第五章习题几个典型的代数系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章习题几个典型的代数系统
.设A={0,1},试给出半群的运算表,其中为函数的复合运算。
.设G={a+bi|a,b∈Z},i为虚数单位,即i2=-1.验证G关于复数加法构成群。
.设Z为整数集合,在Z上定义二元运算如下:
x,y∈Z,x y=x+y-2
问Z关于运算能否构成群为什么
.设A={x|x∈R∧x≠0,1}.在A上定义六个函数如下:
f 1(x)=x,f
2
(x)=x-1,f
3
(x)=1-x,
f 4(x)=(1-x)-1,f
5
(x)=(x-1)x-1, f
6
(x)=x(x-1)-1
令F为这六个函数构成的集合,运算为函数的复合运算。
(1) 给出运算的运算表。
(2) 验证
.设G为群,且存在a∈G,使得 G={a k|k∈Z}, 证明G是交换群。.证明群中运算满足消去律.
.设G为群,若x∈G有x2=e,证明G为交换群。
.设G为群,证明e为G中唯一的幂等元。
.证明4阶群必含2阶元。
设A={a+bi|a,b∈Z,i2=-1},证明A关于复数的加法和乘法构成环,称为高斯整数环。
.(1) 设R
1,R
2
是环,证明R
1
与R
2
的直积R
1
×R
2
也是环。
(2) 若R
1和R
2
为交换环和含幺环,证明R
1
×R
2
也是交换环和含幺环。
. 判断下列集合和给定运算是否构成环、整环和域,如果不能构成,说明理由。
(1) A={a+bi|a,b∈Z},其中i2=-1,运算为复数的加法和乘法。
(2) A={-1,0,1},运算为普通加法和乘法。
(3) A=M
2
(Z),2阶整数矩阵的集合,运算为矩阵加法和乘法。
(4) A是非零有理数集合Q*,运算为普通加法和乘法。
.设G是非阿贝尔群,证明G中存在元素a和b,a≠b,且ab=ba.
.设H是群G的子群,x∈G,令
xHx-1={xhx-1|h∈H},
证明xHx-1是G的子群,称为H的共轭子群。
.设
(1) G上的二元运算为矩阵乘法,给出G的运算表
(2) 试找出G的所有子群
(3) 证明G的所有子群都是正规子群。
.设G是有限群,K是G的子群,H是K的子群,证明[G:H]=[G:K][K:H].
.令G={Z,+}是整数加群。求商群Z/4Z,Z/12Z和4Z/12Z.
.对以下各小题给定的群G
1和G
2
以及f:G
1
→G
2
,说明f是否为群G
1
到G
2
的同态。
如果是,说明G是否为单同态,满同态和同构,并求同态像f(G
1
)和同态核kerf.
(1) G
1=
2
=
加法和乘法。
f:Z→R*,f(x)=
(2) G
1=
2
A={x|x∈C∧|x|=1},其中C为复数集合。
f:Z→A,f(x)=cosx+i sinx
(3) G
1=
2
f:R→A,f(x)=cosx+i sinx
.设f是群G
1到G
2
的同构,证明f-1是G
2
到G
1
的同构。
.图中给出六个偏序集的哈斯图。判断其中哪些是格。如果不是格,说明理由。
.下列各集合对于整除关系都构成偏序集,判断哪些偏序集是格。
(1) L={1,2,3,4,5}
(2) L={1,2,3,6,12}
(3) L={1,2,3,4,6,9,12,18,36}
(4) L={1,2,22,...,2n},n∈Z+
.(1)画出Klein四元群的子群格。
(2)画出模12的整数群Z12的子群格。
(3)画出3元对称群S3的子群格。
.设L是格,求以下公式的对偶式:
(1) a∧(a∨b) a
(2) a∨(b∧c)(a∨b)∧(a∨c)
(3) b∨(c∧a)(b∨c)∧a
.设L是格,a,b,c∈L,且a b c,证明
a∨b=b∧c
.针对图中的格L1,L2和L3,求出他们的所有子格。
图
.针对图中的每个格,如果格中的元素存在补元,则求出这些补元。
.说明图中的每个格是否为分配格、有补格和布尔格,并说明理由。
.对以下各小题给定的集合和运算判断它们是哪一类代数系统(半群,独异点,群,环,域,格,布尔代数),并说明理由。
(1) S1={0,1,-1},运算为普通加法和乘法。
(2) S2={a1,a2,...,a n},a i,a j∈S2,a i*a j=a i.这里的n是给定的正整数,且n≥2.
(3) S3={0,1},*为普通乘法。
(4) S4={1,2,5,7,10,14,35,70},和*分别表示求最小公倍数和最大公约数运算。