反比例函数的定义
反比例函数知识点归纳
![反比例函数知识点归纳](https://img.taocdn.com/s3/m/86cbbe74b80d6c85ec3a87c24028915f814d8471.png)
反比例函数知识点归纳反比例函数是指一个函数,其中一个变量的值与另一个变量的值成反比。
在数学中,反比例函数通常表示为y=k/x,其中x和y是函数的自变量和因变量,k是常数。
反比例函数也可以写为y=k/(x+a),其中a是常数。
在本文中,我们将归纳一些关于反比例函数的重要知识点。
1.定义:反比例函数是一个特殊的函数类型,它的特点是当x增加时,y值减小,反之亦然。
在反比例函数中,变量x和y成反比关系,即x和y的乘积等于常数k。
反比例函数可以表示为y=k/x,其中k是常数。
当k大于0时,函数图像在y轴上方,当k小于0时,函数图像在y轴下方。
2.定义域和值域:在反比例函数中,除了x不能等于0之外,x可以取任何非零实数值。
这是因为当x等于0时,函数的定义不再成立,因为不能除以0。
而y的取值范围可以包括0,在y=k/x的函数中,y可以取任意非零实数值。
当k大于0时,y的范围为(0,+∞),当k小于0时,y的范围为(-∞,0),当k等于0时,y只能取0。
3.图像和性质:反比例函数的图像是一个超越坐标轴的曲线,它的形状为一条倒置的双曲线。
当k大于0时,曲线的开口朝下;当k小于0时,曲线的开口朝上。
反比例函数是一个奇函数,它具有对称性,即f(x)=-f(-x)。
此外,反比例函数的图像永远不会与x轴或y轴相交,因为x等于0时,函数的定义不成立。
4.等比例变换:反比例函数的图像可以通过等比例变换来得到其他的反比例函数图像。
当我们在函数中加入一个常数a,变成y = k/(x+a),这会导致图像在x轴上方或下方平移a个单位。
当a大于0时,图像向左移动;当a小于0时,图像向右移动。
同样地,当我们在函数中加入一个倍数c,变成y =ck/x,这会导致图像的开口变窄或变宽。
当c大于1时,图像变窄,当0<c<1时,图像变宽。
5.利用反比例函数解决实际问题:反比例函数在实际问题中有着广泛的应用。
例如,当我们知道两个变量成反比时,可以使用反比例函数来描述这一关系,并解决相关问题。
数学中的反比例函数
![数学中的反比例函数](https://img.taocdn.com/s3/m/0864fac170fe910ef12d2af90242a8956becaa01.png)
数学中的反比例函数反比例函数在数学中是一类特殊的函数,其数学表达式为y = k/x,其中k是常数,x和y是函数的自变量和因变量。
1. 反比例函数的定义和性质反比例函数是指当x和y满足y = k/x时,函数y与x成反比例关系。
其中k是常数,反比例函数的定义域为除0以外的所有实数。
反比例函数的一些重要性质如下:- 当x趋近于正无穷大或负无穷大时,y趋近于0,这也是反比例函数的特点之一。
- 当x>0时,y>0;当x<0时,y<0。
反比例函数的值域也是除0以外的所有实数。
- 反比例函数的图像是通过原点的双曲线,其中无穷远点(即x和y 无穷大的点)对称。
2. 反比例函数的图像和变化趋势反比例函数的图像通常是一个双曲线,其形状取决于常数k的值。
当k>0时,双曲线开口朝上;当k<0时,双曲线开口朝下。
反比例函数的变化趋势可以通过观察其图像得到。
当x增大时,y会减小,反之亦然。
同时,当x趋近于0时,y趋近于无穷大。
3. 反比例函数的应用举例反比例函数在实际生活中有很多应用。
以下是一些常见的应用举例。
- 电阻和电流的关系:欧姆定律中,电流与电阻成反比例关系。
当电阻增大时,电流减小;反之亦然。
- 速度和时间的关系:在匀速运动中,速度和时间成反比例关系。
当时间增加时,速度减小;反之亦然。
- 工作人员数量和完成任务所需时间的关系:在一项任务中,完成任务所需时间与工作人员数量成反比例关系。
当工作人员数量增加时,完成任务所需时间减小。
4. 反比例函数的求解方法求解反比例函数的关键是求解常数k的值。
一种常见的方法是利用给定的数据点,通过代入x和y的值,得到k的值。
举例说明,假设有一组数据点(2, 6)和(4, 3),我们可以代入x和y的值,得到以下方程:6 = k/23 = k/4通过求解这个方程组,可以得到k的值为12。
于是反比例函数的数学表达式为y = 12/x。
5. 反比例函数与其他函数的比较反比例函数与直线函数、指数函数和多项式函数等其他函数有着不同的特点和性质。
反比例函数知识点知识点总结
![反比例函数知识点知识点总结](https://img.taocdn.com/s3/m/807d6675905f804d2b160b4e767f5acfa0c7834d.png)
反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。
需要注意的是,反比例函数中自变量 x 的取值范围是x≠0,因为分母不能为 0。
例如,当 k = 5 时,反比例函数为 y = 5/x。
二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x (k 为常数,k≠0),这是最基本的形式。
2、 xy = k (k 为常数,k≠0),通过将 y = k/x 两边同乘 x 得到。
3、 y = kx^(-1) (k 为常数,k≠0),这是反比例函数的幂函数形式。
三、反比例函数的图像反比例函数的图像是双曲线。
当 k>0 时,双曲线的两支分别位于第一、三象限,在每一象限内 y 随 x 的增大而减小。
当 k<0 时,双曲线的两支分别位于第二、四象限,在每一象限内 y 随 x 的增大而增大。
例如,对于函数 y = 2/x,因为 k = 2>0,所以图像位于第一、三象限,在每个象限内,当 x 增大时,y 减小。
四、反比例函数图像的性质1、对称性反比例函数的图像关于原点对称,即若点(a,b)在反比例函数图像上,则点(a,b)也在其图像上。
2、渐近线双曲线逐渐接近但永远不会与坐标轴相交,其渐近线为 x 轴和 y 轴。
3、连续性反比例函数在定义域内不是连续的,存在间断点 x = 0。
