CE⊥AF.21 . 化简并求值:﹣6(a2﹣2ab+b2)+2(2a2﹣3ab+3b2),其中a=1,b=.22 . “校园安全”受到全社会的广泛关注,某中学对部分学生就安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________人,扇形统计图中“基本了解”部分所对应扇形的圆心角为_________.(2)请补全条形统计图;(3)若该中学共有学生1200人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.23 . 如图,在等边中,是边上的中线,点在线段上,连结,在的下方作等边,连结.(1)请写出与的数量关系,并证明你的结论;(2)求的度数.24 . 计算:.25 . 如图,已知∠MON及线段a,点G是射线ON上的点,求作:点P,使点P到OM、ON的距离相等,且PG=a。

(汇总3份试卷)2020年哈尔滨市八年级上学期期末教学质量检测数学试题

(汇总3份试卷)2020年哈尔滨市八年级上学期期末教学质量检测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图所示,线段AC 的垂直平分线交线段AB 于点D ,∠A =50°,则∠BDC =( )A .50°B .100°C .120°D .130°【答案】B 【分析】根据线段垂直平分线的性质得到DA =DC ,根据等腰三角形的性质得到∠DCA =∠A ,根据三角形的外角的性质计算即可.【详解】解:∵DE 是线段AC 的垂直平分线,∴DA =DC ,∴∠DCA =∠A =50°,∴∠BDC =∠DCA+∠A =100°,故选:B .【点睛】本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5B .﹣8C .﹣2D .5 【答案】A【解析】解:去分母得:3x ﹣2=2x+2+m①.由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程①得:﹣1=﹣2+2+m ,解得:m=﹣1.故选A .3.若22123a a +=,则12a a +-的值为( ) A .5B .0C .3或-7D .4【答案】C【分析】根据完全平方公式的变形即可求解. 【详解】∵22211225a a a a ⎛⎫+=++= ⎪⎝⎭ ∴1a a+=±5, ∴12a a +-的值为3或-7故选C.【点睛】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的变形应用.4.已知关于x 、y 的方程组03mx y x ny +=⎧⎨+=⎩,解是12x y =-⎧⎨=-⎩,则2m+n 的值为( ) A .﹣6B .2C .1D .0【答案】A 【解析】把12x y =-⎧⎨=-⎩代入方程组得到关于m ,n 的方程组求得m ,n 的值,代入代数式即可得到结论. 【详解】把12x y =-⎧⎨=-⎩代入方程03mx y x ny +=⎧⎨+=⎩得:20123m n --=⎧⎨--=⎩ 解得:22m n =-⎧⎨=-⎩,则2m+n =2×(﹣2)+(﹣2)=﹣1. 故选A .【点睛】本题考查了解二元一次方程组,二元一次方程组的解,代数式的求值,正确的解方程组是解题的关键. 5.下列各数:3.141,,,,,0.1010010001……,其中无理数有( ) A .1个B .2C .3个D .4个【答案】C【解析】无理数就是无限不循环小数,依据定义即可判断. 【详解】=,根据无理数的定义可知无理数有:,,0.1010010001……,故答案为C. 【点睛】本题考查无理数的定义,解题的关键是掌握无理数的定义.6.如图,在锐角三角形ABC 中2AB =,45BAC ∠=︒,BAC ∠的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .1B 2C .2D 6【答案】B 【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC 上截取AE=AN ,连接BE ,∵∠BAC 的平分线交BC 于点D ,∴∠EAM=∠NAM ,在△AME 与△AMN 中,===AE ANEAM NAM AM AM∴△AME ≌△AMN (SAS ),∴ME=MN .∴BM+MN=BM+ME≥BE ,当BE 是点B 到直线AC 的距离时,BE ⊥AC ,此时BM+MN 有最小值,∵2AB ,∠BAC=45°,此时△ABE 为等腰直角三角形,∴2,即BE 2,∴BM+MN 2.故选:B .【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN 进行转化,是解题的关键.7.对于命题“若a 2>b 2,则a >b”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( ) A .a =3,b =2B .a =3,b =﹣2C .a =﹣3,b =﹣2D .a =﹣2,b =﹣3【答案】C【分析】说明命题为假命题,即a 、b 的值满足a 2>b 2,但a >b 不成立,把四个选项中的a 、b 的值分别代入验证即可.【详解】解:当a =3,b =2时,a 2>b 2,而a >b 成立,故A 选项不符合题意;当a =3,b =﹣2时,a 2>b 2,而a >b 成立,故B 选项不符合题意;当a =﹣3,b =﹣2时,a 2>b 2,但a >b 不成立,故C 选项符合题意;当a =﹣2,b =﹣3时,a 2>b 2不成立,故D 选项不符合题意;故选:C .【点睛】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.8.已知2,3b a =则a b a +的值为: A .1.5 B .53 C .23 D .35 【答案】B【解析】试题解析:∵23b a =, ∴a=32b , ∴352=332b b a b a b ++=. 故选B .考点:比例的性质.9.下列哪个点在函数112y x =+的图象上( ) A .(2,1)B .(2,1)-C .(2,0)-D .(2,0) 【答案】C【分析】分别把x =2和x =−2代入解析式求出对应的y 值来判断点是否在函数图象上.【详解】解:(1)当x =2时,y =2,所以(2,1)不在函数112y x =+的图象上,(2,0)也不在函数112y x =+的图象上;(2)当x =−2时,y =0,所以(−2,1)不在函数112y x =+的图象上,(−2,0)在函数112y x =+的图象上.故选C .【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式. 10.如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 5B 5A 6的边长为( )A .6B .16C .32D .64【答案】B 【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=1B1A2…依次类推可得出答案.【详解】如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=1B1A2=1,…∴△A n B n A n+1的边长为2n-1,∴△A5B5A6的边长为25-1=24=1.故选B.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=1B1A2进而发现规律是解题关键.二、填空题11.如图,任意画一个∠BAC=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AD=AE;④PD=PE;⑤BD+CE=BC;其中正确的结论为_____.(填写序号)【答案】①②④⑤.【分析】由三角形内角和定理和角平分线得出∠PBC+∠PCB的度数,再由三角形内角和定理可求出∠BPC 的度数,①正确;由∠BPC=120°可知∠DPE=120°,过点P作PF⊥AB,PG⊥AC,PH⊥BC,由角平分线的性质可知AP是∠BAC的平分线,②正确;PF=PG=PH,故∠AFP=∠AGP=90°,由四边形内角和定理可得出∠FPG=120°,故∠DPF=∠EPG,由全等三角形的判定定理可得出△PFD≌△PGE,故可得出PD=PE,④正确;由三角形全等的判定定理可得出△BHP≌△BFP,△CHP≌△CGP,故可得出BH=BD+DF,CH=CE ﹣GE,再由DF=EG可得出BC=BD+CE,⑤正确;即可得出结论.【详解】解:∵BE、CD分别是∠ABC与∠ACB的角平分线,∠BAC=60°,∴∠PBC+∠PCB=12(180°﹣∠BAC)=12(180°﹣60°)=60°,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣60°=120°,①正确;∵∠BPC=120°,∴∠DPE=120°,过点P作PF⊥AB,PG⊥AC,PH⊥BC,∵BE、CD分别是∠ABC与∠ACB的角平分线,∴AP是∠BAC的平分线,②正确;∴PF=PG=PH,∵∠BAC=60°∠AFP=∠AGP=90°,∴∠FPG=120°,∴∠DPF=∠EPG,在△PFD与△PGE中,DFP EGP PF PGDPF EPG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△PFD≌△PGE(ASA),∴PD=PE,④正确;在Rt△BHP与Rt△BFP中,BP BP PF PH=⎧⎨=⎩,∴Rt△BHP≌Rt△BFP(HL),同理,Rt△CHP≌Rt△CGP,∴BH=BD+DF,CH=CE﹣GE,两式相加得,BH+CH=BD+DF+CE﹣GE,∵DF=EG,∴BC=BD+CE,⑤正确;没有条件得出AD=AE,③不正确;故答案为:①②④⑤.【点睛】本题考查的是角平分线的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.12.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,3),点C的坐标为(1,0),且∠AOB=30°点P为斜边OB上的一个动点,则PA+PC的最小值为_________.7【详解】解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC 的值最小.∵DP=PA,∴PA+PC=PD+PC=CD.∵B(13,∴3OA=1,∠B=60°.由勾股定理得:3由三角形面积公式得:12×OA×AB=12×OB×AM,∴AM=32.∴AD=2×32=1.∵∠AMB=90°,∠B=60°,∴∠BAM=10°.∵∠BAO=90°,∴∠OAM=60°.∵DN⊥OA,∴∠NDA=10°.∴AN=12AD=32.