高中数学 函数模型及其应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.11 函数模型及其应用
一、填空题
1.某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -0.1 x 2(0<x <240,x ∈N +),若每台产品的售价为25万元,则生产者不亏本
时(销售收入不小于总成本)的最低产量是________台.
解析 设利润为f (x )(万元),
则f (x )=25x -(3 000+20x -0.1x 2)=0.1x 2+5x -3 000≥0,∴x ≥150. 答案 150
2.某商品的单价为5 000元,若一次性购买超过5件,但不超过10件,则每件优惠500元;若一次性购买超过10件,则每件优惠1 000元.某单位购买x 件 (x ∈N*,x≤15),设最低的购买费用是f(x)元,则f(x)的解析式是____________.
解析 f(x)=⎩⎨⎧ 5 000x ,x ∈{1,2,3,4,5},
4 500x ,x ∈{6,7,8,9,10},
4 000x ,x ∈{11,12,13,14,15}
这是一个典型的分段函数问题,由题意很容易得到结论. 答案 f(x)=⎩⎨⎧ 5 000x ,x ∈{1,2,3,4,5},
4 500x ,x ∈{6,7,8,9,10},
4 000x ,x ∈{11,12,13,14,15}
3.从盛满20升纯消毒液的容器中倒出1升,然后用水加满,再倒出1升,再用水加满.这样继续下去,则所倒次数x 和残留消毒液y 之间的函数解析式为________.
解析 所倒次数1次,则y =19;所倒次数2次,则y =19×1920
……所倒次数x 次,则y =19⎝ ⎛⎭⎪⎫1920x -1=20⎝ ⎛⎭
⎪⎫1920x . 答案 y =20⎝ ⎛⎭
⎪⎫1920x 4.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,
那么,一个喝了少量酒后的驾驶员,至少经过________小时才能开车(精确到 1小时).
解析 设至少经过x 小时才能开车.由题意得0.3(1-25%)x ≤0.09, ∴0.75x ≤0.3.x ≥log 0.750.3≈5.
答案 5
5.为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下:
明文――→加密密文――→发送密文――→解密明文
已知加密为y =a x -2(x 为明文,y 为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________.
解析 依题意y =a x -2中,当x =3时,y =6,故6=a 3-2,解得a =2.所以加密为y =2x -2,因此,当y =14时,由14=2x -2,解得x =4.
答案 4
6.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200 kg ,配料的价格为1.8元/kg ,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/kg 支付.当9天购买一次配料时该厂用于配料的保管费用P =________.
解析 当9天购买一次配料时,该厂用于配料的保管费用
P =70+0.03×200×(1+2)=88(元).
答案 88元
7.某种储蓄按复利计算利息,若本金为a 元,每期利率为r ,存期是x ,本利和(本金加利息)为y 元,则本利和y 随存期x 变化的函数关系式是________. 解析 已知本金为a 元,利率为r ,则
1期后本利和为y =a +ar =a (1+r ),
2期后本利和为y =a (1+r )+a (1+r )r =a (1+r )2,
3期后本利和为y =a (1+r )3,
……
x期后本利和为y=a(1+r)x,x∈N*.
答案y=a(1+r)x,x∈N*
8.2002年初,甲、乙两外商在济南各自兴办了一家大型独资企业.2010年初在经济指标对比时发现,这两家企业在2002年和2009年缴纳的地税均相同,其间每年缴纳的地税按各自的规律增长:企业甲年增长数相同,而企业乙年增长率相同.则2010年两企业缴纳地税的情况下列说法中正确的是________(填序号).①甲多②乙多
③甲乙一样多④不能确定
解析设企业甲每年缴纳的地税组成数列{a n},
由于企业甲年增长数相同,所以数列{a n}是等差
数列,则a n是关于n的一次函数.设企业乙每年
缴纳的地税组成数列{b n},由于企业乙年增长率
相同,所以数列{b n}是等比数列,则b n是关于n的
指数型函数.根据题意,a1=b1,a8=b8,如图知
a
9
<b9,故2010年企业乙缴纳的地税多.
答案②
9.将函数y2-x-12-1(x∈[0,2])图象绕原点逆时针方向旋转θ角(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C都是一个函数的图象,则α的最大值是________.
解析由函数定义,若曲线对应的方程为函数
解析式时,直线x=a与该曲线若相交,则仅有
一个交点,如图,当α=π
4
时符合题意.
答案π4
10.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用,浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注入2t2升,当水箱内水量达到最小值时,放水自动停止,现假定每人洗浴用水65升,则该热水器一次至多可供________人洗浴.