五、反比例函数中 k 的几何意义在反比例函数 y = k/x 图像上任取一点 P,过点 P 分别作 x 轴、y轴的垂线 PM、PN,垂足分别为 M、N,则矩形 PMON 的面积 S =PM×PN =|y|×|x| =|xy| =|k|。
例如,在函数 y = 6/x 的图像上有一点 P(2,3),则矩形 PMON 的面积为 6。
六、反比例函数与一次函数的综合在解决反比例函数与一次函数的综合问题时,通常需要联立两个函数的解析式,组成方程组,求解交点坐标。
反比例函数知识点
![反比例函数知识点](https://img.taocdn.com/s3/m/6a1a0fc132d4b14e852458fb770bf78a65293af7.png)
反⽐例函数知识点数学学习反⽐例函数要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运⽤已有的数学知识,给以⼀定的解释.反⽐例函数知识点有哪些?⼀起来看看反⽐例函数知识点,欢迎查阅!反⽐例函数的定义定义:形如函数y=k/x(k为常数且k≠0)叫做反⽐例函数,其中k叫做⽐例系数,x是⾃变量,y是⾃变量x的函数,x的取值范围是不等于0的⼀切实数。
反⽐例函数的性质函数y=k/x 称为反⽐例函数,其中k≠0,其中X是⾃变量,1.当k>0时,图象分别位于第⼀、三象限,同⼀个象限内,y随x的增⼤⽽减⼩;当k<0时,图象分别位于⼆、四象限,同⼀个象限内,y随x的增⼤⽽增⼤。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3.x的取值范围是: x≠0;y的取值范围是:y≠0。
4..因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反⽐例函数的图象不可能与x轴相交,也不可能与y轴相交。
但随着x⽆限增⼤或是⽆限减少,函数值⽆限趋近于0,故图像⽆限接近于x轴5. 反⽐例函数的图象既是轴对称图形,⼜是中⼼对称图形,它有两条对称轴 y=x y=-x(即第⼀三,⼆四象限⾓平分线),对称中⼼是坐标原点。
反⽐例函数的⼀般形式(k为常数,k≠0)的形式,那么称y是x的反⽐例函数。
其中,x是⾃变量,y是函数。
由于x在分母上,故取x≠0的⼀切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。
补充说明:1.反⽐例函数的解析式⼜可以写成: (k是常数,k≠0).2.要求出反⽐例函数的解析式,利⽤待定系数法求出k即可.反⽐例函数解析式的特征⑴等号左边是函数,等号右边是⼀个分式。
分⼦是不为零的常数(也叫做⽐例系数),分母中含有⾃变量,且指数为1。
⑵⽐例系数⑶⾃变量的取值为⼀切⾮零实数。
反比例函数知识点
![反比例函数知识点](https://img.taocdn.com/s3/m/e7a0d31376232f60ddccda38376baf1ffd4fe35d.png)
反比例函数知识点反比例函数是一种特殊的函数形式,它描述了两个变量之间的关系。
其特点是当一个变量的值增加时,另一个变量的值会减小,反之亦然。
在数学中,反比例函数通常用一个方程表示,形式为y=k/x,其中k是一个常数。
在本文中,我们将探讨一些与反比例函数相关的知识点。
一、反比例函数的定义反比例函数是一种形如y=k/x的函数形式。
其中,k是一个常数,被称为反比例函数的比例常数。
在反比例函数中,变量x和y的变化满足如下关系:当x增加时,y减小;当x减小时,y增加。
二、反比例函数的图像和性质反比例函数的图像是一条直线,经过原点(0,0)。
该函数的图像与坐标轴都有一个渐近线,与x轴共轭于y轴,与y轴共轭于x轴。
同时,反比例函数的图像在第一象限和第三象限中是上升的,即从左下到右上。
三、反比例函数的图像和实际应用反比例函数的图像常常出现在实际问题中,如物理、经济等领域。
例如,某物体的速度与其所受的力成反比,即速度越大,所受的力越小,反之亦然。
又如,在某种化学反应中,反应速率与溶液中的浓度成反比。
这些实际问题可以通过反比例函数来表示和解决。
四、反比例函数的性质和应用由于反比例函数的性质和图像特点,反比例函数在实际问题中有许多应用。
首先,反比例函数可以用来描述两个变量之间的关系,例如速度和力的关系、反应速率和浓度的关系等。
其次,反比例函数可以用来解决一些实际问题,例如求解未知变量的值或优化问题。
五、反比例函数的变形除了常见形式的反比例函数y=k/x,还有其他形式的反比例函数。
例如,y=k/(x-a)、y=(k+x)/(k-x)等。
这些变形形式的反比例函数在实际问题中也有广泛应用,例如电路中的电阻和电流的关系等。
六、反比例函数的应用举例反比例函数的应用非常广泛。
下面以几个具体的实例来说明。
例1:某车辆以恒定的速度行驶,当行驶时间增加时,其行驶距离减小。
这个问题可以用反比例函数来描述,行驶距离与行驶时间成反比。
例2:某工厂的生产成本与产量成反比,即产量越大,生产成本越低,反之亦然。
反比例函数
![反比例函数](https://img.taocdn.com/s3/m/5254526331b765ce0508145a.png)
1.反比例函数定义:形如xky =(k 为常数,k≠0)的函数称为反比例函数。
其中x 是自变量,y 是函数,自变量x 的取值是不等于0的一切实数。
2.反比例函数图像与性质:3.反比例函数xy =(k≠0)中的比例系数k 的几何意义 (1)表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
如图,过双曲xky =(k≠0)上的任意一点P (x , y )做x 轴、y 轴的垂线PA 、PB ,所得矩形 四边形OBPA 的面积S=PA ·PB=k xy =当反比例函数过一,三象限时,k=xy ;当反比例函数过二,四象限时,k=-xy(2)推出:过反比例函数图像上的任意一点做坐标轴的垂线,连接原点,所得三角形的面积为2K(3)反比例函数的解析式:反比例函数xky =(0k ≠)中,只有一个待定系数,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