由勾股定理得:33∵C (1,0),∴CN=1-1-3122=.在Rt △DNC 中,由勾股定理得:DC=22133722⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭.∴PA+PC 的最小值是7.13.计算:()()x y x y -+--=__________________.【答案】x 1-y 1【分析】根据平方差公式(a+b)(a-b)=a 1-b 1计算,其特点是:一项的符号相同,另一项项的符号相反,可得到答案.【详解】()()x y x y -+--=x 1-y 1.故答案为:x 1-y 1.【点睛】此题主要考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.14.在平面直角坐标系中,已知一次函数21y x =+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y 2y .(填”>”,”<”或”=”)【答案】<.【解析】试题分析:一次函数y kx+b =的增减性有两种情况:①当k 0>时,函数y kx+b =的值随x 的值增大而增大;②当k 0<时,函数y kx+b = y 的值随x 的值增大而减小.由题意得,函数21y x =+的k 0>,故y 的值随x 的值增大而增大.∵12x x <,∴12y y <.考点:一次函数图象与系数的关系.15.如图,已知直线AB∥CD,FH 平分∠EFD,FG⊥FH,∠AEF=62°,则∠GFC=_____度.【答案】1.【解析】先根据平行线的性质得出∠EFC 与∠EFD 的度数,再根据FH 平分∠EFD 得出∠EFH 的度数,再根据FG ⊥FH 可得出∠GFE 的度数,根据∠GFC =∠CFE ﹣∠GFE 即可得出结论.【详解】∵AB ∥CD ,∠AEF =62°,∴∠EFD =∠AEF =62°,∠CFE =180°﹣∠AEF =180°﹣62°=118°;∵FH 平分∠EFD ,∴∠EFH =12∠EFD =12×62°=31°, 又∵FG ⊥FH ,∴∠GFE =90°﹣∠EFH =90°﹣31°=1°,∴∠GFC =∠CFE ﹣∠GFE =118°﹣1°=1°.故答案为1.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行内错角相等,同旁内角互补.16.已知点M(a ,1)与点N(﹣2,b)关于y 轴对称,则a ﹣b=____.【答案】1.【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”求出a 、b 的值,然后计算即可得解.【详解】∵点M (a ,1)与点N (-2,b )关于y 轴对称,∴a=2,b=1,∴a-b=2-1=1.故答案为:1.【点睛】此题考查关于x 轴、y 轴对称的点的坐标,解题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数. 17.如果249x ax -+是一个完全平方式,则a 的值是_________.【答案】1或-1【分析】首末两项是2x 和3这两个数的平方,那么中间一项为加上或减去2x 和3积的2倍.【详解】解:∵249x ax -+是一个完全平方式,∴此式是2x与3和的平方,即可得出-a的值,∴(2x±3)2=4x2±1x+9,∴-a =±1,∴a=±1.故答案为:1或-1.【点睛】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.三、解答题18.某学校开展美丽校园建设,计划购进A,B两种树苗共21棵,已知A种树苗每棵80元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【答案】(1)y=10x+1470(0≤x≤21);(2)当购买A种树11棵,B种树10棵时,费用最省,所需费用1580元.【分析】(1)由等量关系:购买A种树的费用+购买B种树的费用=购买两种树的总费用,列出表达式即可;(2)由题意列出关于x的不等式,解得x的取值范围,再根据一次函数的增减性求得最小值时的x值即可解答.【详解】(1)由题意可知:购买B种树(21-x)棵,则有:y=80x+70(21-x)=10x+1470 (0≤x≤21);(2)∵购买B种树苗的数量少于A种树苗的数量,∴x >21-x ,∴ x >212,∵ k=10>0 ,∴ y随着x的增大而增大,又∵ x为整数∴当x=11时,y最小,最小值为1580元,答:当购买A种树11棵,B种树10棵时,费用最省,所需费用1580元.【点睛】本题考查了一次函数的应用、一元一次不等式的应用,解答的关键是熟练掌握一次函数的增减性,注意x 取整数的隐含条件.19.求下列各式中的x:(1)2x2=8(2)(x﹣1)3﹣27=0【答案】(1)x=±2;(2)x=1【分析】(1)先将方程化系数为1,然后两边同时开平方即可求解;(2)先移项,再两边同时开立方即可求解.【详解】解:(1)∵2x2=8,∴x2=1,∴x=±2;(2)∵(x﹣1)3﹣27=0∴(x﹣1)3=27,∴x﹣1=3,∴x=1.【点睛】本题考查的知识点是平方根与立方根,熟记平方根与立方根的定义是解此题的关键.20.如图,在平面直角坐标系内,点O为坐标原点,经过A(-2,6)的直线交x轴正半轴于点B,交y轴于点C,OB=OC,直线AD交x轴负半轴于点D,若△ABD的面积为1.(1)求直线AD的解析式;(2)横坐标为m的点P在AB上(不与点A,B重合),过点P作x轴的平行线交AD于点E,设PE的长为y(y≠0),求y与m之间的函数关系式并直接写出相应的m的取值范围;(3)在(2)的条件下,在x轴上是否存在点F,使△PEF为等腰直角三角形?若存在求出点F的坐标,若不存在,请说明理由.【答案】(1)y=2x+10;(2)y=32m+3(-2<m<4);(3)存在,点F的坐标为(25,0)或(-165,0)或(-87,0)【分析】(1)根据直线AB交x轴正半轴于点B,交y轴于点C,OB=OC,设出解析式为y=-x+n,把A的坐标代入求得n的值,从而求得B的坐标,再根据三角形的面积建立方程求出BD的值,求出OD的值,从而求出D点的坐标,直接根据待定系数法求出AD的解析式;(2)先根据B、A的坐标求出直线AB的解析式,将P点的横坐标代入直线AB的解析式,求出P的总坐标,将P点的总坐标代入直线AD的解析式就可以求出E的横坐标,根据线段的和差关系就可以求出结论;(3)要使△PEF为等腰直角三角形,分三种情况分别以点P、E、F为直角顶点,根据等腰直角三角形的性质求出(2)中m的值,就可以求出F点的坐标.【详解】(1)∵OB=OC,∴设直线AB的解析式为y=-x+n,∵直线AB经过A(-2,6),∴2+n=6,∴n=4,∴直线AB的解析式为y=-x+4,∴B(4,0),∴OB=4,∵△ABD的面积为1,A(-2,6),∴S△ABD=12×BD×6=1,∴BD=9,∴OD=5,∴D(-5,0),设直线AD的解析式为y=ax+b,∴26 50a ba b-+=⎧⎨-+=⎩,解得210 ab=⎧⎨=⎩.∴直线AD的解析式为y=2x+10;(2)∵点P在AB上,且横坐标为m,∴P(m,-m+4),∵PE∥x轴,∴E的纵坐标为-m+4,代入y=2x+10得,-m+4=2x+10,解得x=m62--,∴E(m62--,-m+4),∴PE的长y=m-m62--=32m+3;即y=32m+3,(-2<m<4),(3)在x轴上存在点F,使△PEF为等腰直角三角形,①当∠FPE=90°时,如图①,有PF=PE,PF=-m+4PE=32m+3,∴-m+4=32m+3,解得m=25,此时F(25,0);②当∠PEF=90°时,如图②,有EP=EF,EF的长等于点E的纵坐标,∴EF=-m+4,∴∴-m+4=32m+3,解得:m=25.∴点E的横坐标为x=m62--=-165,∴F(-165,0);③当∠PFE=90°时,如图③,有FP=FE,∴∠FPE=∠FEP.∵∠FPE+∠EFP+∠FEP=180°,∴∠FPE=∠FEP=45°.作FR⊥PE,点R为垂足,∴∠PFR=180°-∠FPE-∠PRF=45°,∴∠PFR=∠RPF ,∴FR=PR .同理FR=ER ,∴FR=12PE . ∵点R 与点E 的纵坐标相同,∴FR=-m+4,∴-m+4=12(32m+3), 解得:m=107, ∴PR=FR=-m+4=-107+4=187, ∴点F 的横坐标为107-187=-87, ∴F (-87,0). 综上,在x 轴上存在点F 使△PEF 为等腰直角三角形,点F 的坐标为(25,0)或(-165,0)或(-87,0). 【点睛】本题考查了等腰直角三角形的性质,三角形的面积公式的运用,待定系数法求一次函数的解析式的运用,解答本题时求出函数的解析式是关键.21.因式分解:(1)4416x y -;(2)3296x x x +-【答案】(1)22(4)(2)(2)x y x y x y ++-;(2)()23x x -. 【分析】(1)两次利用平方差公式分解因式即可;(2)先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:(1)4416x y -=2222(4)(4)x y x y +-=22(4)(2)(2)x y x y x y ++-;(2)3296x x x +-=2(69)x x x -+=()23x x -. 【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.22.在△ABC 中,∠BAC =120°,AD 平分∠BAC ,且AD =AB ,若∠EDF =60°,其两边分别交边AB ,AC 于点E ,F .(1)求证:△ABD 是等边三角形;(2)求证:BE =AF .【答案】(1)证明见解析;(2)证明见解析.【解析】(1)连接BD ,根据角平分线的性质可得∠BAD =60°,又因为AD =AB ,即可证△ABD 是等边三角形;(2)由△ABD 是等边三角形,得出BD =AD ,∠ABD =∠ADB =60°,证出∠BDE =∠ADF ,由ASA 证明△BDE ≌△ADF ,得出BE =AF.【详解】(1)证明:连接BD ,∵∠BAC =120°,AD 平分∠BAC∴∠BAD =∠DAC =12×120°=60°, ∵AD =AB ,∴△ABD 是等边三角形;(2)证明:∵△ABD 是等边三角形,∴∠ABD =∠ADB =60°,BD =AD ,∵∠DAC =12∠BAC =60°, ∴∠DBE =∠DAF ,∵∠EDF =60°,∴∠BDE =∠ADF ,在△BDE 与△ADF 中,DBE DAF BD ADBDE ADF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△BDE ≌△ADF (ASA ),∴BE =AF .