团簇的研究现状及展望
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
团簇的研究现状及展望
摘要:概述团簇当前的发展现状,总结了团簇发展这么多年来取得的一些进步和团簇研究过程中遇到的一些有待解决的难题并对团簇的发展前景和方向作了展望。
关键词:团簇,微观结构,尺寸,性能特征
1.前言
团簇研究正在迅速发展,是跨越原子、分子物理、固体物理、表面物理、量子化学等诸多学科的一个交叉学科。从E.M.Beck等于1956年在喷嘴束中发现氢分子的冷凝即氢分子的团簇形成算起,将近已有40年的历史。但团簇研究在国际上的迅速发展还是最近一二十年的事情。与国际的团簇研究步伐相比,国内的土作起步较晚。从80年代中期开始,国内一些单位陆续开展了团簇的实验和理论研究。
2.团簇介绍
原子和分子团簇,简称团簇(Cluster)或微团簇(microclusters),是几个乃至上千个原子、分子或离子通过物理或化学结合力组成相对稳定的微观和亚微观聚集体,其物理和化学性质随所包含的原子数目而变化。团簇的空间尺度是几人至几百人的范围,用分子描述显得太大,用小块固体描述又显得太小,许多性质既不同于单个原子分子,又不同于固体或液体,也不能用两者性质作简单线性外延和内插得到。因此,人们把团簇看作是介于原子分子和宏观固体之间物质结构的新层次,有人称之为物质的“第五态”[1]。正因为如此,团簇可作为各种物质由原子分子向大块物质转变过程中的特殊物相,或者说它代表了凝聚态物质的初始状态,象胚胎学以其特殊的、许多情况下甚至是唯一的方式说明生物学规律一样,团簇的研究有助于我们认识大块凝聚物质的某些性质和规律[2,3]。
团簇科学是研究团簇的原子组态和电子结构、物理和化学性质及其向大块物质演化过程中与尺寸的关联,团簇同外界环境的相互作用规律等。团簇科学处于多学科交叉的范畴。从原子分子物理、凝聚态物理、量子化学、表面科学、材料科学甚至核物理学引入的概念和方法交织在一起,构成当前团簇究的中心议题,并逐渐发展成一门介于原子分子物理和固体物理之间的新型学科。
团簇研究的基本问题是:弄清团簇如何由原子、分子一步步发展而成,以及随着这种发展、团簇的性质将如何变化,当尺寸多大时,团簇发展成宏观固体[4]人们知道,由若干原子构成的分子,如八个硫原子构成环状分子、磷分子的四面体结构,可在气相、液相和固相中稳定的单元存在,而团簇作为原子聚集体往往产生于非平衡条件,很难在平衡的气相中产生。当团簇尺寸较小时,每增加一个原子,团簇的结构发生变化,即所谓重构。而当团簇的大小达到一定尺寸时,则变成大块固体的晶体结构,此时除了表面原子存在弛豫外,增加原子数则不再发生重构,其性质也不再发生显著改变。这个“尺寸”称之为临界尺寸,或叫做关节点。各个不同物质的关节点可能是不同的。因此,知道从一个原子或分子长成固体过程中团簇所具有的各种结构序列,是团簇研究的重要问题之一。
3.团簇生原理及方法
自然界中,团簇粒子存在,如大气烟雾、宇宙尘埃等。但是用人工方法产生团簇是团簇物理研究的基础。目前团簇的产生方法分两大类:物理方法和化学方法。根据研究问题的不同,物理方法又分许多种。
3.1 载气超声速喷嘴源[6]
金属在加热炉里被加热蒸发而汽化,金属蒸汽压力在103~104Pa。为了增加蒸发室里的压力,通入惰性气体,使压力达到几个大气压。混合的金属蒸汽和惰性气体,通过一个小喷口进入真空室。由于小喷口两边的压力差,束流获得了很高的速度,成为超声速分子束。这一过程可以看作是气体的绝热膨胀。绝热膨胀时混合气体温度降低,金属原子过饱和冷凝聚成团簇。
3.2 气体凝聚团簇源
它的基本原理是:把放置在坩埚里的所需材料加热蒸发,产生金属蒸汽。然后通入氦气,并用液氮冷却。由于氦气的引入,使得金属蒸汽温度过低。在氦气的凝聚作用下,金属原子持续凝聚而成团簇。由于团簇的再蒸发几率很小,因此团簇的产额与热力学稳定性关系不大。团簇产额和团簇的直径有关,团簇的大小由原子之间碰撞的统计平均值决定。这种源用来产生大团簇(团簇大小可达20000个原子/团簇)是很有效的,但束流强度弱于载气超声速喷嘴源。团簇的大小取决于源的各个参数,如金属蒸汽密度,氦气流速率,喷口的直径等。团簇的最终温度低于超声速源,而且温度也取决于源的各个参数。
3.3 激光蒸发团簇源
激光蒸发团簇源与其他团簇源所不同的是团簇束流为脉冲式的。从原理讲,这种源可以产生所有的金属团簇。一束强激光经聚焦后投射到靶上,激光辐射在照射区被物质所吸收,照射表层下一个薄层被加热,温度升高直到物质熔化并蒸发,产生金属蒸汽。靶丸由旋转装置带动旋转,以保证整个靶都受到激光的照射。氦气以脉冲的方式通入系统中,由于气体的冷却,使得金属原子过饱和而凝聚成团簇,团簇和气体的混和物经喷口射出。
3.4 溅射团簇源
它的原理是:离子枪使惰性气体电离,由引出电极将电离气体引出,经聚焦电极使气体离子汇聚成束。对离子束加速,使之具有较高的能量。气体离子轰击金属靶表面,靶原子被溅射后从各个方向飞出,溅射出来的粒子能量比热蒸发粒子的能量大得多。溅射出的粒子碰撞被电离,通过离子透镜聚集成团簇,团簇部分被电离。离化团簇束通过能量过滤箱被选择,最后引出单能团簇束。
3.5 加热蒸发离化团簇源
这种源最早由日本Takagi等[7]建立。整个装置包括坩埚源、离化器、加速极等。在密封的坩埚里放置所需材料,加热坩埚以使材料在高温下蒸发,坩埚内蒸气压可达133 Pa到103Pa,坩埚外的压力是1.33×10-4Pa,内外形成压力差。蒸汽通过坩埚嘴向外喷射。由于很大的压力差,因此蒸汽热能转化为动能。在此过程中,发生绝热膨胀,蒸汽温度降低,冷凝到饱和状态,凝聚成团簇。原子团簇中有几十到几千个原子。原子团簇通过由热阴极和阳极构成的离化器。热阴极发射的电子在电场作用下轰击原子团簇,使部分团簇离化,产生离化团簇束。经过加速电极加速,团簇束获得一定动能。用该团簇源沉积可以获得高质量薄膜[8,9],但该团簇源产生的束流中团簇含量低[10,11]。
3.6 液态金属离化团簇源
用加热器使金属熔化成液态。置于金属中的钨丝加上电压,钨丝尖端成针形,产生很强的尖端电场。液态金属在强电场作用下获得能量,使得金属液滴从钨丝尖端喷射出来,在电场的作用下碰撞多次电离,经蒸发冷却,凝聚成离化团簇。由引出电极引出,经三极透镜聚焦形成离化团簇束。这种源适用于熔点很高的金属,可产生多电荷团簇。