1.如果函数222-+=k k kx y 的图像是双曲线,且在第二,四象限内,那么k 的值是多少?2.如图,在直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数my x=的图象交于A(-2,1)、B(1,n)两点。
(1)求上述反比例函数和一次函数的表达式;(2)求△AOB 的面积。
3.如图,ABC Rt ∆的顶点A 是双曲线xky =与直线)1(++-=k x y 在第四象限的交点,AB ⊥x 轴与B ,且23=∆ABO S 。
(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A ,C 的坐标和AOC ∆的面积; (3)根据图像直接写出()1++->k x xk的自变量x 的取值范围4.如图,四边形OABC 是面积为4的正方形,函数ky x=(x >0)的图象经过点B . (1)求k 的值;(2)将正方形OABC 分别沿直线AB 、BC 翻折,得到正方形MABC′、MA′BC .设线段MC′、 NA′分别与函数ky x=(x >0)的图象交于点E 、F ,求线段EF 所在直线的解析式.5.已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6). (1)求m 的值;(2)如图9,过点A 作直线AC 与函数y =8m x-的图象交于点B ,与x 轴交于点C , 且AB =2BC ,求点C 的坐标.6.如图,一次函数b kx y +=的图象与反比例函数xmy =的图象交于点A ﹙-2,-5﹚C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D .(1) 求反比例函数x my =和一次函数b kx y +=的表达式;(2) 连接OA ,OC .求△AOC 的面积.7.如图,一次函数2y kx =+的图象与反比例函数my x=的图象交于点P ,点P 在第一象限.PA ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D , 且S △PBD =4,12OC OA =.(1)求点D 的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当0x >时,一次函数的值大于反比例函数的值的x 的取值范围。
反比例函数定义
![反比例函数定义](https://img.taocdn.com/s3/m/8e4788257dd184254b35eefdc8d376eeaeaa172d.png)
反比例函数定义反比例函数可以定义为一种按照特定规律来变化的数学函数,它的特点是其变化趋势和某一变量正比例函数的变化趋势正好相反。
反比例函数按照给定参数的变化,其变化趋势和正比例函数的变化趋势形成了正交的角度,即当一个变量的值上升或下降,另一个变量的值就会相对应的下降或上升,从而形成一个反比例函数。
反比例函数有两种表达形式,一种是按照实际变量的值变化而变化的定义式,即反比例函数的变量y由另一个变量x的值决定,它的表达形式为:y=a/x,其中a是反比例函数的参数。
另一种表达形式为按照反对比例函数的参数a变化而变化的图形,它的表达形式为a=xy,即y与x成反比例关系。
反比例函数的应用被广泛的用于工程科学,物理科学,经济学以及社会科学等领域。
以物理学为例,反比例函数可以用来描述抛物体的运动轨迹,它表示抛物体的速度和它抛出的高度之间的关系;以经济学为例,反比例函数可用来描述价格与供求量之间的关系,即当价格变化时,供求量也会相应变化;以社会科学为例,反比例函数可以用来描述社会安全水平与人民幸福感之间的关系,即当安全水平降低时,人民的幸福感也会随之降低。
除了上述几个领域的应用外,反比例函数还可以用于描述两个变量之间的关系,例如时间与速度的关系,变量之间的正比例关系即当时间增加,速度也会增加;财富与时间的关系,反比例关系即当财富上涨时,时间会降低。
综上所述,反比例函数是一种数学模型,它用来描述两个变量之间的反比例关系,并被广泛的应用于工程科学、物理科学、经济学以及社会科学等领域。
它的定义式为:y=a/x,其中a为反比例函数的参数;而它的图形表达形式为a=xy,即y与x成反比例关系。
反比例函数给出了两个变量相互之间的变化规律,在实践中可以根据反比例函数对变量进行准确的预测,为下一步的决策提供参考。
反比例函数
![反比例函数](https://img.taocdn.com/s3/m/d4af2b7c02768e9951e738b4.png)
k 1 .反比例函数 y= (k 是常数, k≠0)的图象是 x 双曲线.因为 x≠0,k≠0,相应地 y 值也不能为 0, 所以反比例函数的图象无限接近 x 轴和 y 轴,但永不 与 x 轴、y 轴相交.
2.反比例函数的图象和性质 k 反比例函数 y= (k 是常数, k≠0)的图象总是关于 x 原点对称的,它的位置和性质受 k 的符号的影响.
(1)求该轿车可行驶的总路程 s 与平均耗油量 a 之 间的函数解析式(关系式). (2)当平均耗油量为 0.08 升/千米时, 该轿车可以行 驶多少千米? 【点拨】本题考查建立反比例函数模型解答实际 问题. k k 解:(1)把 a=0.1,s=700 代入 s= ,得 700= , a 0.1 70 k=70,s= . a
考点三 反比例函数值的大小比较 例 3(2014· 衡阳)若点 P1(-1,m),P2(-2,n)在 k 反比例函数 y= (k>0)的图象上,则 m________n(填 x “>”“<”或“=”).
【点拨】方法一:∵k>0,∴在每个象限内y 随x的增大而减小.又∵0>-1>-2,∴m<n.方 法二:∵k>0,∴取k=2,把x=-1,x=-2分别 2 代入y= ,得m=-2,n=-1,∴m<n. x
k 2. (2014· 株洲)已知反比例函数 y= 的图象经过点 x (2,3),那么下列四个点中,也在这个函数图象上的是 ( B ) A.(-6,1) C.(2,-3) B.(1,6) D.(3,-2)
k 解析:∵y= 的图象经过点(2,3),∴k=2×3=6. x 又∵1×6=6=k, ∴点(1,6)也在这个函数的图象上. 故 选 B.