【点睛】本题主要考查等边三角形的判定和性质、全等三角形的判定和性质,熟练掌握相关知识点,掌握数形结合的思想是解题的关键.23.(1)如图(1)在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD+CE ;(2)如图(2)将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD+CE 是否成立?如成立,请给出证明;若不成立,请说明理由.【答案】(1)见解析;(2)成立,理由见解析【分析】(1)根据AAS 证明△ADB ≌△CEA ,得到AE =BD ,AD =CE ,即可证明;(2)同理证明△ADB ≌△CEA ,得到AE =BD ,AD =CE ,即可证明;【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD+∠CAE =90°,∵∠BAD+∠ABD =90°,∴∠CAE =∠ABD ,∵在△ADB 和△CEA 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE+AD =BD+CE ;(2)∵∠BDA =∠BAC =α,∴∠DBA+∠BAD =∠BAD+∠CAE =180°﹣α,∴∠CAE =∠ABD ,∵在△ADB 和△CEA 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE+AD =BD+CE .【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.24.如图y 2x 3=+与x 轴相交于点A ,与y 轴交于点B ,()1求A 、B 两点的坐标;()2点()C a,0为x 轴上一个动点,过点C 作x 轴的垂线,交直线y 2x 3=+于点D ,若线段CD 5=,求a 的值.【答案】 (1)A 302,⎛⎫- ⎪⎝⎭,B ()03,;(2)1或4-. 【分析】(1)由函数解析式y=2x+3,令y=0求得A 点坐标,x=0求得B 点坐标;(2)可知D 的横坐标为a ,则纵坐标为2a+3,由CD=5得出|2a+3|=5,从而求出a.【详解】解:()1由题得:当0y =时,32x =-, A ∴点的坐标为302,⎛⎫- ⎪⎝⎭, 当0x =时,3y =,B ∴点的坐标为()03,; ()2由题得,点D 的横坐标为:a ,则纵坐标为23a +,235CD a ∴=+=解得:1a =,4-,a ∴的值为1,或4-.故答案为(1)A 302,⎛⎫- ⎪⎝⎭,B ()03,;(2)1或4-. 【点睛】本题主要考查了函数图象中坐标的求法以及线段长度的表示法.25.探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX等于多少度;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.【答案】(1)详见解析;(2)①50°;②85°;③63°.【分析】(1)连接AD并延长至点F,根据外角的性质即可得到∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,即可得出∠BDC=∠A+∠B+∠C;(2)①根据(1)得出∠ABX+∠ACX+∠A=∠BXC,再根据∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX 的度数;②先根据(1)得出∠ADB+∠AEB=90°,再利用DC平分∠ADB,EC平分∠AEB,即可求出∠DCE的度数;③由②得∠BG1C=110(∠ABD+∠ACD)+∠A,设∠A为x°,即可列得110(133-x)+x=70,求出x的值即可.【详解】(1)如图(1),连接AD并延长至点F,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°-40°=50°;②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,∴12(∠ADB+∠AEB)=90°÷2=45°,∵DC平分∠ADB,EC平分∠AEB,∴12ADC ADB∠=∠,12AEC AEB∠=∠,∴∠DCE=∠ADC+∠AEC+∠DAE,=12(∠ADB+∠AEB)+∠DAE,=45°+40°, =85°;③由②得∠BG1C=110(∠ABD+∠ACD)+∠A,∵∠BG1C=70°,∴设∠A为x°,∵∠ABD+∠ACD=133°-x°∴110(133-x)+x=70,∴13.3-110x+x=70,解得x=63,即∠A的度数为63°.【点睛】此题考查三角形外角的性质定理,三角形的外角等于与它不相邻的内角的和,,根据此定理得到角度的规律,由此解决问题,此题中得到平分角的变化规律是解题的难点.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的百分比是( )A .10%B .20%C .30%D .40%【答案】A【解析】根据第1~4组的频数,求出第5组的频数,即可确定出其百分比.【详解】根据题意得:40-(12+10+6+8)=40-36=4,则第5组所占的百分比为4÷40=0.1=10%,故选A .【点睛】此题考查了频数与频率,弄清题中的数据是解本题的关键.2.已知a ,b ,c 是ABC ∆的三条边长,则22()a b c --的值是( )A .正数B .负数C .0D .无法确定【答案】B【分析】利用平方差公式将代数式分解因式,再根据三角形的三边关系即可解决问题.【详解】解:∵(a−b)2−c 2=(a−b+c)(a−b−c),∵a+c>b ,b+c>a ,∴a−b+c>1,a−b−c<1,∴(a−b )2−c 2<1.故选B .【点睛】本题考查因式分解的应用,三角形的三边关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.已知a 、b 、c 为ABC ∆的三边,A ∠、B 、C ∠为它的三个内角,下列条件不能..判定ABC ∆是直角三角形的是( )A .222c a b =-B .3,4,5a b c ===C .::3:4:5A B C ∠∠∠=D .5,12,13a k b k c k ===(k 为正整数) 【答案】C【分析】如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.【详解】A .若a 2=c 2−b 2,则△ABC 为直角三角形,故本选项不合题意;B .若a =3,b =4,c =5,则△ABC 为直角三角形,故本选项不合题意;C .若∠A :∠B :∠C =3:4:5,则最大角∠C <90°,△ABC 不是直角三角形,故本选项符合题意;D .若a =5k ,b =12k ,c =13k (k 为正整数),则a 2+b 2=c 2,那么这个三角形就是直角三角形,故本选项不合题意.故选:C .【点睛】本题主要考查了勾股定理的逆定理,勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.4.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( )A .AC =2CDB .AD =2CDC .AD =3BD D .AB =2BC【答案】B【解析】在Rt △ABC 中,由∠A 的度数求出∠B 的度数,在Rt △BCD 中,可得出∠BCD 度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD ,由BD 的长求出BC 的长,在Rt △ABC 中,同理得到AB=2BC ,于是得到结论.【详解】解:∵△ABC 中,∠ACB =90°,∠A =30°,∴AB =2BC ;∵CD ⊥AB ,∴AC =2CD ,∴∠B =60°,又CD ⊥AB ,∴∠BCD =30°,在Rt △BCD 中,∠BCD =30°,CD =3,在Rt △ABC 中,∠A =30°,AD 3CD =3BD ,故选:B .【点睛】此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键. 5.式子()()()()()()a b b c c a b c c a a b c a a b b c ---++------的值不可能等于( ) A .﹣2B .﹣1C .0D .1【答案】C【分析】根据分式的加减运算,对式子进行化简,然后根据分式有意义,即可得出答案.【详解】解:()()()()()()-------a b b c c a ++b c c-a a-b b c a b b c =()()()()()()+-+----222a-b b c c a a b b c c a ,分式的值不能为0,因为只有a=b=c 时,分母才为0,此时分式没意义,故选:C .【点睛】本题主要考察了分式的加减运算以及分式有意义的定义,解题的关键是分式的加减运算要正确进行通分,以及注意分式的分母不能为零.6.点()2,1-M 先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是( ) A .()5,1B .()1,1-C .()1,2-D .()5,3-【答案】B【分析】直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】∵2-3=-1,-1+2=1,∴得到的点的坐标是(-1,1).故选B.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7.如图,在△ABC 中,∠CAB =90°,∠ABC =60°,BD 平分∠ABC ,若CD =6,则AD 的长为( )A .2B .3C .1D .1.5【答案】B 【分析】作DE ⊥BC 于E ,根据三角形内角和定理求出∠C ,根据直角三角形30°角的性质求出DE ,根据角平分线的性质定理解答.【详解】解:作DE ⊥BC 于E ,∠C =180°﹣∠CAB ﹣∠ABC =30°,∴DE =12CD =3, ∵BD 平分∠ABC ,∠CAB =90°,DE ⊥BC ,∴AD =DE =3,故选:B .【点睛】本题考查的是角平分线的性质,直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形,若12OA =,则556A B A △的边长为( )A .8B .16C .24D .32【答案】D 【分析】先根据等边三角形的各边相等且各角为60°得:∠B 1A 1A 2=60°,A 1B 1=A 1A 2,再利用外角定理求∠OB 1A 1=30°,则∠MON=∠OB 1A 1,由等角对等边得:B 1A 1=OA 1=2,得出△A 1B 1A 2的边长为2,再依次同理得出:△A 2B 2A 3的边长为4,△A 4B 4A 5的边长为:24=16,则△A 5B 5A 6的边长为:25=1.【详解】解:∵△A 1B 1A 2为等边三角形,∴∠B 1A 1A 2=60°,A 1B 1=A 1A 2,∵∠MON=30°,∴∠OB 1A 1=60°-30°=30°,∴∠MON=∠OB 1A 1,∴B 1A 1=OA 1=2,∴△A 1B 1A 2的边长为2,同理得:∠OB 2A 2=30°,∴OA 2=A 2B 2=OA 1+A 1A 2=2+2=4,∴△A 2B 2A 3的边长为4,同理可得:△A 3B 3A 4的边长为:23=8,△A 4B 4A 5的边长为:24=16,则△A 5B 5A 6的边长为:25=1,故选:D .【点睛】本题考查了等边三角形的性质和外角定理,难度不大,需要运用类比的思想,依次求出各等边三角形的边长,并总结规律,才能得出结论.9.下列运算正确的是( )A .a 2·a 3=a 6B .(-a 2)3=-a 5C .a 10÷a 9=a(a≠0)D .(-bc)4÷(-bc)2=-b 2c 2 【答案】C【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方法则进行计算即可.【详解】解:A 、a 2•a 3=a 5,故A 错误;B 、(﹣a 2)3=﹣a 6,故B 错误;C 、a 10÷a 9=a (a ≠0),故C 正确;D 、(﹣bc )4÷(﹣bc )2=b 2c 2,故D 错误;故选:C .【点睛】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.10.点(3,5)M --关于x 轴的对称点的坐标为( )A .(3,5)-B .(3,5)--C .(3,5)D .(3,5)- 【答案】A【分析】根据关于x 轴对称的点的特征:横坐标相同,纵坐标互为相反数即可得出答案.【详解】∵关于x 轴对称的点横坐标相同,纵坐标互为相反数,∴点(3,5)M --关于x 轴的对称点的坐标为(3,5)-.故选:A .【点睛】本题主要考查关于x 轴对称的点的特征,掌握关于x 轴对称的点的特征是解题的关键.二、填空题11(y ﹣1)2=0,则(x+y )2020=_____.【答案】1【分析】利用偶次方的性质以及二次根式的性质得出x ,y 的值进而得出答案.【详解】解:∵(y ﹣1)2=0,∴x+2=0,y ﹣1=0,解得:x =﹣2,y =1,则(x+y )2020=(﹣2+1)2020=1.故答案为:1.【点睛】本题考查了偶次方的性质以及二次根式的性质,正确掌握相关性质是解题关键.12.因式分解:x 2﹣49=________.【答案】(x ﹣7)(x+7)【分析】因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解) 【详解】解:可以直接用平方差分解为:2x ﹣49=(x ﹣7)(x+7).故答案为:(x ﹣7)(x+7)13.如果249x ax -+是一个完全平方式,则a 的值是_________.【答案】1或-1【分析】首末两项是2x 和3这两个数的平方,那么中间一项为加上或减去2x 和3积的2倍.【详解】解:∵249x ax -+是一个完全平方式,∴此式是2x 与3和的平方,即可得出-a 的值,∴(2x±3)2=4x 2±1x+9,∴-a =±1,∴a=±1.故答案为:1或-1.【点睛】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.14.多项式22(5)5x --因式分解为 _________【答案】x(x-10)【分析】利用平方差公式分解因式再化简得出即可.【详解】解:()()()()22=x-5+5x-5-5=x x-5051⎡⎤⎡⎤⎣⎦⎣⎦--x 故答案为:()x x-10【点睛】此题主要考查了平方差公式分解因式,熟练应用平方差公式是解题关键.15.关于x 、y 的方程组354522x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,则a+b 的值为____.【答案】5【分析】联立不含a与b的方程,组成方程组,求出x与y的值,进而确定出a与b的值,代入原式计算即可求出值.【详解】联立得:35234x yx y-=⎧⎨+=-⎩①②,①×3+②得:11x=11,解得:x=1,把x=1代入①得:y=﹣2,∴方程组的解为12 xy=⎧⎨=-⎩,把12xy=⎧⎨=-⎩代入得:4102228a ba b-=-⎧⎨+=⎩,即251128a ba b-=-⎧⎨+=⎩③④,④×2﹣③得:9b=27,解得:b=3,把b=3代入④得:a=2,∴a+b=3+2=5,故答案为:5【点睛】本题主要考查二元一次方程组的解的定义以及二元一次方程组的解法,掌握加减消元法解方程组,是解题的关键.16.如图,在锐角三角形ABC中,AB=10,S△ABC=30,∠ABC的平分线BD交AC于点D,点M、N分别是BD和BC上的动点,则CM+MN的最小值是_____.【答案】1【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N∴M′N′=M′E,∴CE=CM′+M′E∴当点M 与M ′重合,点N 与N ′重合时,CM+MN 的最小值.∵三角形ABC 的面积为30,AB =10, ∴12×10×CE =30, ∴CE =1.即CM+MN 的最小值为1.故答案为1.【点睛】本题考查的是轴对称-最短路线问题,解题的关键是学会利用垂线段最短解决最短问题,属于中考常考题型.17.小明体重约为62.36千克,如果精确到0.1千克,其结果为____千克.【答案】62.1.【分析】把百分位上的数字6进行四舍五入即可.【详解】62.36千克精确到0.1千克为62.1千克.故答案为:62.1.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.三、解答题18.本学期我们学习了角平分线的性质定理及其逆定理,那么,你是否还记得它们的具体内容. (1)请把下面两个定理所缺的内容补充完整:角平分线的性质定理:角平分线上的点到______的距离相等.角平分线性质定理的逆定理:到角的两边距离相等的点在______.(2)老师在黑板上画出了图形,把逆定理的已知、求证写在了黑板上,可是有些内容不完整,请你把内容补充完整.已知:如右图,点P 是AOB ∠内一点,PD AO ⊥,PE OB ⊥,垂足分别为D 、E ,且PD =______.求证:点P 在AOB ∠的______上(3)请你完成证明过程:(4)知识运用:如图,三条公路两两相交,现在要修建一个加油站,使加油站到三条公路的距离相等,加油站可选择的位置共有______处.【答案】(1)这个角的两边,角平分线上;(2)PE ,平分线上;(3)见解析;(1)1【分析】(1)根据角平分线的性质定理和判定定理解答;(2)根据题意结合图形写出已知;(3)作射线OP ,证明Rt △OPD ≌Rt △OPE 即可;(1)根据角平分线的性质定理解答.【详解】解:(1)角平分线性质定理:角平分线上的点到这个角的两边的距离相等.角平分线判定定理:到角的两边距离相等的点在角平分线上,故答案为:这个角的两边;角平分线上;(2)已知:如图1,点P 是∠AOB 内一点,PD ⊥AO ,PE ⊥OB ,垂足分别为D 、E ,且PD=PE ,求证:点P 在∠AOB 的平分线上.故答案为:PE ;平分线上;(3)如图:作射线OP ,PD AO ⊥,PE OB ⊥,90PDO PEO ∴∠=∠=︒在Rt OPD △和Rt OPE △中,PD PE OP OP =⎧⎨=⎩∴Rt OPD Rt OPE ≌△△∴DOP EOP ∠=∠∴OP 是AOB ∠的平分线,即点P 在AOB ∠的平分线上.(1)如图2,M 、N 、G 、H 即为所求,。

黑龙江省2019-2020学年八年级上学期数学期末考试试卷B卷

黑龙江省2019-2020学年八年级上学期数学期末考试试卷B卷

黑龙江省2019-2020学年八年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、选择题(共30分) (共10题;共30分)1. (3分)(2019·阳信模拟) 下列图形既是中心对称图形又是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个2. (3分)(2017·武汉模拟) 下列计算的结果为x8的是()A . x•x7B . x16﹣x2C . x16÷x2D . (x4)43. (3分)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A . 5B . 7C . 5或7D . 104. (3分) (2017八上·官渡期末) 下列分式中最简分式为()A .B .C .D .5. (3分)点A(7,8)关于x轴对称的点B的坐标为()A . (6,4)B . (-3,5)C . (-3,-8)D . (7,-8)6. (3分)如图,若△ABN≌△A CM,且BN=7,MN=3,则NC的长为()A . 3B . 4C . 4.5D . 57. (3分) (2019八下·仁寿期中) 下列各式变形正确是()A .B .C .D .8. (3分)(2017·雁塔模拟) 如图,已知△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC的长为()A .B . 6C .D .9. (3分)已知x2-4x+k是完全平方式,则常数k等于()A . 2B . 4C . ±4D . 810. (3分)(2018·高阳模拟) 八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为 km/h,则所列方程正确的是()A .B .C .D .二、填空题(共24分) (共6题;共24分)11. (4分)微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000 000 7平方毫米,用科学记数法表示为________平方毫米.12. (4分) (2015八上·阿拉善左旗期末) 当x________时,分式有意义.13. (4分)(2011·宜宾) 分解因式:4x2﹣1=________.14. (4分)计算:﹣=________15. (4分) (2017七下·岱岳期中) 如图,∠1+∠2+∠3+∠4+∠5+∠6=________度.16. (4分)等腰三角形的腰长是6,则底边长a的取值范围是________ .三、解答题(一)(共18分) (共3题;共18分)17. (6分) (2020八上·淮阳期末) 因式分解:(1);(2) .18. (6分)(2017九上·成都开学考)(1)解方程(2)先化简,再求值其中19. (6分) (2019七上·兰州月考) 尺规作图,不写作图过程,必须保留痕迹已知线段:a和b求作:线段c=2a+b四、解答题(二)(共21分) (共3题;共21分)20. (7.0分) (2017七上·醴陵期末) 综合题:探索发现(1)分解因式:①(1+x)+x(1+x)=(________)(________)=(________)2②(1+x)+x(1+x) + x(1+x)2=________③(1+x)+x(1+x) + x(1+x)2 + x(1+x)3=________(2)根据(1)的规律,直接写出多项式:(1+x) +x(1+x) + x(1+x)2+…+ x(1+x)2017分解因式的结果:________。