A.②③
B.③④
C.①②
D.①④
关于反比例函数的知识点
![关于反比例函数的知识点](https://img.taocdn.com/s3/m/bdc76bccd1d233d4b14e852458fb770bf78a3bc9.png)
关于反比例函数的知识点反比例函数是数学中经常用到的一种重要函数类型。
它是一种特殊类型的函数,通过定义两个变量之间的关系,其中一个变量的增加导致另一个变量的减小,反之亦然。
本文将详细介绍反比例函数的定义、图像、性质以及一些实际应用。
一、反比例函数的定义反比例函数的定义如下:y = k / x其中,x 和 y 是变量,k 是一个常数。
在反比例函数中,y 的值与 x 的值成反比例关系,即 x 越大,y 越小,反之亦然。
常数 k 称为比例常数,它决定了函数的形状。
二、反比例函数的图像反比例函数的图像通常是一个双曲线,它的形状取决于比例常数 k 的值。
当比例常数 k 大于 0 时,反比例函数的图像在 x 轴的正半轴和 y 轴的负半轴上分别存在一个渐近线。
这是因为当 x 趋近于无穷大时,y 趋近于 0,当 y 趋近于无穷大时,x 趋近于 0。
当比例常数 k 小于 0 时,反比例函数的图像与前一种情况相似,但是渐近线位于 x 轴的负半轴和 y 轴的正半轴上。
三、反比例函数的性质1. 定义域和值域:由于反比例函数中 x 不能为 0,所以它的定义域为 x ≠ 0。
根据函数的定义,可以得出反比例函数的值域为 y ≠ 0。
2. 对称性:反比例函数具有轴对称性,即当 (x, y) 在反比例函数中时,(-x, -y) 也在反比例函数中。
3. 变化率:反比例函数的变化率是一个常数,即在函数图像上的任意两个点 (x1, y1) 和 (x2, y2) 中,斜率 k = y1 / x1 = y2 / x2 是一个常数。
四、反比例函数的实际应用反比例函数在实际生活中有许多应用。
以下是一些常见的实际应用示例:1. 物体的速度和时间:当物体的运动速度保持不变时,物体在单位时间内所需的时间与其速度成反比例关系。
当速度增加时,所需时间减小;当速度减小时,所需时间增加。
2. 货币兑换:兑换货币时,汇率决定了兑换后的货币数量。
如果汇率变高,那么兑换后的货币数量就变少;如果汇率变低,兑换后的货币数量就变多。
初中数学:反比例函数的概念,真简单
![初中数学:反比例函数的概念,真简单](https://img.taocdn.com/s3/m/6c35cbeacf2f0066f5335a8102d276a200296038.png)
初中数学:反比例函数的概念,真简单反比例函数是数学中一个基本的函数类型,它的特点是当自变量增大时,函数值减小;当自变量减小时,函数值增大。
下面,我们将会深入探讨反比例函数的概念以及它的相关知识点。
一、反比例函数的定义反比例函数,简称反比函数,指的是若一函数 y 与另一函数 x 成反比例关系,即 y = k/x(k为常数),则称 y 为 x 的反比函数。
其中,k 为反比例函数的比例系数,通常用正数表示。
二、反比例函数的图像特点反比例函数的图像呈现出 x 轴的非零实数的全体是定义域,y 轴的非零实数的全体是值域的形态,其图像是一个对称于第二象限和第四象限的双曲线。
三、反比例函数的性质1. 反比函数的定义域为 R - {0},值域也是 R - {0}。
2. 当 x > 0 时,反比例函数单调递减;当 x < 0 时,反比例函数单调递增。
3. 反比例函数在原点处不存在定义,但是可以趋近于无穷大或无穷小。
4. 当 x 的值增加,k 不变时 y 的值逐渐减小,表现出反比例函数的反比例关系。
四、反比例函数的应用反比例函数是数学中非常重要的函数类型,具有广泛的应用。
下面我们列举一些实际中应用反比例函数的例子:1. 银行利率:银行将存款金额与利息之间的关系建立为反比例关系,可以使用反比例函数来描述。
2. 太阳能电池板:当太阳光照射到电池板上时,电压和电流成反比例关系,可以使用反比例函数来描述。
3. 计算机处理速度:计算机的处理速度与处理任务的复杂程度呈反比例关系。
4. 等比例速度问题:有时需要研究物体在不同速度下的行驶时间,这时可以使用反比例函数来描述。
以上是反比例函数的定义、图像特点、性质及应用的详细介绍。
相信通过对反比例函数的学习,我们可以更好地理解数学中的基本概念。
反比例函数最全知识点
![反比例函数最全知识点](https://img.taocdn.com/s3/m/8fce246cec630b1c59eef8c75fbfc77da2699737.png)
反比例函数最全知识点反比例函数是一种特殊的函数形式,它表示了一种两个变量之间的相互依赖关系。
在反比例函数中,当一个变量增大时,另一个变量会相应地减小,反之亦然。
本文将介绍反比例函数的定义、图像特征、性质、图像变换、实际应用以及解决反比例函数问题的方法等知识点。
一、反比例函数的定义反比例函数可以表示为:y=k/x(k≠0),其中y表示因变量(通常是函数的输出值),x表示自变量(通常是函数的输入值),k表示常数。
该定义中的k称为反比例函数的常数项,它决定了反比例函数的性质,也决定了函数图像的形状。
二、反比例函数的图像特征1.零点:当x=0时,由于分母为0,函数无定义。
因此,反比例函数没有定义在x=0的点,这个点称为函数的零点。
2.渐近线:反比例函数有两条渐近线,分别是x轴和y轴。
当x趋近于无穷大或无穷小时,y趋近于0;当y趋近于无穷大或无穷小时,x趋近于0。
3.反比例函数的图像是一个双曲线,由于分母不能为0,因此函数的图像始终存在。
当x取值较小时,y的取值较大;当x取值较大时,y的取值较小。
图像的形状与常数项k相关,k越大,图像越接近于x轴和y 轴。
三、反比例函数的性质1.定义域:反比例函数的定义域为除去零点以外的实数集合。
2.值域:反比例函数的值域为除去0以外的实数集合。
3.奇偶性:反比例函数是个奇函数,即满足f(-x)=-f(x)。
4.单调性:反比例函数在定义域上是单调递减的。
5.对称轴:反比例函数的对称轴为y=x,即函数图像关于对称轴对称。
四、反比例函数的图像变换对反比例函数进行图像变换可以通过调整常数项k的值来实现。
具体变换如下:1.平移:当k保持不变时,反比例函数的图像向上平移或向下平移。
若向上平移b个单位,则为y=k/(x+b);若向下平移b个单位,则为y=k/(x-b)。
2.拉伸:当k保持不变时,反比例函数的图像可以进行纵向拉伸或纵向压缩。
若纵向拉伸为a倍,则为y=(k/a)/x;若纵向压缩为a倍,则为y=(a*k)/x。
反比例函数的定义是什么
![反比例函数的定义是什么](https://img.taocdn.com/s3/m/9414236d7ed5360cba1aa8114431b90d6c858983.png)