黑龙江省2019-2020年度八年级上学期期末数学试题C卷

黑龙江省2019-2020年度八年级上学期期末数学试题C卷

黑龙江省2019-2020年度八年级上学期期末数学试题C卷姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,在△ABC中,AB=AC,AD=DE,∠BAD=20°,∠EDC=10°,则∠DAE的度数为()A.30°B.40°C.60°D.80°2 . 对坐标平面内不同两点A(x1,y1)、B(x2,y2),用|AB|表示A、B两点间的距离(即线段AB的长度),用‖AB‖表示A、B两点间的格距,定义A、B两点间的格距为‖AB‖=|x1-x2|+|y1-y2|,则|AB|与‖AB‖的大小关系为()A.|AB|≥‖AB‖B.|AB|>‖AB‖C.|AB|≤‖AB‖D.|AB|<‖AB‖3 . 若一个等腰三角形的两边长分别为2、3,则这个等腰三角形的周长为().A.7B.8C.6或8D.7或84 . 甲.乙两人进行跑步训练,他们所跑的路程y(米)与时间x(秒)之间的关系如图所示,则下列说法错误的是()A.离终点40米处,乙追上甲B.甲比乙迟3秒到终点C.甲跑步的速度是5米/秒D.乙跑步的速度是米/秒5 . 如图,,矩形在的内部,顶点,分别在射线,上,,,则点到点的最大距离是()A.B.C.D.6 . 如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A.45°B.60°C.50°D.25°7 . 如图,数轴上所表示的x的取值范围为()A.x≤3B.﹣1≤x<3C.x>1D.﹣1<x≤38 . 如果a,b表示两个实数,那么下列命题正确的是()A.若,则B.若,则C.若,则D.若,则9 . 如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角.当小球第1次碰到长方形的边时的点为P1,第2次碰到长方形的边时的点为P2,…,第n次碰到长方形的边时的点为Pn,则点P2 018的坐标是()A.(7,4)B.(3,0)C.(1,4)D.(8,3)10 . 直线y=﹣2x﹣1关于y轴对称的直线与直线y=﹣2x+m的交点在第四象限,则m的取值范围是()A.m>﹣1B.m<1C.﹣1<m<1D.﹣1≤m≤1二、填空题11 . 若不等式组的解集中的任意x,都能使不等式x﹣5>0成立,则a的取值范围是_____.12 . 在平面直角坐标系中,将函数y=2x-3的图像先向右平移2个单位长度,再沿y轴翻折,所得函数图像对应的表达式为_____.13 . 已知等腰梯形的高为5cm,两底之差为10cm,则它的锐角为____度.14 . 如图,正方形ABCD中,点E、F分别在AB、CD上,DG⊥EF于点H,交BC于点G,点P在线段BG上.若∠PEF=45°,AE=CG=5,PG=5,则EP=____.15 . 如图,在△ABC中,AB=AC=32cm,DE是AB的垂直平分线,分别交AB、AC于D、E两点.若BC=21cm,则△BCE的周长是___ cm.16 . 已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是________三、解答题17 . 我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.(1)若0<x≤6,请写出y与x的函数关系式.(2)若x>6,请写出y与x的函数关系式.(3)在同一坐标系下,画出以上两个函数的图象.(4)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?18 . 如图,抛物线与轴的交点为A、B,与轴的交点为C,顶点为,将抛物线绕点B旋转,得到新的抛物线,它的顶点为D.(1)求抛物线的解析式;(2)设抛物线与轴的另一个交点为E,点P是线段ED上一个动点(P不与E、D重合),过点P作y轴的垂线,垂足为F,连接EF.如果P点的坐标为,△PEF的面积为S,求S与的函数关系式,写出自变量的取值范围;(3)设抛物线的对称轴与轴的交点为G,以G为圆心,A、B两点间的距离为直径作⊙G,试判断直线CM 与⊙G的位置关系,并说明理由.19 . 解不等式组20 . 直线n与过原点的直线m交于点P,P点的坐标如图所示,直线n与y轴交于点A;若OA=OP;(1)求A点的坐标;(2)求直线m,n的函数表达式;(3)求△AOP的面积.21 . 已知:如图,在中,,,,过点作于点.求证:.22 . 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出△ABC向下平移4个单位长度得到的△A1B1C1;(2)求△A1B1C1的面积.23 . 求证:菱形的两条对角线互相垂直.(要求:画出图形,写出已知,求证和证明过程)。

〖汇总3套试卷〗哈尔滨市2019年八年级上学期期末复习检测数学试题

〖汇总3套试卷〗哈尔滨市2019年八年级上学期期末复习检测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,若1min ,1⎧⎫⎨⎬-⎩⎭x x 1=,则x 的值为( ).A .1,1-,2B .1-,2C .1-D .2 【答案】D【分析】结合题意,根据分式、绝对值的性质,分111x =-、1x =两种情况计算,即可得到答案. 【详解】若111x =-,则11x -= ∴2x =∴2x = ∴{}1min ,min 1,211⎧⎫==⎨⎬-⎩⎭x x ,符合题意; 若1x =,则1x =±当1x =时,11x -无意义 当1x =-时,1111112x ==---- ∴111min ,min ,1122⎧⎫⎧⎫=-=-⎨⎬⎨⎬-⎩⎭⎩⎭x x ,故不合题意 ∴2x =故选:D .【点睛】本题考查了分式、绝对值的知识;解题的关键是熟练掌握分式、绝对值的性质,从而完成求解.2.已知直线y =-x +4与y =x +2如图所示,则方程组42y x y x =-+⎧⎨=+⎩的解为( )A .31x y =⎧⎨=⎩B .13x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .40x y =⎧⎨=⎩【答案】B【解析】二元一次方程组42y x y x =-+⎧⎨=+⎩的解就是组成二元一次方程组的两个方程的公共解,即两条直线y =-x +4与y =x +2的交点坐标13x y =⎧⎨=⎩. 故选B点睛:本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.3.一次函数2y x b =-+上有两点A (2,m ),B (3,n ),则下列结论成立的是( )A .m n >B .m n <C .m n =D .不能确定【答案】A【分析】首先判断出一次函数的增减性,然后根据A ,B 点的横坐标可得答案.【详解】解:∵一次函数2y x b =-+中20-<,∴y 随x 的增大而减小,∵2<3,∴m n >,故选:A.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的增减性与k 的关系是解题的关键.4.如图,在△ABC 中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,若BC=6,AC=5,则△ACE 的周长为( )A .8B .11C .16D .17【答案】B 【分析】根据线段垂直平分线的性质得AE=BE ,然后利用等量代换即可得到△ACE 的周长=AC+BC ,再把BC=6,AC=5代入计算即可.【详解】解:∵DE 垂直平分AB ,∴AE=BE ,∴△ACE 的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=1.故选B.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.5.每个网格中均有两个图形,其中一个图形关于另一个图形轴对称的是()A.B.C.D.【答案】B【分析】根据轴对称定义:如果一个图形沿某条直线对折能与另一个图形重合,那么这两个图形关于这条直线成轴对称进行分析即可.【详解】A、其中一个图形不与另一个图形成轴对称,故此选项错误;B、其中一个图形与另一个图形成轴对称,故此选项正确;C、其中一个图形不与另一个图形成轴对称,故此选项错误;D、其中一个图形不与另一个图形成轴对称,故此选项错误;故选:B.【点睛】本题主要考查了轴对称,关键是掌握轴对称定义.6.在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B的坐标为()A.(-2,3)B.(-2, -3)C.(2, -3)D.(-3, -2)【答案】A【解析】根据关于y轴对称的点的横坐标互为相反数,纵坐标不变进行求解即可.【详解】∵点A(2,3)与点B关于y轴对称,∴点B的坐标为(-2,3),故选A.【点睛】本题考查了关于y轴对称的点的坐标特征,熟练掌握坐标的变化规律是解题的关键.712x)A.x≥12B.x≤12C.x>12D.x<12【答案】B【解析】二次根式的被开方数应为非负数,列不等式求解.【详解】由题意得:1-2x≥0,解得x≤12,故选B.【点睛】主要考查了二次根式的意义和性质.概念:式子a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.8.到三角形三个顶点距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点【答案】D【分析】根据垂直平分线的性质定理的逆定理即可做出选择.【详解】∵到一条线段两端点的距离相等的点在这条线段的垂直平分线上,∴到三角形三个顶点距离相等的点是三边的垂直平分线的交点,故选:D.【点睛】本题考查了线段垂直平分线,理解线段垂直平分线的性质的逆定理是解答的关键.9.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()A.4B.5C.6D.9【答案】C【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<1.