反比例函数的定义是什么反比例函数的定义是什么反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图象中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。
下面是店铺给大家整理的反比例函数的定义简介,希望能帮到大家!反比例函数的定义一般的,如果两个变量x,y之间的关系可以表示成(k为常数,k≠0),其中k叫做反比例系数,x是自变量,y是自变量x的函数,x 的取值范围是不等于0的一切实数,且y也不能等于0。
k>0时,图象在一、三象限。
k<0时,图象在二、四象限.k的绝对值表示的是x与y 的坐标形成的矩形的面积。
反比例函数的表达式x是自变量,y是因变量,y是x的函数(即:y=kx^-1)(k为常数且k≠0,x≠0)若此时比例系数为:自变量的取值范围① 在一般的情况下 , 自变量 x 的取值范围可以是不等于0的任意实数② 函数 y 的取值范围也是任意非零实数。
解析式其中x是自变量,y是x的函数,其定义域是不等于0的一切实数,即{x|x≠0,x属于R这个范围。
R是实数范围。
也就是x是实数}。
下面是一些常见的形式:y*x=-1,y=x^(-1)*k(k为常数(k≠0),x 不等于0)反比例函数的函数性质单调性当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k<0时,图象分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。
k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
相交性因为在(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交,只能无限接近x轴,y 轴。
面积在一个反比例函数图像上任取两点,过点分别作x轴,y 轴的平行线,与坐标轴围成的'矩形面积为|k| ,反比例函数上一点向x 、y 轴分别作垂线,分别交于y轴和x轴,则QOWM的面积为|k|,则连接该矩形的对角线即连接OM,则RT△OMQ的面积=½|k|图像表达反比例函数图象不与x轴和y轴相交的渐近线为:x轴与y轴。
反比例函数的定义
![反比例函数的定义](https://img.taocdn.com/s3/m/3bffaf16227916888486d733.png)
反比例函数的定义一般地,函数(k是常数,k≠0)叫做反比例函数,自变量x的取值范围是x≠0的一切实数,函数值的取值范围也是一切非零实数。
注:(1)因为分母不能为零,所以反比例函数函数的自变量x不能为零,同样y也不能为零;(2)由,所以反比例函数可以写成的形式,自变量x的次数为-1;(3)在反比例函数中,两个变量成反比例关系,即,因此判定两个变量是否成反比例关系,应看是否能写成反比例函数的形式,即两个变量的积是不是一个常数。
表达式:x是自变量,y是因变量,y是x的函数求反比例函数的解析式及反比例函数的应用∙反比例函数解析式的确定方法:由于在反比例函数关系式:y=中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。
因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。
但在实际求反比例函数的解析式时,应该具体问题具体分析。
反比例函数的应用:建立函数模型,解决实际问题。
∙∙用待定系数法求反比例函数关系式的一般步骤是:①设所求的反比例函数为:y= (k≠0);②根据已知条件(自变量与函数的对应值)列出含k的方程;③由代人法解待定系数k的值;④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:①审题;②求出反比例函数的关系式;③求出问题的答案,作答。
∙∙自变量的取值范围:①在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;②函数y的取值范围也是任意非零实数。
反比例函数性质:①反比例函数的表达式中,等号左边是函数值y,等号右边是关于自变量x的分式,分子是不为零的常数k,分母不能是多项式,只能是x的一次单项式;②反比例函数表达式中,常数(也叫比例系数)k≠0是反比例函数定义的一个重要组成部分;③反比例函数(k是常数,k≠0)的自变量x的取值范围是不等式0的任意实数,函数值y的取值范围也是非零实数。
反比例函数的图像∙反比例函数的图象:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
反比例函数常用知识点总结
![反比例函数常用知识点总结](https://img.taocdn.com/s3/m/30e57e20571252d380eb6294dd88d0d233d43c06.png)
反比例函数常用知识点总结一、反比例函数的定义反比例函数也叫做倒数函数,通常用y=k/x表示,其中k为非零常数。
这种函数的图像是一个双曲线,具有对称轴。
二、反比例函数的性质1. 反比例函数的定义域和值域反比例函数的定义域为x≠0,值域为y≠0。
2. 反比例函数的奇偶性反比例函数通常不具有奇偶性。
3. 反比例函数的单调性反比例函数在定义域内单调递减或递增。
4. 反比例函数的渐近线反比例函数的图像有两条渐近线,分别是x轴和y轴。
5. 反比例函数的对称性反比例函数的图像关于原点对称。
6. 反比例函数的零点和极限反比例函数有唯一的零点,即x=±√k。
当x→0时,y→±∞。
三、反比例函数的图像1. 反比例函数的基本图像反比例函数的基本图像是一个双曲线,具有对称轴。
2. 反比例函数的平移和缩放改变k的值可以使反比例函数的图像进行平移和缩放。
3. 反比例函数的特殊情况当k为正数时,反比例函数的图像在第一和第三象限。
当k为负数时,反比例函数的图像在第二和第四象限。
四、反比例函数的应用1. 反比例函数在物理学中的应用反比例函数可以用来描述两个物理量之间的关系,比如牛顿定律中的万有引力定律就是一个反比例函数。
2. 反比例函数在经济学中的应用反比例函数可以用来描述供求关系,比如需求曲线和供给曲线都是反比例函数。
3. 反比例函数在工程学中的应用反比例函数可以用来描述工程中的一些量与距离的关系,比如声音的传播距离与声音的强度之间的关系。
五、反比例函数的解题方法1. 求反比例函数的定义域和值域根据函数的定义,可以求出反比例函数的定义域和值域。
2. 求反比例函数的零点和极限根据函数的性质,可以求出反比例函数的零点和极限。