因此,本题的第三边应满足5<x<1,把各项代入不等式符合的即为答案.4,5,1都不符合不等式5<x<1,只有6符合不等式,故选C.【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键. 10.下列等式从左到右的变形,错误的是()A.423222x xx x x=--B.221x yx y x y-=-+C.0.030.23200.080.5850x y x yx y x y--=--D.22233222352532x x x xx x x x-+-+-=----+【答案】D【分析】利用分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.逐一计算分析即可.【详解】解:A .423222x x x x x =--,此选项正确; B .221x y x y x y-=-+,此选项正确; C .0.030.23200.080.5850x y x y x y x y--=--,此选项正确; D .22233222352532x x x x x x x x -+-+-=---+,故此选项错误, 故选:D .【点睛】本题考查分式的基本性质,熟练掌握分式的基本性质是解题的关键,注意符号的变化.二、填空题11.如图,△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线交BC 于D ,交AB 于E .若BD +AC =3a ,则AC =_________.(用含a 的式子表示)【答案】a【分析】利用线段垂直平分线的性质得出AD=BD ,然后根据三角形的外角的性质求得∠ADC=30°,最后由直角三角形中的30°角所对的直角边是斜边的一半可求出AC 的长度.【详解】解:连接AD .∵AB 的垂直平分线交BC 于D ,交AB 于E ,∴AD=BD ,∴∠B=∠BAD=15°.∴∠ADC=30°,又∠C=90°,∴AC=12AD=12BD=12(3a-AC), ∴AC=a .故答案为:a .【点睛】本题考查了线段垂直平分线的性质以及含30°的直角三角形的性质,正确作出辅助线是解题的关键. 12.如图所示,DE 垂直平分AB ,交AB 于点D ,交AC 于点E ,若50AED ∠=,则ABE ∠=_______.【答案】40°【分析】根据垂直平分线的性质可得AE=BE ,再根据等边对等角可得∠ABE=∠A ,利用直角三角形两锐角互余可得∠A 的度数即∠ABE 的度数.【详解】解:∵DE 垂直平分AB ,∴AE=BE ,∠ADE=90°,∴∠ABE=∠A=90°-AED ∠=40°,故答案为:40°.【点睛】本题考查垂直平分线的性质,等腰三角形的性质,直角三角形两锐角互余.理解垂直平分线上的点到线段两端距离相等是解题关键.13.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.【答案】(3,1)【解析】关于y 轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C (-3,1)的对应点C′的坐标是(3,1).考点:关于y 轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y 轴对称的点的坐标的特征,即可完成.14.花粉的质量很小.一粒某种植物花粉的质量约为0.000 037毫克,那么0.000 037毫克可用科学记数法表示为________毫克.【答案】53.710-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000037毫克可用科学记数法表示为3.7×10-5毫克.故答案为53.710-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.如图,点E 在DBC ∆的边DB 上,点A 在DBC ∆内部,90DAE BAC ∠=∠=,AD=AE ,AB=AC .给出下列结论:①BD=CE ;②45ABD ECB ∠+∠=;③BD CE ⊥;④()22222BE AD ABCD =+-.其中正确的是__________.【答案】①②③④【分析】只要证明DAB EAC ≅,利用全等三角形的性质即可一一判断.【详解】90DAE BAC ∠=∠=︒DAB EAC ∴∠=∠,AD AE AB AC ==DAB EAC ∴≅,BD CE ABD ECA ∴=∠=∠,故①正确;45ABD ECB ECA ECB ACB ∴∠+∠=∠+∠=∠=︒,故②正确;454590ECB EBC ABD ECB ABC ∠+∠=∠+∠+∠=︒+︒=︒90CEB ∴∠=︒,即CE BD ⊥,故③正确;()()2222222222222222BE BC EC AB CD DE AB CD AD AD AB CD ∴=-=--=-+=+-,故④正确.故答案为:①②③④.【点睛】本题考查了全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.16+(b+2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为_________.【答案】(-3,-2).【解析】试题解析:∵(b+2)2=0,∴a=3,b=-2;∴点M (a ,b )关于y 轴的对称点的坐标为(-3,-2).考点:1.关于x 轴、y 轴对称的点的坐标;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.17.若函数(y x a a =-为常数)与函数2(y x b b =-+为常数)的图像的交点坐标是(2, 1),则关于x 、y 的二元一次方程组2x y a x y b -=⎧⎨+=⎩的解是________. 【答案】21x y =⎧⎨=⎩【解析】根据函数图象交点坐标为两函数解析式组成的方程组的解即可解答.【详解】解:因为函数y=x-a(a 为常数)与函数y=-2x+b(b 为常数)的图像的交点坐标是(2, 1),所以方程组2x y a x y b -=⎧⎨+=⎩ 的解为21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查一次函数与二元一次方程(组):满足函数解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.三、解答题18.如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.(1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm .(2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由; (3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?【答案】(1)BP=3cm ,CQ=3cm ;(2)全等,理由详见解析;(3)154;(4)经过803s 点P 与点Q 第一次相遇.【分析】(1)速度和时间相乘可得BP 、CQ 的长;(2)利用SAS 可证三角形全等;(3)三角形全等,则可得出BP=PC ,CQ=BD ,从而求出t 的值; (4)第一次相遇,即点Q 第一次追上点P ,即点Q 的运动的路程比点P 运动的路程多10+10=20cm 的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程. 19.如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED∥BC,EF∥AC.求证:BE=CF .【答案】证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF ,再证明EB=ED ,即可解决问题.试题解析:∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE=CF ,∵BD 平分∠ABC ,∴∠EBD=∠DBC ,∵DE ∥BC ,∴∠EDB=∠DBC ,∴∠EBD=∠EDB ,∴EB=ED ,∴EB=CF .考点:平行四边形的判定与性质.20.中国海军亚丁湾护航十年,中国海军被亚丁湾上来往的各国商船誉为“值得信赖的保护伞”.如图,在一次护航行动中,我国海军监测到一批可疑快艇正快速向护航的船队靠近,为保证船队安全,我国海军迅速派出甲、乙两架直升机分别从相距40海里的船队首(O 点)尾(A 点)前去拦截,8分钟后同时到达B 点将可疑快艇驱离.己知甲直升机每小时飞行180海里,航向为北偏东25,乙直升机的航向为北偏西65,求乙直升机的飞行速度(单位:海里/小时).【答案】乙直升机的飞行速度为每小时飞行240海里.【分析】根据已知条件得到∠ABO=25°+65°=90°,根据勾股定理即可得到结论.【详解】∵甲直升机航向为北偏东25°,乙直升机的航向为北偏西65°,∴∠ABO=25°+65°=90°,∵OA=40,OB=180×860=24(海里),∴=32(海里),∵32÷860=240(海里/小时), 答:乙直升机的飞行速度为每小时飞行240海里.【点睛】本题考查了解直角三角形-方向角问题,正确的理解题意是解题的关键.21.化简:[(a+2b)(a ﹣2b)﹣(a+4b)2]÷(4b).【答案】﹣5b ﹣2a .【分析】根据题意先计算括号内的,再计算除法即可得出答案.【详解】解:[(a+2b)(a ﹣2b)﹣(a+4b)2]÷(4b)=(a 2﹣4b 2﹣a 2﹣8ab ﹣16b 2)÷(4b)=(﹣20b 2﹣8ab)÷(4b)=﹣5b ﹣2a .【点睛】本题主要考查整式的混合运算,解题的关键是掌握完全平方公式和平方差公式及合并同类项法则. 22.(列二元一次方程组求解)班长安排小明购买运动会的奖品,下面对话是小明买回奖品时与班长的对话情境:小明说:“买了两种不同的笔记本共50本,单价分别是5元和9元,我给了400元,现在找回88元.” 班长说:“你肯定搞错了.”小明说:“我把自己口袋里的18元一起当作找回的钱款了.”班长说:“这就对啦!”请根据上面的信息,求两种笔记本各买了多少本?【答案】两种笔记本各买30本,20本【分析】分析题目中给出的条件,设两种笔记本各买x 本、y 本,列出方程组解答即可.【详解】解:设两种笔记本各买x 本、y 本,根据题意得50594008818x y x y +=⎧⎨+=-+⎩ 解得3020x y =⎧⎨=⎩答:两种笔记本各买30本,20本.【点睛】本题主要考查二元一次方程组的应用,根据题意列出方程组是解题的关键.23.解方程:121x -=12-342x -. 【答案】3x =【分析】先确定最简公分母是42x -,将方程两边同时乘以最简公分母约去分母可得: 2213x =--,然后解一元一次方程,最后再代入最简公分母进行检验.