3. 求反比例函数的图像可以根据函数的性质和图形变换的知识,画出反比例函数的图像。
4. 求反比例函数的应用问题可以根据反比例函数在物理学、经济学和工程学中的应用问题,解决实际问题。
六、反比例函数的常见错误1. 关于定义域和值域的错误很多学生容易忽略反比例函数的定义域和值域,导致在解题过程中出现错误。
反比例函数知识点
![反比例函数知识点](https://img.taocdn.com/s3/m/542f30c5856a561252d36f31.png)
反比例函数知识点:1.定义:形如y =xk (k 为常数,k ≠0)的函数称为反比例函数。
其中x 是自变量,y 是函数,自变量x 的取值是不等于0的一切实数。
说明:1)y 的取值范围是一切非零的实数。
2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此其解析式也可以写成xy=k ;1-=kx y ;xk y 1=(k 为常数,k ≠0) 3)反比例函数y =xk (k 为常数,k ≠0)的左边是函数,右边是分母为自变量x 的分式,也就是说,分母不能是多项式,只能是x 的一次单项式,如xy 1=,x y 213=等都是反比例函数,但21+=x y 就不是关于x 的反比例函数。
2. 用待定系数法求反比例函数的解析式由于反比例函数y =xk 只有一个待定系数,因此只需要知道一组对应值,就可以求出k 的值,从而确定其解析式。
3. 反比例函数的画法:1)列表;2)描点;3)连线注:(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴4. 图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x 和 y= -x ;对称中心是:原点5. 性质:说明:1)反比例函数的增减性不连续,在讨论函数增减问题时,必须有“在每一个象限内”这一条件。
2)反比例函数图像的两个分只可以无限地接近x 轴、y 轴,但与x 轴、y 轴没有交点。
3)越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大.4)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,) 在双曲线的另一支上.6. 反比例函数y =xk (k ≠0)中的比例系数k 的几何意义表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
反比例函数知识点总结
![反比例函数知识点总结](https://img.taocdn.com/s3/m/44577788fc0a79563c1ec5da50e2524de518d099.png)
反比例函数知识点总结反比例函数知识点归纳知识点1 反比例函数的定义反比例函数是指形如 y = k/x(k为常数,k≠0)的函数。
其中,自变量x的取值范围为x≠的一切实数,而函数值y的取值范围为y≠0.知识点2 用待定系数法求反比例函数的解析式由于反比例函数只有一个待定系数k,因此只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。
知识点3 反比例函数的图像及画法反比例函数的图像是双曲线,有两个分支,分别位于第一、第三象限或第二、第四象限,与原点对称。
由于自变量x≠,函数值y≠,所以它的图像与x轴、y轴都没有交点。
画反比例函数的图像应该先列表,再描点,最后用光滑的曲线连接。
知识点4 反比例函数的性质反比例函数的图像位置与函数值的增减情况与k的符号有关。
当k>0时,函数图像的两个分支分别在一、三象限,在每个象限内,y随着x的增大而减小;当k<0时,函数图像的两个分支分别在二、四象限,在每个象限内,y随着x的增大而增大。
反比例函数的图像位置和函数的增减性由反比例函数系数k的符号决定。
在每个象限内,当k>0时,y随x的增大而减小;当k0.反比例函数y=k/x中,k的几何意义可以通过双曲线上任一点P(x,y)分别作x轴、y轴的垂线,得到矩形OEPF的面积S=k=xy=x*y=PF*PE。
在反比例函数y=k/x中,k越大,双曲线y=k/x越小,离坐标原点越远;k越小,双曲线y=k/x越大,离坐标原点越近。
双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x和直线y=-x。
练题:1、反比例函数是y=k/x,其中k≠0.2、函数y1=kx和y2=1/2x的图象如下所示,自变量x的取值范围相同的是第四象限。
3、函数y=m/x和y=mx-m(m≠0)在同一平面直角坐标系中的图像可能是第一象限和第三象限。
4、反比例函数y=k/x的图象的两个分支分别位于第一象限和第三象限。
九年级数学反比例函数知识点归纳总结
![九年级数学反比例函数知识点归纳总结](https://img.taocdn.com/s3/m/2916651cac02de80d4d8d15abe23482fb4da02f9.png)
一、反比例函数的定义:
反比例函数是指其表达式可以表示为y=k/x(k≠0),其中k为常数,x≠0。
二、反比例函数的一般式:
1.y=k/x
2.k为比例系数,表示常数项。
三、反比例函数的图像特点:
1.垂直于y轴;
2.不过原点,但会经过x轴的正半轴和y轴的正半轴;
3.上升(k>0)或下降(k<0)。
四、反比例函数的性质:
1.定义域:x≠0,值域:y≠0
2.渐近线:x轴和y轴是反比例函数的渐近线。
3.对称性:关于y轴对称。
4.单调性:k>0时,单调递减;k<0时,单调递增。
五、反比例函数图像的平移:
1.y=k/(x-h):左右平移h个单位;
2.y=k/(x)+v:上下平移v个单位。
六、反比例函数与直线的关系:
1. 反比例函数与直线y=kx的图像在一起;
2. 直线y=kx可以看做反比例函数的简化形式,即k=1
七、反比例函数的应用:
1.反比例函数在实际中常用于描述两个变量之间的比例关系,如一方
的量增大,另一方的量就会减小的规律。
2.可以用反比例函数解决实际问题,如物品的价格与销量之间的关系、速度与时间之间的关系等。
《反比例函数定义》课件
![《反比例函数定义》课件](https://img.taocdn.com/s3/m/f28df13800f69e3143323968011ca300a6c3f682.png)
这些变体形式在解决实际问题时可能更加方便,但本质上仍 然是反比例数在物理中的应用
总结词
详细描述
总结词
详细描述
在物理中,反比例函数常用于 描述与距离和时间有关的物理 量,如电流与电阻之间的关系 。
在电路分析中,反比例函数用 于描述电流与电阻之间的关系, 即电流I与电阻R之间的关系为 I=V/R,其中V为电压。当电压 V保持恒定时,电流I与电阻R成 反比关系。
3
反比例函数的奇偶性
反比例函数是奇函数,因为对于任意x≠0,都有 f(-x)=-f(x)。
反比例函数的图像
反比例函数的图像
反比例函数的图像位于x轴和y轴之间, 呈现出双曲线的形状。
图像的绘制方法
图像的特点
反比例函数的图像具有渐近线,当 k>0时,图像分别位于第一、三象限; 当k<0时,图像分别位于第二、四象 限。
《反比例函数定义》课件
• 反比例函数定义 • 反比例函数的表达式 • 反比例函数的应用 • 反比例函数的扩展知识
01
反比例函数定义
反比例函数的定义
1 2
反比例函数定义
反比例函数是一种数学函数,其定义为y=k/x (k为常数且k≠0),其中x是自变量,y是因变 量。
反比例函数的定义域和值域
反比例函数的定义域为x≠0,值域为y≠0。
04
反比例函数的扩展知识
反比例函数与其他数学知识的联系
与一次函数的联系
一次函数和反比例函数在形式上有所 不同,但它们在某些情况下可以相互 转化。例如,当反比例函数的分母为 常数时,它可以转化为一次函数的形 式。
与几何知识的联系
反比例函数图像通常位于两个象限内, 其形状与坐标轴、原点以及其他直线 或曲线存在特定的几何关系,这些关 系有助于理解函数的性质。
反比例的所有概念和性质
![反比例的所有概念和性质](https://img.taocdn.com/s3/m/88f7e262ae45b307e87101f69e3143323968f5b2.png)
反比例的所有概念和性质反比例是指两个变量之间存在一种相互制约的关系,当其中一个变量增大时,另一个变量会相应地减小,反之亦然。
在数学中,反比例通常用一个函数来表示,即y = k/x,其中k表示一个常数。
反比例的概念和性质如下:1. 反比例函数的定义:反比例函数是一种形式为y = k/x的函数,其中k为常数。
当x不等于零时,函数是定义良好的。
2. 反比例函数的图像:反比例函数的图像呈现出一种特殊的形态,即一个双曲线。
随着自变量x趋近于零,因变量y趋近于无穷大;随着自变量x趋近于无穷大,因变量y趋近于零。
3. 反比例的变化趋势:反比例的关系是由两个变量之间的相互制约所决定的。
当其中一个变量增大时,另一个变量会相应地减小;当其中一个变量减小时,另一个变量会相应地增大。
这种变化趋势与正比例关系相反。
4. 反比例的例子:反比例关系在现实生活中有许多实际应用,例如弹簧刚度与其伸长长度的关系、密度与体积的关系、速度与时间的关系等等。
5. 反比例的性质:反比例具有以下性质:a. 零点:反比例函数的图像经过坐标轴的原点。
b. 单调性:反比例函数在自变量的正值区间上是单调递减的,在自变量的负值区间上是单调递增的。
c. 渐进线:反比例函数的图像有两条渐近线,即y轴和x轴。
当自变量趋近于无穷大时,函数的图像趋近于x轴;当因变量趋近于无穷大时,函数的图像趋近于y轴。
d. 定比关系:反比例函数中,y/x的值始终等于常数k,即y = k/x。
6. 反比例的应用:反比例关系在实际生活中有广泛的应用,例如电阻和电流的关系、速度和时间的关系、浓度和体积的关系等等。
这些应用可以通过反比例关系来描述和解释。
7. 反比例的变种:在一些情况下,变量之间的关系可能不是严格的反比例,而是近似反比例。
在这种情况下,函数可能具有形式为y = k/x^n的一般反比例关系,其中n为正整数。
8. 反比例与正比例的关系:反比例和正比例是两个相关但相反的概念。
反比例函数知识点总结
![反比例函数知识点总结](https://img.taocdn.com/s3/m/88bf420d647d27284b73515c.png)
反比例函数(一)反比例函数的概念:知识要点:1、定义:一般地,形如 y = xk ( k 是常数, k ≠ 0 ) 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:①y = xk (k ≠ 0), ②xy = k (k ≠ 0),③y=kx -1(k ≠0) (二)反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。
k 越大,图象的弯曲度越小,曲线越平直;k 越小,图象的弯曲度越大。
2、画法:描点法三个步骤:①列表,②描点,③连线。
作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
3、性质:(1)当k>0时,双曲线分别位于第一、三象限内,在每个象限内,y 随x 的增大而减小;(2)当k<0时,双曲线分别位于第二、四象限内,在每个象限内,y 随x 的增大而增大。
注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当k >0时,y 随x 的增大而减小“,就会与事实不符的矛盾。
4、变化趋势:因自变量x ≠0,函数值y ≠0,所以双曲线不经过原点,且无限接近于x 、y 轴,但永远不会与坐标轴相交。
5、对称性:(1)既是轴对称图形,对称抽为直线y=x 或y=-x ;(2)又是中心对称图形,对称中心是坐标原点。
(三)反比例函数与面积结合题型。
知识要点:1、反比例函数与矩形面积:若P (x ,y )为反比例函数xk y =(k ≠0)图像上的任意一点如图1所示, 过P 作PM ⊥x 轴于M ,作PN ⊥y 轴于N ,求矩形PMON 的面积.分析:S 矩形PMON =xy x y PN PM =⋅=⋅ ∵xk y =, ∴ xy=k , ∴ S =k . 2、反比例函数与三角形面积:图3 (1)若Q (x ,y )为反比例函数xk y =(k ≠0)图像上的任意一点如图2所示,过Q 作QA ⊥x 轴于A (或作QB ⊥y 轴于B ),连结QO ,则所得三角形的面积为:S △QOA =2k (或S △QOB =2k ); (2)如图3,正比例函数(0)y kx k =>与反比例函数xk y =(k ≠0)的图象相交于A 、C 两点,过点A 作AB ⊥x 轴于点B ,连结BC .则ΔABC 的面积等于k ;(3)如图,4,A 、B 是函数xk y =的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则S=2k ;(4)直线y=mx 与双曲线x k y =的关系:当两图象有两个交点时,这两个点的坐标关于原点对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/4/2
3
自主学习(1) 1分钟
欧姆定律
我们知道,电流I,电阻R,电压U之间满足 关系式U=IR.当U=220V时.