【详解】去分母得:2213x =--,解得:3x =,经检验3x =是分式方程的解.【点睛】本题主要考查解分式方程的方法,解决本题的关键是要熟练掌握解分式方程的方法和步骤.24.计算:(1)13x•(6x 2y )2; (2)(a+b )2+b (a ﹣b ).【答案】(1)12x 3y 2;(2)a 2+3ab .【分析】(1)根据分式的乘除法以及积的乘方的运算法则计算即可.(2)应用完全平方公式,以及单项式乘多项式的方法计算即可.【详解】(1)13x •(6x 2y )2; =13x•(36x 4y 2) =12x 3y 2;(2)(a+b )2+b (a ﹣b )=a 2+2ab+b 2+ab ﹣b 2=a 2+3ab .【点睛】本题主要考查了分式的乘除,单项式乘多项式以及完全平方公式的应用,要熟练掌握.25.如图,在ABC ∆中,45ABC ∠=︒,D 为BC 上一点,02,60CD BD ADC =∠=,AE BC ⊥于点E ,CF AD ⊥于点F ,,AE CF 相交于点G .(1)求证:AFG CFD ∆≅∆;(2)若3,BC AF ==EG 的长.【答案】(1)证明见解析;(2)31EG -=. 【分析】(1)先求出30FCD ∠=︒,根据30°所对的直角边是斜边的一半,可得2CD DF =,从而得出BD DF =,然后根据等边对等角可得DBF DFB ∠=∠,然后利用外角的性质和等角对等边可证出BF AF =,再利用等角对等边可得BF CF =,从而得出CF AF =,最后利用ASA 即可证出AFG CFD ∆≅∆;(2)先根据已知条件即可求出BD 和CD ,从而求出DF ,再根据全等三角形的性质即可求出FC 和FG ,从而求出CG ,最后根据30°所对的直角边是斜边的一半即可求出EG .【详解】(1)证明:连接BF ,∵CF AD ⊥,∴90DFC CFD ︒∠=∠=,∵60ADC ∠=︒,∴30FCD ∠=︒,∴2CD DF =,∵2CD BD =,∴BD DF =,∴DBF DFB ∠=∠,∵60ADC DFB FBD ∠=∠+∠=︒,∴30DFB DBF ∠=∠=︒,∵45ABC ∠=︒,∴453015ABF ∠=︒-︒=︒,∵30ABF BAF BFD ∠+∠=∠=︒,∴15FAB ∠=︒,即BAF ABF ∠=∠,∴BF AF =∵30FBC FCB ∠=∠=︒,∴BF CF =,∴CF AF =∵AE BC ⊥,∴90AED ∠=︒,∵60ADC ∠=︒,∴30FAG DCF ∠=︒=∠,在AFG ∆和CFD ∆中AFG CFD AF CFFAG FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AFG CFD ASA ∆≅∆;解:(2)∵3,2BC CD BD ==,∴1,2BD CD ==,∵DF BD =,∴1DF =,∵AFG CFD ∆≅∆,∴1DF FG ==,∴FA FC ==∴1CG FC FG =-=在Rt CEG ∆中,90GEC ∠=︒,30GCE ∠=︒,∴1122EG CG ==. 【点睛】此题考查的是直角三角形的性质、等腰三角形的判定及性质和全等三角形的判定及性质,掌握30°所对的直角边是斜边的一半、等边对等角和等角对等边和全等三角形的判定及性质是解决此题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列长度的三条线段,能组成三角形的是( )A .5,6,11B .3,4,8C .5,6,10D .6,6,13【答案】C【分析】根据三角形的两边和大于第三边解答.【详解】A 、5+6=11,故不能构成三角形;B 、3+4<8,故不能构成三角形;C 、5+6>10,故能构成三角形;D 、6+6<13,故不能构成三角形;故选:C .【点睛】此题考查三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.2.一个三角形的三边长度的比例关系是2,则这个三角形是( )A .顶点是30°的等腰三角形B .等边三角形C .有一个锐角为45°的直角三角形D .有一个锐角为30°的直角三角形 【答案】D【分析】根据题意设三边的长度,再根据边的关系即可得出答案.【详解】一个三角形的三边长度的比例关系是1:2,∴设这个三角形三边的长度分别为()0x x >、2x ,2x x <<,且)()222242x x x +==,∴这个三角形是直角三角形,且斜边长为2x ,斜边长是其中一条直角边长的2倍,即这个三角形是有一个锐角为30°的直角三角形,故选:D .【点睛】本题考查了含30度角的直角三角形性质、勾股定理的逆定理,能够得出三角形为直角三角形是解题的关键.3.如图所示:已知两个正方形的面积,则字母A 所代表的正方形的面积为( )A .4B .8C .64D .16【答案】C 【解析】根据正方形的面积等于边长的平方,由正方形PQED 的面积和正方形PRQF 的面积分别表示出PR 的平方及PQ 的平方,又三角形PQR 为直角三角形,根据勾股定理求出QR 的平方,即为所求正方形的面积.【详解】∵正方形PQED 的面积等于1,∴PQ 2=1.∵正方形PRGF 的面积为289,∴PR 2=289,又△PQR 为直角三角形,根据勾股定理得:PR 2=PQ 2+QR 2,∴QR 2=PR 2﹣PQ 2=289﹣1=2,则正方形QMNR 的面积为2.故选C .【点睛】本题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是解答本题的关键.4.关于x 的方程253+x-5255ax x x =-+有增根则a= ( ) A .-10或6B .-2或-10C .-2或6D .-2或-10或6 【答案】A【分析】先将分式方程化为整式方程,再根据增根的定义求出分式方程的增根,将增根代入整式方程即可求出a 的值. 【详解】解:253+x-5255ax x x =-+ ()()55+35x ax x +=-①∵关于x 的方程253+x-5255ax x x =-+有增根∴0252=-x解得:x=±5将x=5代入①,得a=-10;将x=-5代入①,得a=6综上所述:a=-10或6故选A .【点睛】此题考查的是根据分式方程有增根,求方程中的参数,掌握分式方程的解法和增根的定义是解决此题的关键.5.下列代数式,3x ,3x ,1a a -,35y -+,2x x y -,2n π-,32x +,x y x +中,分式有( )个. A .5B .4C .3D .2 【答案】A【分析】根据分式的定义逐个判断即可.形如(A 、B 是整式,B 中含有字母)的式子叫做分式. 【详解】解:分式有:3x ,1a a -,﹣35y +,2x x y -,x y x+,共5个, 故选:A .【点睛】本题考查的知识点是分式的定义,熟记定义是解此题的关键.6.以下命题的逆命题为真命题的是( )A .对顶角相等B .同旁内角互补,两直线平行C .若a=b ,则a 2=b 2D .若a >0,b >0,则a 2+b 2>0【答案】B【详解】解:A. 对顶角相等逆命题为相等的角为对顶角,此逆命题为假命题,故错误;B. 同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题,故正确;C. 若a=b,则22a b =的逆命题为若22a b =,则a=b ,此逆命题为假命题,故错误;D. 若a>0,b>0,则220a b +>的逆命题为若220a b +>,则a>0,b>0,此逆命题为假命题,故错误. 故选B.7 )A .面积为5B .5C .在数轴上可以找到表示5的点D .5的整数部分是2【答案】B 【分析】根据正方形面积计算方法对A 进行判断;根据平方根的性质对B 进行判断;根据数轴上的点与实数一一对应即可判断C ;根据459,可得出253<<可判断出D 是否正确.【详解】A .面积为5的正方形边长是5,说法正确,故A 不符合题意B .5的平方根是5±,故B 错误,符合题意C .在数轴上可以找到表示5的点,数轴上的点与实数一一对应,故C 正确,不符合题意D .∵459,∴253<<,整数部分是2,故D 正确,不符合题意故选:B【点睛】本题考查了正方形的性质、平方根的性质、数轴的特点、有理数的大小判断等知识.8.如图,ABC ∆是等边三角形,BD 是中线,延长BC 到点E ,使CE CD =,连结DE ,下面给出的四个结论:①BD AC ⊥,②BD 平分ABC ∠,③BD DE =,④120BDE ∠=,其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】D 【分析】因为△ABC 是等边三角形,又BD 是AC 上的中线,所以有:AD=CD ,∠ADB=∠CDB=90°(①正确),且∠ABD=∠CBD=30°(②正确),∠ACB=∠CDE+∠DEC=60°,又CD=CE ,可得∠CDE=∠DEC=30°,所以就有,∠CBD=∠DEC ,即DB=DE (③正确),∠BDE=∠CDB+∠CDE=120°(④正确);由此得出答案解决问题.【详解】∵△ABC 是等边三角形,BD 是AC 上的中线,∴∠ADB=∠CDB=90°,BD 平分∠ABC ;∴BD ⊥AC ;∵∠ACB=∠CDE+∠DEC=60°,又CD=CE ,∴∠CDE=∠DEC=30°,∴∠CBD=∠DEC ,∴DB=DE.∠BDE=∠CDB+∠CDE=120°所以这四项都是正确的.故选:D.【点睛】此题考查等边三角形的性质,等腰三角形的性质等知识,注意三线合一这一性质的理解与运用. 9.如图,已知一条线段的长度为a ,作边长为a 的等边三角形的方法是:①画射线AM ;②连结AC 、BC ;③分别以A 、B 为圆心,以a 的长为半径作圆弧,两弧交于点C ;④在射线AM 上截取AB =a ;以上画法正确的顺序是( )A .①②③④B .①④③②C .①④②③D .②①④③【答案】B 【分析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a ,作边长为a 的等边三角形的方法是:①画射线AM ;②在射线AM 上截取AB =a ;③分别以A 、B 为圆心,以a 的长为半径作圆弧,两弧交于点C ;④连结AC 、BC .△ABC 即为所求作的三角形.故选答案为B .【点睛】本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.10.下列计算正确的是( )A .(21b )﹣2=b 4B .(﹣a 2)﹣2=a 4C .00=1D .(﹣12)﹣2=﹣4 【答案】A 【分析】直接利用分式的基本性质、负整数指数幂的性质、零指数幂化简得出答案.【详解】A 、222421()()b b b ---==,此项正确 B 、2222411()()a a a --==-,此项错误 C 、000=,此项错误D 、2121()(2)42----=-=,此项错误故选:A .