你能用含有R的代数式表示I吗?
当R越来越大时,I怎样变化?当R越来 越小呢?
2020/4/2
4
自主学习(2) 1分钟
行程问题中的函数关系
京沪高速公路全长约为1262km, 汽车沿京沪高速公路从上海驶往 北京,汽车行完全程所需的时间 t(h)与行驶的平均速度v(km/h)之 间 有怎样的关系?变量t是v的函 数吗?
(2)求当x=4时,y的值.
变式练习:y是x-1的反比例函数,当x=2时,y=-6.
(1)写出y与x的函数关系式.
(2)求当y=4时x的值.
解:(1)设y与x的函数关系式为:y k
∵当x=3时,y=-6
∴ 6 k x 1
31
∴ k=-12
∴
y
12 x 1
2020/4/2
12
能力提升
比已例知,函且数当y=x=y13-时y,2,y=y1 与5;x当成x正=比1 时例,,yy=2 与-(x1-,2求)成出反y 与 x 的函数解析式.
20
已知y 1与 1 成反比例,且当x 1时y 4,求y与x x2
的函数表达式,并判断是哪类函数?
解:由题意知 y y 11
kk 1
kkxx 22
由 x=1时,3yk=43k34xk3xk34k122414411k1kkk11k111 yy1y1yxy11x12x2x222yyyyxxyxx33x333
2020/4/2
7
归纳:
反比例函数的定义
一般地,形如 y=(Xkk是常数,k≠0)的函数称为反比例函数, 其中x是自变量,y是函数.
注意:有时反比例函数也写成y=kx-1
或xy=k的形式.
2020/4/2
8
下列函数中哪些是反比例函数?并说出它的k。哪些是一 次函数?
y = 3x-1
y = 2x
y
10
合作探究:(同桌交流 2分钟)
将下列各题中y与x的函数关系写出来. (1)y与x成反比例; (2)y与z成反比例,z与3x成反比例; (3)y与2z成反比例,z与X成正比例;
2020/4/2
11
【待定系数法求反比例函数的表达式】
例1:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式;
15
4.如图 26-1-1,某反比例函数的图象过点(-2,1),则此反
比例函数的解析式为( B )
A.y=2x
B.y=-2x
C.y=21x
D.y=-21x
图 26-1-1
2020/4/2
16
5.反比例函数 y=kx和一次函数 y=12x-4 都经过点 A(-2, m),求反比例函数的解析式.
2020/4/2
=
3 2x
y=
1 x
y
5
=
x
3y1x
0.4 x
y
x 2
xy
2.
反比例函数
xy 2 y 2 x1
一次函数
y 1 2x2
2020/4/2
9
独立思考:定义的活用
1.当m为何值时,关于x的函数 y=(m+1)xm2-2是反比例函数?
{ 分析:
m2-2=-1
m+1≠0
{m=±1
即
m≠-1
2020/4/2
2020/4/2
13
2020/4/2
14
【课堂检测 8分钟】
1.下列函数中,是反比例函数的是( D )
A.x(y-1)=1
B.y=x+1 1
C.y=x12
D.y=3x
2.已知函数 y=kxk-2 是反比例函数,求 k 的值.
3.已知反比例函数 y=2x的图象经过点 A(m,1),则 m 的值
2020/4/2
已知y y1 y2,其中y1与x成反比例,且比例系数
是k1; y2与x2成正比例,且比例系数是k2,若x 1
时, y 0,则k1与k2的关系是
解解::由由yy
yyx
kk22xx
2
解:由由x=y-1时y,1 y=0y2
0
k1 1
k2
1
2
k1 k2
2020/4/2
17
6.近视眼镜的度数y(度)与镜片焦距x(米)成反比
例,已知400度近视眼镜镜片的焦距为0.25米,
则眼镜度数y与镜片焦距x之间的函数关系式是 _________y__。100
x
7.反比例函数 y k 中,当x的值由4增加
x
到6时,y的值减小3,求这个反比例函数的
解析式. y 36 x
2020/4/2
18
作业:
1.y是x成反比例,当x=3时,y=4. (1)写出y与x的函数关系式. (2)求当y=1.5时x的值.
2.已知函y=m+n,其中m与x成正比例, n与x成反比例,且当x=1时,y=4; x=2时y=5. (1)求y与x的函数关系式. (2)当x=4时,求y的值.
2020/4/2
19
作业:
变量t与v之间的关系可以表示成 :
t 1262
v
2020/4/2
5
自主学习(3)1分钟
某机械厂加工一批零件,每小时加工的数量和 所需的加工时间如下表:
工效 x 时间 y
10 20 30 40 50 60 6 3 2 1.5 1.2 1
x y 60
y 60 x
2020/4/2
6
自主探究:同桌合作完成 2分钟
复习与回顾
1.什么是函数?我们学习了几种函 数?
2.请分别写出它们的表达式:
2020/4/2
1
第26章 反比例函数
26.1.1 反比例函数的意义 及用待定系数法求 反比例函数的解析式
2020/4/2
2
学习目标:
1、理解并掌握反比例函数的定义; 2、会用待定系数法求反比例函数的解析式。
学习重点:目标 1 学习难点:目标 2
由上面的问题中我们得到这样的三个函数,观察并回
答下列问题:
I 220 t 1262 .
y 60
R
v
x
1.上面的函数关系式形式上都有几个变量?分别
是指
2.自变量均在分母上,所以自变量的范围是
3.分子都是 ,能取“0”吗?
合作探究:组内交流2分钟
以上形式都是自变量增大,因变量在 ,符合了以上3 个特点我们称它为 ,形式为 ,定义为
2020/4/2 y是yx是y的是yx是的y一x是的x一x的次的一次一一函函次次次数数函函函数数数
21
【现场提问】
⑵ 在下列函数中,y是x的反比例函数的是( )
⑶(判(A已断)C知)一C函xy个y数=等=X式5+8为(5 (反B)D比是)例正比yy ==例函x23x2x数,则 m = ___ ; 已(1知)函自函数变数,要量两的y 个指= 条数xm件为是-7:-1反;x比-1 =例1x函数,则 m = ___ 。 8