【点睛】本题考查了分式的基本性质、负整数指数幂的性质、零指数幂,熟记各性质与运算法则是解题关键.二、填空题11.把命题“三角形内角和等于180°”改写成如果 ,那么 .【答案】有一个三角形的三个内角; 它们和等于180°【解析】试题分析:这个题是考察命题的定义的理解,所以知道题设和结论就可以写出.考点:命题的定义,定理12.一组数据3,4,6,7,x 的平均数为6,则这组数据的方差为_____.【答案】1【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算. 【详解】解:数据3,4,1,7,x 的平均数为1, ∴346765x ++++=, 解得:10x =,2222221[(36)(46)(66)(76)(106)]65s ∴=-+-+-+-+-=; 故答案为:1.【点睛】本题考查方差的定义:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.【答案】如果两个角互为对顶角,那么这两个角相等【分析】根据命题的形式解答即可.【详解】将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.【点睛】此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.14.如图,一只蚂蚁从点A 沿数轴向右直爬2个单位到达点B ,点A 表示B 所表示的数为m ,则2m 的值为______.【答案】222-【分析】由点2-向右直爬2个单位,即22-+,据此即可得到.【详解】解:由题意,∵点A 表示2-,∴点B 表示22-+,即22m =-+,∴22(22)222m =⨯-+=-;故答案为:222-.【点睛】本题考查了实数与数轴的对应关系,理解向右移动是增大是关键.15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________【答案】222()2a b a ab b +=++【解析】由图形可得:()2222a b a ab b +=++16.试写出一组勾股数___________________.【答案】3、4、1(答案不唯一).【详解】解:最常见的勾三股四弦五,勾股数为3,4,1.故答案为:3、4、1(答案不唯一).17.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用12秒通过AC ,其中通过BC 的速度是通过AB 速度的1.5倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:______.【答案】66121.5x x+=【解析】设小明通过AB时的速度是x米/秒,根据题意列出分式方程解答即可.【详解】解:设小明通过AB时的速度是x米/秒,由共用12秒通过AC可得:66121.5x x+=.故答案为:66121.5x x+=.【点睛】此题考查由实际问题抽象分式方程,关键是根据题意列出分式方程解答.三、解答题18.如图,在Rt△ABC中,∠ACB=90°,两直角边AC=8cm,BC=6cm.(1)作∠BAC的平分线AD交BC于点D;(尺规作图,不写作法,保留作图痕迹)(2)计算△ABD的面积.【答案】(1)详见解析;(2)403.【分析】(1)利用尺规作出∠CAB的角平分线即可;(2)作DE⊥AB,垂足为E.设CD=DE=x,在Rt△DEB中,利用勾股定理构建方程即可解决问题.【详解】解:(1)作图如下:AD是∠ABC的平分线.(2)在Rt△ABC中,由勾股定理得:AB22AC BC+2286+10,作DE⊥AB,垂足为E.∵∠ACB=90°,AD是∠ABC的平分线,∴CD=DE,设CD=DE=x,∴DB=6﹣x,∵∠C=∠AED=90°,AD=AD,DC=DE,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE=8,∴EB=AB﹣AE=10﹣8=2,在Rt△DBE中由勾股定理得:x2+22=(6﹣x)2解方程得x=83,∴S=12AB•DE181023=⨯⨯=403.【点睛】本题考查了角平分线作图、角平分线的性质、全等三角形的判定与性质及勾股定理,灵活利用角平分线的性质添加辅助线是解题的关键.19.在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.【答案】(1)(2)见解析;(3)P(0,2).【解析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C 关于y 轴的对称点C′,连接B 1C′交y 轴于点P ,则点P 即为所求.设直线B 1C′的解析式为y=kx+b (k≠0),∵B 1(﹣2,-2),C′(1,4),∴224k b k b -+=-⎧⎨+=⎩,解得:22k b =⎧⎨=⎩, ∴直线AB 2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).点睛:本题主要考查轴对称图形的绘制和轴对称的应用.20.如图在Rt ABC ∆中,90,30,1ACB A BC ︒︒∠=∠==,将三角板中30度角的顶点D 放在AB 边上移动,使这个30度角的两边分别与ABC ∆的边AC,BC 相交于点E,F,且使DE,始终与AB 垂直(1)求证:BDF 是等边三角形(2)若移动点D ,使EF//AB 时,求AD 的长【答案】(1)见解析;(2)65【分析】(1)由已知可得∠FDB=60°,∠B=60°,从而可得到△BDF 是等边三角形; (2)设AD=x ,CF=y ,求出y 与x 之间的关系式,当EF ∥AB 时,∠CEF=30°,∠FED=∠EDA=90°,CF=12EF ,EF=12DF ,代入计算即可求得AD 的长. 【详解】解:(1)∵ED ⊥AB ,∠EDF=30°,∴∠FDB=60°,∵∠A=30°,∠ACB=90°,∴∠B=60°,。

黑龙江省哈尔滨市宾县2019-2020学年八年级上学期期末数学试题(word无答案)

黑龙江省哈尔滨市宾县2019-2020学年八年级上学期期末数学试题(word无答案)

黑龙江省哈尔滨市宾县2019-2020学年八年级上学期期末数学试题(word无答案)一、单选题(★) 1 . 在代数式中,分式共有( ).A.2个B.3个C.4个D.5个(★★) 2 . 下列线段长能构成三角形的是()A.3、4、7B.2、3、6C.5、6、11D.4、7、10(★) 3 . 等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16B.18C.20D.16或20(★) 4 . 点(2,-3)关于y轴的对称点是( )A.B.C.D.(★) 5 . 下列图形中,不是轴对称图形的是()A.B.C.D.(★) 6 . 下列命题中不正确的是()A.全等三角形的对应边相等B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等(★) 7 . 如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A.B.C.D.(★★) 8 . 下列计算正确的是()A.3x﹣2x=1B.a﹣(b﹣c+d)=a+b+c﹣dC.(﹣a2)2=﹣a4D.﹣x•x2•x4=﹣x7(★) 9 . 若,则的值为()A.B.C.D.(★) 10 . 已知关于x的分式方程+ =1的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠3二、填空题(★) 11 . PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为 ________________ .(★★) 12 . 一个多边形的各内角都相等,且每个内角与相邻外角的差为100°,那么这个多边形的边数是 __________ .(★★)13 . 如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为 _____ .(★★★★) 14 . x+ =3,则x 2+ = _____ .(★) 15 . 如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________.(★★) 16 . 分解因式:(x 2+4)2﹣16x 2=_____.(★★) 17 . (x 2y﹣xy 2)÷ xy=_____.(★) 18 . 三角形有两条边的长度分别是5和7,则最长边a的取值范围是 _____ .(★★) 19 . 已知△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点A.若∠EBC=42°,则∠BAC的度数为 _________(★★) 20 . 一个六边形的六个内角都是120°,连续四边的长依次为2.31,2.32,2.33,2.31,则这个六边形的周长为_____.三、解答题(★★) 21 . 计算:(1)(﹣3a 2b)3﹣(2a 3)2•(﹣b)3+3a 6b 3(2)(2a+b)(2a﹣b)﹣(a﹣b)2(★★) 22 . 如图,已知在平面直角坐标系中,△ABC三个顶点的坐标分别是A(1,1),B (4,2),C(3,4).(1)画出△ABC关于y轴对称的△A 1B 1C 1(要求:A与A 1,B与B 1,C与C 1相对应);(2)通过画图,在x轴上确定点Q,使得QA与QB之和最小,画出QA与QB,并直接写出点Q的坐标.点Q的坐标为.(★★) 23 . 先化简,再求值:÷ ﹣,其中x=(5﹣π)0+(﹣2)﹣1.(★★) 24 . 如图,AE=AD,∠ABE=∠ACD,BE与CD相交于O.(1)如图1,求证:AB=AC;(2)如图2,连接BC、AO,请直接写出图2中所有的全等三角形(除△ABE≌△ACD外).(★★) 25 . 京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程? (★★★★) 26 . 如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C 之间存在的数量关系,并证明理由.(★★★★) 27 . 在△ABC中,AB=AC,D、E分别在BC和AC上,AD与BE相交于点A.(1)如图1,若∠BAC=60°,BD=CE,求证:∠1=∠2;(2)如图2,在(1)的条件下,连接CF,若CF⊥BF,求证:BF=2AF;(3)如图3,∠BAC=∠BFD=2∠CFD=90°,若S△ABC=2,求S△CDF的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档